1
|
Kane A, Dinh H, Campbell L, Cain AK, Hibbs D, Carter D. Spectrum of activity and mechanisms of azole-bisphosphonate synergy in pathogenic Candida. Microbiol Spectr 2024; 12:e0012124. [PMID: 38695556 PMCID: PMC11237636 DOI: 10.1128/spectrum.00121-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/12/2024] [Indexed: 06/06/2024] Open
Abstract
Candidiasis places a significant burden on human health and can range from common superficial vulvovaginal and oral infections to invasive diseases with high mortality. The most common Candida species implicated in human disease is Candida albicans, but other species like Candida glabrata are emerging. The use of azole antifungals for treatment is limited by increasing rates of resistance. This study explores repositioning bisphosphonates, which are traditionally used for osteoporosis, as antifungal synergists that can improve and revitalize the use of azoles. Risedronate, alendronate, and zoledronate (ZOL) were tested against isolates from six different species of Candida, and ZOL produced moderate antifungal activity and strong synergy with azoles like fluconazole (FLC), particularly in C. glabrata. FLC:ZOL combinations had increased fungicidal and antibiofilm activity compared to either drug alone, and the combination prevented the development of antifungal resistance. Mechanistic investigations demonstrated that the synergy was mediated by the depletion of squalene, resulting in the inhibition of ergosterol biosynthesis and a compromised membrane structure. In C. glabrata, synergy compromised the function of membrane-bound multidrug transporters and caused an accumulation of reactive oxygen species, which may account for its acute sensitivity to FLC:ZOL. The efficacy of FLC:ZOL in vivo was confirmed in a Galleria mellonella infection model, where combinations improved the survival of larvae infected with C. albicans and C. glabrata to a greater extent than monotherapy with FLC or ZOL, and at reduced dosages. These findings demonstrate that bisphosphonates and azoles are a promising new combination therapy for the treatment of topical candidiasis. IMPORTANCE Candida is a common and often very serious opportunistic fungal pathogen. Invasive candidiasis is a prevalent cause of nosocomial infections with a high mortality rate, and mucocutaneous infections significantly impact the quality of life of millions of patients a year. These infections pose substantial clinical challenges, particularly as the currently available antifungal treatment options are limited in efficacy and often toxic. Azoles are a mainstay of antifungal therapy and work by targeting the biosynthesis of ergosterol. However, there are rising rates of acquired azole resistance in various Candida species, and some species are considered intrinsically resistant to most azoles. Our research demonstrates the promising therapeutic potential of synergistically enhancing azoles with non-toxic, FDA-approved bisphosphonates. Repurposing bisphosphonates as antifungal synergists can bypass much of the drug development pipeline and accelerate the translation of azole-bisphosphonate combination therapy.
Collapse
Affiliation(s)
- Aidan Kane
- School of Life and Environmental Sciences and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Hue Dinh
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - Leona Campbell
- School of Life and Environmental Sciences and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Amy K. Cain
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - David Hibbs
- School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Dee Carter
- School of Life and Environmental Sciences and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Khoury DM, Ghaoui N, El Tayar E, Dagher R, El Hawa M, Rubeiz N, Abbas O, Kurban M. Topical statins as antifungals: a review. Int J Dermatol 2024; 63:747-753. [PMID: 38344878 DOI: 10.1111/ijd.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024]
Abstract
Cutaneous fungal infections affect millions around the world. However, severe, multi-resistant fungal infections are increasingly being reported over the past years. As a result of the high rate of resistance which urged for drug repurposing, statins were studied and found to have multiple pleiotropic effects, especially when combined with other already-existing drugs. An example of this is the synergism found between several typical antifungals and statins, such as antifungals Imidazole and Triazole with a wide range of statins shown in this review. The main mechanisms in which they exert an antifungal effect are ergosterol inhibition, protein prenylation, mitochondrial disruption, and morphogenesis/mating inhibition. This article discusses multiple in vitro studies that have proven the antifungal effect of systemic statins against many fungal species, whether used alone or in combination with other typical antifungals. However, as a result of the high rate of drug-drug interactions and the well-known side effects of systemic statins, topical statins have become of increasing interest. Furthermore, patients with dyslipidemia treated with systemic statins who have a new topical fungal infection could benefit from the antifungal effect of their statin. However, it is still not indicated to initiate systemic statins in patients with topical mycotic infections if they do not have another indication for statin use, which raises the interest in using topical statins for fungal infections. This article also tackles the different formulations that have been studied to enhance topical statins' efficacy, as well as the effect of different topical statins on distinct dermatologic fungal diseases.
Collapse
Affiliation(s)
- Dana M Khoury
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nohra Ghaoui
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Ruby Dagher
- American University of Beirut, Beirut, Lebanon
| | - Mariana El Hawa
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nelly Rubeiz
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
3
|
Halliday C, Kim HY, Tay E, Chen SCA, Alffenaar JW. Exploring synergy between azole antifungal drugs and statins for Candida auris. J Antimicrob Chemother 2023; 78:2824-2829. [PMID: 37823357 PMCID: PMC10689908 DOI: 10.1093/jac/dkad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Global emergence of rapidly developing resistance to multiple antifungal drugs and high mortality pose challenges to the treatment of invasive Candida auris infections. New therapeutic approaches are needed, such as repurposing drugs including combination with antifungals. Statins have been reported to exert antifungal effects against various Candida species. OBJECTIVES Our study investigated potential synergy between the statins (rosuvastatin and fluvastatin) and azoles (voriconazole, posaconazole and isavuconazole) on clinical isolates of C. auris. METHODS Twenty-one clinical isolates of C. auris were obtained. Chequerboard assays based on the CLSI broth microdilution method were used to assess synergy based on FIC index (FICI) calculations of MICs of individual drugs and in combinations. RESULTS Single drug geometric mean (GM) MICs of fluvastatin and rosuvastatin were ≥128 mg/L in all 21 isolates. GM (range) MICs of posaconazole, voriconazole and isavuconazole were 0.259 (0.016-1 mg/L), 0.469 (0.016-2 mg/L) and 0.085 (0.004-1 mg/L), respectively. Combination of azoles with fluvastatin showed synergy in 70%-90% of C. auris isolates. In particular, voriconazole/fluvastatin resulted in 16-fold reduction in voriconazole MIC and synergy in 14/21 (67%) isolates. Posaconazole/fluvastatin resulted in 8-fold reduction in posaconazole MIC and synergy in 19/21 (90%) isolates.Combining rosuvastatin with the azoles also showed synergy against C. auris in 40%-60% of the isolates and additive effect in 40%-50%. None of the combinations was antagonistic. CONCLUSIONS Our results provide a rationale for pursuing in vivo synergy tests as well as clinical studies to explore tolerability, treatment outcomes, optimal dose and exposure targets.
Collapse
Affiliation(s)
- Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, A15 Science Rd, Camperdown, NSW 2006, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), Westmead, NSW, Australia
| | - Enoch Tay
- Research Education Network, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW, Australia
| | - Sharon C A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, A15 Science Rd, Camperdown, NSW 2006, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), Westmead, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
4
|
Fernández-Ruiz M, Sánchez Moreno B, Santiago Almeda J, Rodríguez-Goncer I, Ruiz-Merlo T, Redondo N, López-Medrano F, San Juan R, Andrés A, Aguado JM. Previous use of statins does not improve the outcome of bloodstream infection after kidney transplantation. Transpl Infect Dis 2023; 25:e14132. [PMID: 37605530 DOI: 10.1111/tid.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Previous studies have suggested that exposure to statins confers a protective effect in bloodstream infection (BSI) due to the anti-inflammatory and immunomodulatory properties attributed to these lipid-lowering drugs. Scarce evidence is available for the solid organ transplant population. Therefore, we compared the time to clinical cure (primary outcome) and the time to fever resolution, new requirement of intensive care unit admission or renal replacement therapy, and 30-day all-cause mortality (secondary outcomes) between kidney transplant (KT) recipients with post-transplant BSI that were receiving or not statin therapy for at least the previous 30 days. We included 80 KT recipients that developed 109 BSI episodes (43 [39.4%] and 66 [60.6%] episodes within the statin and non-statin groups, respectively). The median interval since the initial prescription to BSI was 512 days (interquartile range [IQR]: 172-1388). Most episodes were of urinary source and due to Enterobacterales. There were no differences in the median time to clinical cure in the statin and non-statin groups (3.4 [IQR: 3-6.8] versus 4 [IQR: 2-6] days; p-value = .112). The lack of effect was confirmed by multiple linear regression analysis adjusted for confounding factors (standardized β coefficient = 0.040; p-value = .709). No significant differences were observed for any of the secondary outcomes either. Vital signs and laboratory values at BSI onset and after 72-96 h were similar in both groups. In conclusion, previous statin therapy had no apparent protective effect on the outcome of post-transplant BSI among KT recipients.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Beatriz Sánchez Moreno
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Santiago Almeda
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
5
|
Villalobos APC, Foroutan F, Davoudi S, Kothari S, Martinu T, Singer LG, Keshavjee S, Husain S. Statin Use May Be Associated With a Lower Risk of Invasive Aspergillosis in Lung Transplant Recipients. Clin Infect Dis 2023; 76:e1379-e1384. [PMID: 35900334 DOI: 10.1093/cid/ciac551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Statins are competitive inhibitors of 3-hydroxy-3methylglutaryl coenzyme A reductase (HMG-CoA reductase) that catalyses HMG-CoA conversion to mevalonate, a process involved in synthesizing cholesterol in humans and ergosterol in fungi. The effect of statin use on the risk of development of invasive aspergillosis (IA) in lung transplant recipients (LTRs) is not well documented. METHODS This retrospective study included LTRs from 2010 to 2017 who were followed for one-year post-transplant. Proven or probable IA was diagnosed as per ISHLT criteria. We performed a multivariable Cox proportional hazards model of the association between IA and statin use (minimum of 2 weeks duration prior to IA), adjusting for other known IA risk factors. RESULTS We identified 785 LTRs, 44% female, mean age 53 years old, the most common underlying disease being pulmonary fibrosis (23.8%). In total, 451 LTRs (57%) received statins post-transplant, atorvastatin was the most commonly used statin (68%). The mean duration of statins post-transplant was 347 days (interquartile range [IQR]: 305 to 346). And 55 (7%) LTRs developed IA in the first-year post-transplant. Out of these 55 LTRs, 9 (16.3%) had received statin before developing IA. In multivariable analysis, statin use was independently associated with a lower risk of IA (P = .002, SHR 0.30, 95% confidence interval [CI] 95% .14-.64). Statin use was also associated with a lower incidence of post-transplant Aspergillus colonization, 114 (34%) in the no statin group vs 123 (27%) in the statin group (P = .038). CONCLUSIONS The use of statin for a minimum of two weeks during the first-year post-transplant was associated with a 70% risk reduction of IA in LTRs.
Collapse
Affiliation(s)
- Armelle Pérez-Cortés Villalobos
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Farid Foroutan
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Setareh Davoudi
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Sagar Kothari
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Tereza Martinu
- Lung Transplant Program, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Lianne G Singer
- Lung Transplant Program, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Lung Transplant Program, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Rossato L, Camargo Dos Santos M, Vitale RG, de Hoog S, Ishida K. Alternative treatment of fungal infections: Synergy with non-antifungal agents. Mycoses 2020; 64:232-244. [PMID: 33098146 DOI: 10.1111/myc.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Fungal infections are responsible for high mortality rates in immunocompromised and high-risk surgical patients. Therapy failures during the last decades due to increasing multidrug resistance demand innovative strategies for novel and effective antifungal drugs. Synergistic combinations of antifungals with non-antifungal agents highlight a pragmatic strategy to reduce the development of drug resistance and potentially repurpose known compounds with other functions to bypass costly and time-consuming novel drug development.
Collapse
Affiliation(s)
- Luana Rossato
- Faculdade de Ciências da Saúde, Federal University of Grande Dourados, Mato Grosso do Sul, Brazil
| | | | - Roxana G Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Hospital JM Ramos Mejía, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Gelosa P, Castiglioni L, Camera M, Sironi L. Repurposing of drugs approved for cardiovascular diseases: Opportunity or mirage? Biochem Pharmacol 2020; 177:113895. [PMID: 32145263 DOI: 10.1016/j.bcp.2020.113895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023]
Abstract
Drug repurposing is a promising way in drug discovery to identify new therapeutic uses -different from the original medical indication- for existing drugs. It has many advantages over traditional approaches to de novo drug discovery, since it can significantly reduce healthcare costs and development timeline. In this review, we discuss the possible repurposing of drugs approved for cardiovascular diseases, such as β-blockers, angiotensin converting enzyme inhibitors (ACE-Is), angiotensin II receptor blockers (ARBs), statins, aspirin, cardiac glycosides and low-molecular-weight heparins (LMWHs). Indeed, numerous experimental and epidemiological studies have reported promising anti-cancer activities for these drugs. It is worth mentioning, however, that the results of these studies are often controversial and very few data were obtained by controlled prospective clinical trials. Therefore, no final conclusion has yet been reached in this area and no final recommendations can be made. Moreover, β-blockers, ARBs and statins showed promising results in randomised controlled trials (RCTs) where pathological conditions other than cancer were considered. The results obtained have led or may lead to new indications for these drugs. For each drug or class of drugs, the potential molecular mechanisms of action justifying repurposing, results obtained in vitro and in animal models and data from epidemiological and randomized studies are described.
Collapse
Affiliation(s)
- Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marina Camera
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
8
|
Abstract
Fungal infections are estimated to be responsible for 1.5 million deaths annually. Global anti-microbial resistance is also observed for fungal pathogens, and scientists are looking for new antifungal agents to address this challenge. One potential strategy is to evaluate currently available drugs for their possible antifungal activity. One of the suggested drug classes are statins, which are commonly used to decrease plasma cholesterol and reduce cardiovascular risk associated with low density lipoprotein cholesterol (LDL-c). Statins are postulated to possess pleiotropic effects beyond cholesterol lowering; improving endothelial function, modulating inflammation, and potentially exerting anti-microbial effects. In this study, we reviewed in-vitro and in-vivo studies, as well as clinical reports pertaining to the antifungal efficacy of statins. In addition, we have addressed various modulators of statin anti-fungal activity and the potential mechanisms responsible for their anti-fungal effects. In general, statins do possess anti-fungal activity, targeting a broad spectrum of fungal organisms including human opportunistic pathogens such as Candida spp. and Zygomycetes, Dermatophytes, alimentary toxigenic species such as Aspergillus spp., and fungi found in device implants such as Saccharomyces cerevisiae. Statins have been shown to augment a number of antifungal drug classes, for example, the azoles and polyenes. Synthetic statins are generally considered more potent than the first generation of fungal metabolites. Fluvastatin is considered the most effective statin with the broadest and most potent fungal inhibitory activity, including fungicidal and/or fungistatic properties. This has been demonstrated with plasma concentrations that can easily be achieved in a clinical setting. Additionally, statins can potentiate the efficacy of available antifungal drugs in a synergistic fashion. Although only a limited number of animal and human studies have been reported to date, observational cohort studies have confirmed that patients using statins have a reduced risk of candidemia-related complications. Further studies are warranted to confirm our findings and expand current knowledge of the anti-fungal effects of statins.
Collapse
|
9
|
Moraes D, Ferreira-Pereira A. Insights on the anticandidal activity of non-antifungal drugs. J Mycol Med 2019; 29:253-259. [DOI: 10.1016/j.mycmed.2019.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
10
|
Ajdidi A, Sheehan G, Abu Elteen K, Kavanagh K. Assessment of the in vitro and in vivo activity of atorvastatin against Candida albicans. J Med Microbiol 2019; 68:1497-1506. [PMID: 31460860 DOI: 10.1099/jmm.0.001065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim. The aim of this work was to characterize the response of Candida albicans to atorvastatin, and to assess its in vivo antifungal capability.Methodology. The effect of atorvastatin on the growth and viability of C. albicans was assessed. The ability of the statin to alter cell permeability was quantified by measuring amino acid and protein leakage. The response of C. albicans to atorvastatin was assessed using label-free quantitative proteomics. The in vivo antifungal activity of atorvastatin was assessed using Galleria mellonella larvae infected with C. albicans.Results. Atorvastatin inhibited the growth of C. albicans. The atorvastatin-treated cells showed lower ergosterol levels than the controls, demonstrated increased calcofluor staining and released elevated quantities of amino acids and protein. Larvae infected with C. albicans showed a survival rate of 18.1±4.2 % at 144 h. In contrast, larvae administered atorvastatin (9.09 mg kg-1) displayed a survival rate of 60.2±6.4 % (P<0.05). Label-free quantitative proteomics identified 1575 proteins with 2 or more peptides and 465 proteins were differentially abundant (P<0.05). There was an increase in the abundance of enzymes with oxidoreductase and hydrolase activity in atorvastatin-treated cells, and squalene monooxygenase (4.52-fold increase) and lanosterol synthase (2.84-fold increase) were increased in abundance. Proteins such as small heat shock protein 21 (-6.33-fold) and glutathione peroxidase (-2.05-fold) were reduced in abundance.Conclusion. The results presented here indicate that atorvastatin inhibits the growth of C. albicans and is capable of increasing the survival of G. mellonella larvae infected with C. albicans.
Collapse
Affiliation(s)
- Ahmad Ajdidi
- SSPC Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gerard Sheehan
- SSPC Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Khaled Abu Elteen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Kevin Kavanagh
- SSPC Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
Lovastatin synergizes with itraconazole against planktonic cells and biofilms of Candida albicans through the regulation on ergosterol biosynthesis pathway. Appl Microbiol Biotechnol 2018; 102:5255-5264. [PMID: 29691631 DOI: 10.1007/s00253-018-8959-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 03/21/2018] [Indexed: 02/05/2023]
Abstract
The increase of fungal infectious diseases and lack of safe and efficacious antifungal drugs result in the urgent need of new therapeutic strategies. Here, we repurposed the lovastatin (LOV) as a synergistic antifungal potentiator to itraconazole (ITZ) against Candida albicans planktonic cells and biofilms in vitro for the first time. Mutants from ergosterol biosynthesis pathway were employed and key gene expression profiles of ergosterol pathway were also measured. LOV single treatment was unable to inhibit C. albicans strains except the ERG3 and ERG11 double mutant. LOV and ITZ combination was capable of inhibiting the C. albicans planktonic cells and biofilms synergistically including the ITZ resistant mutants. The synergistic antifungal ability was stronger in either ERG11 or ERG3 dysfunctional mutants compared to wild type. The combination lost the synergistic activities in the ERG11 and ERG3 double mutant, while it was sensitive to LOV single treatment. The expression of HMG1, encoding HMG-CoA the target of LOV, was significantly upregulated in ERG11 and ERG3 double mutant strain by the treatment of the combination at 1.5 and 3 h. The combination also significantly increased the HMG1 expression in mutants from ergosterol pathway compared with wild type. The ERG11 and ERG3 gene expressions were upregulated by ITZ and its combination with LOV, but seemingly not by LOV single treatment after 1.5 and 3 h. The combination of LOV and ITZ on C. albicans planktonic cells and biofilms highlights its potential clinical practice especially against the azole drug-resistant mutants.
Collapse
|
12
|
Polke M, Leonhardt I, Kurzai O, Jacobsen ID. Farnesol signalling in Candida albicans – more than just communication. Crit Rev Microbiol 2017; 44:230-243. [DOI: 10.1080/1040841x.2017.1337711] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Ines Leonhardt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| |
Collapse
|
13
|
Paricahua LI, Goncalves AFO, Pacheco SODS, Pacheco FJ. Sepsis Mortality in Critical Care and Prior Statin Therapy: A Retrospective Cohort Study in Central Argentina. J Clin Diagn Res 2017; 11:OC17-OC21. [PMID: 28764218 DOI: 10.7860/jcdr/2017/25810.9992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/22/2017] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Sepsis is a major public health problem, frequent, costly, and often fatal. Despite of improvements in supportive treatments the incidence of sepsis and the number of deaths related to sepsis is increasing. Statins have been recently proposed as adjuvants in the treatment of sepsis, but its effects on mortality show conflicting results worldwide. AIM The purpose of this study was to describe the clinical outcome of patients diagnosed with sepsis in a university-affiliated hospital in central Argentina and to evaluate it in relation to a group of septic patients with previous use of statins before the onset of sepsis. MATERIALS AND METHODS The present study was conducted as an observational retrospective research from April 2010 to December 2014 with patients over 18 years of age which were assigned to statins or control groups. Out of 2906 patients, 231 matched study and diagnostic criteria for sepsis and among them 33 (14.3%) belonged to the group of statins. The mean age was 64.2 ± 14.3 years. RESULTS The severity of sepsis on admission was as follows: Sepsis, n=147 (63.6%), Severe sepsis, n=26 (11.3%) and Septic shock, n=58 (25.1%). The mean length of stay in Intensive Care Unit (ICU) was10.8 ± 9.6 days and 21.2 ± 17 days in general hospital ward settings, without differences between groups of statin users and controls, p=0.873 and p=0.766, respectively. The in-hospital mortality rate was 31.2% (n=72). Previous statin use did not affect in-hospital or 30-day mortality (OR 0.978; 95% CI 0.339 to 2.274; p=0.789). Creatinine levels on days 3 and 14 were substantially higher in statins group (1.80 ±1.39 vs. 1.45 ± 1.47 mg/dl) (p=0.010) and (1.42 ± 1.14 vs. 1.09 ± 1.05 mg/dl) (p=0.009), respectively. CONCLUSION Prior use of statins did not reduce in-hospital or 30-day mortality in septic patients and it may be associated with impaired renal function in this group of Argentinian participants.
Collapse
Affiliation(s)
| | | | - Sandaly Oliveira da Silva Pacheco
- Associate Professor, Department of Medicine and Health Sciences, Universidad Adventista del Plata, Libertador San Martín, Entre Ríos, Argentina
| | - Fabio Juliano Pacheco
- Professor, Department of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martín, Entre Ríos, Argentina
| |
Collapse
|
14
|
Muakkassa FK, Ghannoum M. Updates on Therapeutic Strategies Against Candida (and Aspergillus) Biofilm Related Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:95-103. [PMID: 27287466 DOI: 10.1007/5584_2016_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fungal biofilm related infections are commonly associated with medical devices with biofilms contributing to the virulence of the involved fungal species. If infection does occur, removal of medical device is often warranted. However, this is not always possible. Moreover, biofilm associated infections are often resistant to antifungals and host immunity. Therefore, a need for new agents and strategies to combat these devastating infections is needed. Although no randomized clinical trials have been conducted or are likely to be conducted in the future, the Infectious Disease Society of America (IDSA) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) utilized available published data and clinical experience of the infectious disease community to propose strategies to treat biofilm associated devise infections. In this chapter we describe the emerging therapies for biofilm related infections.
Collapse
Affiliation(s)
- Fuad Kamel Muakkassa
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, 44106, USA
| | - Mahmoud Ghannoum
- Department of Dermatology, Center for Medical Mycology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
15
|
Rahal EA, Constantin WN, Zeidan N, Abdelnoor AM. Atorvastatin Reduces the Survival of Candida albicans-Infected BALB/c Mice. Front Microbiol 2015; 6:1474. [PMID: 26732740 PMCID: PMC4686692 DOI: 10.3389/fmicb.2015.01474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Several antimicrobial and immunosuppressive effects have been attributed to the statins class of antihyperlipidemia drugs. Several studies have also indicated clinical benefits for the use of statins during the management of infections and sepsis. To assess whether the immunosuppressive effects of statins outweigh their antimicrobial effects during a fungal infection BALB/c mice were administered Candida albicans via intraperitoneal injection. These mice received either a co-injection of atorvastatin along with the infection, were treated with one injection of atorvastatin per day for 5 days prior to infection, or were infected and then treated with one injection of atorvastatin for 5 days afterward. Groups that received C. albicans without being treated with atorvastatin were included as controls along with a group that only received phosphate-buffered saline. Mouse survival was then monitored; additionally, serum IFN-γ and IL-4 levels were determined by enzyme linked immunosorbent assay to assess pro-inflammatory and pro-humoral responses, respectively. Atorvastatin administration was capable of altering mouse survival rate with the lowest rate (11.1%) being observed in the group treated for 5 days prior to infection with atorvastatin compared to mice infected but not treated with atorvastatin (44.4%). IFN-γ and IL-4 levels were depressed in all C. albicans-infected groups treated with atorvastatin. The possibility that statin administration may suppress or modulate particular components of the immune system during an infection in man should be further explored in large randomized controlled trials.
Collapse
Affiliation(s)
- Elias A Rahal
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Wissam N Constantin
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Nabil Zeidan
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Alexander M Abdelnoor
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
16
|
Tam P, Gee K, Piechocinski M, Macreadie I. Candida glabrata, Friend and Foe. J Fungi (Basel) 2015; 1:277-292. [PMID: 29376912 PMCID: PMC5753114 DOI: 10.3390/jof1020277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/16/2022] Open
Abstract
Candida glabrata is mostly good, but, at times, it is an opportunistic pathogen. Previously known as Torulopsis glabrata, it enjoyed a good reputation and was even present in starter cultures. Its haploid genome and lack of mating made it an attractive challenge for yeast genetics studies. However, more recently it has become better known due to its character as an emerging cause of candidiasis, and for its resistance to multidrugs that are employed for candidiasis treatment. While now classified as Candida glabrata, it is still not a good fit and tends to stand alone as a very unique yeast. In terms of sequence, it is dissimilar to other Candida yeast and most similar to Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Phyllix Tam
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Kirsten Gee
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Miryam Piechocinski
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Ian Macreadie
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|