1
|
Yu HC, Wang ST, Lu MC. Dysregulated Non-Coding RNA Expression in T Cells from Patients with Ankylosing Spondylitis Contributes to Its Immunopathogenesis. Biomedicines 2024; 12:1873. [PMID: 39200337 PMCID: PMC11351219 DOI: 10.3390/biomedicines12081873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disorder characterized by inflammatory back pain and bony fusion of vertebral joints. Genetic associations and environmental factors have been proposed to explain the immunopathogenesis of AS. In the past few years, there have been major advances in understanding T cell dysfunction in AS. Clinically, targeting interleukin-17A, a major cytokine secreted by T helper 17 cells, has been approved for treating patients with active AS. Non-coding RNAs (ncRNAs) are RNA transcripts that do not translate into proteins. The ncRNAs regulate both innate and adaptive immunity and participate in the pathogenesis of autoimmune diseases, including AS. The main purpose of this article is to review the up-to-date studies investigating the aberrant expression of ncRNAs in T cells from patients with AS and to summarize their roles in its pathogenesis. After searching PubMed for studies published between January 2013 and June 2024, nine studies investigating the expression of ncRNAs in AS T cells were included. We found that aberrantly expressed ncRNAs in AS T cells could cause abnormal cytokine release, cell signaling abnormalities, and dysregulated cell proliferation and death, which contribute to the immunopathogenesis of AS. We discussed some limitations of these studies and suggested several research fields for further investigation.
Collapse
Affiliation(s)
- Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622401, Taiwan
| | - Sz-Tsan Wang
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622401, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622401, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
2
|
Tanga S, Hota A, Karmakar A, Banerjee P, Maji B. Cysteine-independent CRISPR-Associated Protein Labeling for Presentation and Co-delivery of Molecules Toward Genetic and Epigenetic Regulations. Chembiochem 2024; 25:e202400149. [PMID: 38530114 DOI: 10.1002/cbic.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Labeling of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) associated proteins (Cas) remains an immense challenge for their genome engineering applications. To date, cysteine-mediated bioconjugation is the most efficient strategy for labeling Cas proteins. However, introducing a cysteine residue in the protein at the right place might be challenging without perturbing the enzymatic activity. We report a method that does not require cysteine residues for small molecule presentation on the CRISPR-associated protein SpCas9 for in vitro protein detection, probing cellular protein expression, and nuclear co-delivery of molecules in mammalian cells. We repurposed a simple protein purification tag His6 peptide for non-covalent labeling of molecules on the CRISPR enzyme SpCas9. The small molecule labeling enabled us to rapidly detect SpCas9 in a biochemical assay. We demonstrate that small molecule labeling can be utilized for probing bacterial protein expression in realtime. Furthermore, we coupled SpCas9's nuclear-targeting ability in co-delivering the presenting small molecules to the mammalian cell nucleus for prospective genome engineering applications. Furthermore, we demonstrate that the method can be generalized to label oligonucleotides for multiplexing CRISPR-based genome editing and template-mediated DNA repair applications. This work paves the way for genomic loci-specific bioactive small molecule and oligonucleotide co-delivery toward genetic and epigenetic regulations.
Collapse
Affiliation(s)
- Sadiya Tanga
- Ashoka University, Department of Chemistry, Rajiv Gandhi Education City, Sonipat, Haryana, 131029
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal
| | - Arpita Hota
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal
| | - Arkadeep Karmakar
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal
| | - Paramita Banerjee
- S N Bose National Centre for Basic Science, JD Block, Sector 3, Bidhannagar, Kolkata, 700106, West Bengal
| | - Basudeb Maji
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal
| |
Collapse
|
3
|
Research advances in the role and pharmaceuticals of ATP-binding cassette transporters in autoimmune diseases. Mol Cell Biochem 2022; 477:1075-1091. [PMID: 35034257 DOI: 10.1007/s11010-022-04354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Autoimmune diseases are caused by the immune response of the body to its antigens, resulting in tissue damage. The pathogenesis of these diseases has not yet been elucidated. Most autoimmune diseases cannot be cured by effective drugs. The treatment strategy is to relieve the symptoms of the disease and balance the body's autoimmune function. The abnormal expression of ATP-binding cassette (ABC) transporters is directly related to the pathogenesis of autoimmune diseases and drug therapy resistance, which poses a great challenge for the drug therapy of autoimmune diseases. Therefore, this paper reviews the interplay between ABC transporters and the pathogenesis of autoimmune diseases to provide research progress and new ideas for the development of drugs in autoimmune diseases.
Collapse
|
4
|
Abstract
The development of expressed protein ligation (EPL) widened the scope of questions that could be addressed by mechanistic biochemistry. Protein trans-splicing (PTS) relies on the same basic chemical principles, but utilizes split inteins to tracelessly ligate distinct peptide or polypeptide fragments together with native peptide bonds. Here we present a method to adapt PTS methodologies for their use in live cells, in order to deliver synthetic or native histone modifications. As an example, we provide a protocol to incorporate a small molecule fluorophore into chromatinized histones. The protocol should be easily adaptable to incorporate other modifications to chromatin in vivo.
Collapse
|
5
|
Targeted Delivery of the HLA-B ∗27-Binding Peptide into the Endoplasmic Reticulum Suppresses the IL-23/IL-17 Axis of Immune Cells in Spondylarthritis. Mediators Inflamm 2017; 2017:4016802. [PMID: 29463951 PMCID: PMC5804395 DOI: 10.1155/2017/4016802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023] Open
Abstract
Ankylosing spondylitis (AS) is highly associated with the expression of human leukocyte antigen-B27 (HLA-B∗27). HLA-B∗27 heavy chain (B27-HC) has an intrinsic propensity to fold slowly, leading to the accumulation of the misfolded B27-HC in the endoplasmic reticulum (ER) and formation of the HLA-B∗27 HC homodimer, (B27-HC)2, by a disulfide linkage at Cys-67. (B27-HC)2 displayed on the cell surface can act as a ligand of the killer-cell Ig-like receptor (KIR3DL2). (B27-HC)2 binds to KIR3DL2 of NK and Th17 cells and activates both cells, resulting in the activation of the IL-23/IL-17 axis to launch the inflammatory reaction in AS patients. However, activation of the IL-23/IL-17 axis originally derived from the HLA-B∗27 misfolding in the ER needs to be characterized. In this study, we delivered two HLA-B∗27-binding peptides, KRGILTLKY and SRYWAIRTR, into the ER by using a tat-derived peptide (GRKKRRQRRR)-His6-ubiquitin (THU) vehicle. Both peptides are derived from the human actin and nucleoprotein of influenza virus, respectively. Our results demonstrated that targeted delivery of both HLA-B∗27-binding peptides into the ER can promote the HLA-B∗27 folding, decrease the levels of (B27-HC)2, and suppress the activation of the IL-23/IL-17 axis in response to lipopolysaccharide. Our findings can provide a new therapeutic strategy in AS.
Collapse
|
6
|
Yu HC, Lu MC, Huang KY, Huang HL, Liu SQ, Huang HB, Lai NS. Sulfasalazine Treatment Suppresses the Formation of HLA-B27 Heavy Chain Homodimer in Patients with Ankylosing Spondylitis. Int J Mol Sci 2015; 17:ijms17010046. [PMID: 26729099 PMCID: PMC4730291 DOI: 10.3390/ijms17010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
Human leukocytic antigen-B27 heavy chain (HLA-B27 HC) has the tendency to fold slowly, in turn gradually forming a homodimer, (B27-HC)2 via a disulfide linkage to activate killer cells and T-helper 17 cells and inducing endoplasmic reticulum (ER) stress to trigger the IL-23/IL-17 axis for pro-inflammatory reactions. All these consequences lead to the pathogenesis of ankylosing spondylitis (AS). Sulfasalazine (SSA) is a common medication used for treatment of patients with AS. However, the effects of SSA treatment on (B27-HC)2 formation and on suppression of IL-23/IL-17 axis of AS patients remain to be determined. In the current study, we examine the (B27-HC)2 of peripheral blood mononuclear cells (PBMC), the mean grade of sarcoiliitis and lumbar spine Bath Ankylosing Spondylitis Radiology Index (BASRI) scores of 23 AS patients. The results indicated that AS patients without (B27-HC)2 on PBMC showed the lower levels of mean grade of sarcoiliitis and the lumbar spine BASRI scores. In addition, after treatment with SSA for four months, the levels of (B27-HC)2 on PBMCs were significantly reduced. Cytokines mRNA levels, including TNFα, IL-17A, IL-17F and IFNγ, were also significantly down-regulated in PBMCs. However, SSA treatment did not affect the levels of IL-23 and IL-23R mRNAs.
Collapse
Affiliation(s)
- Hui-Chun Yu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 62247, Taiwan.
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 62247, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
| | - Kuang-Yung Huang
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 62247, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
| | - Hsien-Lu Huang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Su-Qin Liu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 62247, Taiwan.
| | - Hsien-Bin Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 62247, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
7
|
Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies. Int J Pharm 2015; 496:268-74. [DOI: 10.1016/j.ijpharm.2015.10.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 01/16/2023]
|
8
|
Yu HC, Huang KY, Lu MC, Huang HL, Liu WT, Lee WC, Liu SQ, Huang HB, Lai NS. Characterization of the recognition specificity of BH2, a monoclonal antibody prepared against the HLA-B27 heavy chain. Int J Mol Sci 2015; 16:8142-50. [PMID: 25872138 PMCID: PMC4425072 DOI: 10.3390/ijms16048142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/18/2015] [Accepted: 04/03/2015] [Indexed: 12/22/2022] Open
Abstract
BH2, a monoclonal antibody prepared against the denatured human leukocytic antigen-B27 heavy chain (HLA-B27 HC), can immunoprecipitate the misfolded HLA-B27 HC complexed with Bip in the endoplasmic reticulum and recognize the homodimerized HLA-B27 HC that is often observed on the cell membrane of patients suffered from ankylosing spondylitis (AS). However, the recognition specificity of BH2 toward the other molecules of HLA-B type and toward the different types of HLA molecules remained uncharacterized. In this study, we carried out the HLA-typing by using the Luminex Technology to characterize the recognition specificity of BH2 and analyzed the binding domain of HLA-B27 HC by BH2. Our results indicated that BH2 preferably binds to molecules of HLA-B and -C rather than HLA-A and the binding site is located within the α2 domain of HLA-B27 HC.
Collapse
Affiliation(s)
- Hui-Chun Yu
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 621, Taiwan.
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
| | - Kuang-Yung Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 621, Taiwan.
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan.
| | - Ming-Chi Lu
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan.
| | - Hsien-Lu Huang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 831, Taiwan.
| | - Wei-Ting Liu
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | - Wen-Chien Lee
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | - Su-Qin Liu
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
| | - Hsien-Bin Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | - Ning-Sheng Lai
- Section of Allergy, Immunology and Rheumatology, Department of Medicine, Buddhist DaLin Tzu-Chi Hospital, Chia-Yi 622, Taiwan.
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan.
| |
Collapse
|
9
|
Zhong J, Kang J, Wang X, Jiang W, Liao H, Yuan J. TAT-OSBP-1-MKK6(E), a novel TAT-fusion protein with high selectivity for human ovarian cancer, exhibits anti-tumor activity. Med Oncol 2015; 32:118. [PMID: 25782870 DOI: 10.1007/s12032-015-0495-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/23/2015] [Indexed: 01/12/2023]
Abstract
To improve the selectivity of TAT-fusion proteins for targeted cancer therapy, we developed a novel TAT-based target-specific fusion protein, TAT-OSBP-1-MKK6(E), and evaluated its selectivity and anti-tumor activity in vitro and in vivo. The fusion protein containing TAT-OSBP-1-MKK6(E) has three functional domains: (1) the protein transduction domain of TAT, (2) the human ovarian cancer HO8910 cell-specific binding peptide (OSBP-1) and (3) the potential anti-tumor effector domain of MKK6(E). The transduction efficiency, selectivity, cytotoxicity and apoptotic effect of TAT-OSBP-1-MKK6(E) were examined using immunofluorescence, CCK8 assay and flow cytometry. The in vivo anti-tumor efficacy and target specificity of the fusion protein were evaluated using a nude mouse model with subcutaneous xenografts of human ovarian cancer HO8910 cells. Tumor-bearing mice were divided into three treatment groups that received tail vein injections of TAT-OSBP-1-MKK6(E), TAT-OSBP-1 or normal saline. Tumor growth inhibition was determined by tumor volume, weight and morphology. The distribution and apoptotic effect of TAT-OSBP-1-MKK6(E) were assessed by immunohistochemical staining and TUNEL assays. TAT-OSBP-1-MKK6(E) can be selectively internalized into human ovarian cancer HO8910 cells, rather than normal ovarian OSE cells. In vivo, the fusion protein was mainly expressed in the tumor xenograft, but not in ovary or liver tissues. As a result, TAT-OSBP-1-MKK6(E) significantly induced growth inhibition and apoptosis of tumor cells in vitro and in vivo, with limited effects in normal cells and tissues. TAT-OSBP-1-MKK6(E) treatment can selectively target HO8910 cells in vitro and in vivo, leading to growth inhibition and apoptosis of tumor cells. As such, TAT-OSBP-1-MKK6(E) may be a potential approach for ovarian cancer target therapy.
Collapse
Affiliation(s)
- Jiali Zhong
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Selmi C. Hot topics in autoimmune diseases: Perspectives from the 2013 Asian Congress of Autoimmunity. Autoimmun Rev 2014; 13:781-7. [DOI: 10.1016/j.autrev.2014.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022]
|