1
|
Molloy EJ, El-Dib M, Soul J, Juul S, Gunn AJ, Bender M, Gonzalez F, Bearer C, Wu Y, Robertson NJ, Cotton M, Branagan A, Hurley T, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Wintermark P, Bonifacio SL. Neuroprotective therapies in the NICU in preterm infants: present and future (Neonatal Neurocritical Care Series). Pediatr Res 2024; 95:1224-1236. [PMID: 38114609 PMCID: PMC11035150 DOI: 10.1038/s41390-023-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
The survival of preterm infants has steadily improved thanks to advances in perinatal and neonatal intensive clinical care. The focus is now on finding ways to improve morbidities, especially neurological outcomes. Although antenatal steroids and magnesium for preterm infants have become routine therapies, studies have mainly demonstrated short-term benefits for antenatal steroid therapy but limited evidence for impact on long-term neurodevelopmental outcomes. Further advances in neuroprotective and neurorestorative therapies, improved neuromonitoring modalities to optimize recruitment in trials, and improved biomarkers to assess the response to treatment are essential. Among the most promising agents, multipotential stem cells, immunomodulation, and anti-inflammatory therapies can improve neural outcomes in preclinical studies and are the subject of considerable ongoing research. In the meantime, bundles of care protecting and nurturing the brain in the neonatal intensive care unit and beyond should be widely implemented in an effort to limit injury and promote neuroplasticity. IMPACT: With improved survival of preterm infants due to improved antenatal and neonatal care, our focus must now be to improve long-term neurological and neurodevelopmental outcomes. This review details the multifactorial pathogenesis of preterm brain injury and neuroprotective strategies in use at present, including antenatal care, seizure management and non-pharmacological NICU care. We discuss treatment strategies that are being evaluated as potential interventions to improve the neurodevelopmental outcomes of infants born prematurely.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.
- Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.
- Neonatology, CHI at Crumlin, Dublin, Ireland.
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatrics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manon Bender
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California, San Francisco, California, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yvonne Wu
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mike Cotton
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
| | - Sidhartha Tan
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, Rhode Island, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK
- Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Pia Wintermark
- Division of Neonatology, Montreal Children's Hospital, Montreal, Quebec, Canada
- McGill University Health Centre - Research Institute, Montreal, Quebec, Canada
| | - Sonia Lomeli Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Kelly SB, Tran NT, Polglase GR, Hunt RW, Nold MF, Nold-Petry CA, Olson DM, Chemtob S, Lodygensky GA, Robertson SA, Gunn AJ, Galinsky R. A systematic review of immune-based interventions for perinatal neuroprotection: closing the gap between animal studies and human trials. J Neuroinflammation 2023; 20:241. [PMID: 37864272 PMCID: PMC10588248 DOI: 10.1186/s12974-023-02911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Rodney W Hunt
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - David M Olson
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada
| | - Sylvain Chemtob
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Gregory A Lodygensky
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Sarah A Robertson
- The University of Adelaide, Robinson Research Institute, North Adelaide, SA, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Lugli L, Garetti E, Goffredo BM, Candia F, Crestani S, Spada C, Guidotti I, Bedetti L, Miselli F, Della Casa EM, Roversi MF, Simeoli R, Cairoli S, Merazzi D, Lago P, Iughetti L, Berardi A. Continuous Fentanyl Infusion in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Therapeutic Hypothermia: Background, Aims, and Study Protocol for Time-Concentration Profiles. Biomedicines 2023; 11:2395. [PMID: 37760835 PMCID: PMC10525845 DOI: 10.3390/biomedicines11092395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic hypothermia (TH) is the standard of care for newborns with moderate to severe hypoxic-ischemic encephalopathy (HIE). Discomfort and pain during treatment are common and may affect the therapeutic efficacy of TH. Opioid sedation and analgesia (SA) are generally used in clinical practice, and fentanyl is one of the most frequently administered drugs. However, although fentanyl's pharmacokinetics (PKs) may be altered by hypothermic treatment, the PK behavior of this opioid drug in cooled newborns with HIE has been poorly investigated. The aim of this phase 1 study protocol (Trial ID: FentanylTH; EUDRACT number: 2020-000836-23) is to evaluate the fentanyl time-concentration profiles of full-term newborns with HIE who have been treated with TH. Newborns undergoing TH receive a standard fentanyl regimen (2 mcg/Kg of fentanyl as a loading dose, followed by a continuous infusion-1 mcg/kg/h-during the 72 h of TH and subsequent rewarming). Fentanyl plasma concentrations before bolus administration, at the end of the loading dose, and 24-48-72-96 h after infusion are measured. The median, maximum, and minimum plasma concentrations, together with drug clearance, are determined. This study will explore the fentanyl time-concentration profiles of cooled, full-term newborns with HIE, thereby helping to optimize the fentanyl SA dosing regimen during TH.
Collapse
Affiliation(s)
- Licia Lugli
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (E.G.); (I.G.); (L.B.); (E.M.D.C.); (M.F.R.); (A.B.)
| | - Elisabetta Garetti
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (E.G.); (I.G.); (L.B.); (E.M.D.C.); (M.F.R.); (A.B.)
| | - Bianca Maria Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, Scientific Institute for hospitalization and care (IRCCS), 00100 Rome, Italy; (B.M.G.); (R.S.); (S.C.)
| | - Francesco Candia
- Pediatrics Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (F.C.); (S.C.); (L.I.)
| | - Sara Crestani
- Pediatrics Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (F.C.); (S.C.); (L.I.)
| | - Caterina Spada
- Neonatal Unit, Women’s and Children’s Department, Bufalini Hospital of Cesena, 47521 Cesena, Italy;
| | - Isotta Guidotti
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (E.G.); (I.G.); (L.B.); (E.M.D.C.); (M.F.R.); (A.B.)
| | - Luca Bedetti
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (E.G.); (I.G.); (L.B.); (E.M.D.C.); (M.F.R.); (A.B.)
| | - Francesca Miselli
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Elisa Muttini Della Casa
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (E.G.); (I.G.); (L.B.); (E.M.D.C.); (M.F.R.); (A.B.)
| | - Maria Federica Roversi
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (E.G.); (I.G.); (L.B.); (E.M.D.C.); (M.F.R.); (A.B.)
| | - Raffaele Simeoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, Scientific Institute for hospitalization and care (IRCCS), 00100 Rome, Italy; (B.M.G.); (R.S.); (S.C.)
| | - Sara Cairoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, Scientific Institute for hospitalization and care (IRCCS), 00100 Rome, Italy; (B.M.G.); (R.S.); (S.C.)
| | - Daniele Merazzi
- Neonatal Unit, Women’s and Children’s Department, Valduce Hospital, 22100 Como, Italy;
| | - Paola Lago
- Neonatal Intensive Care Unit, Women’s and Children’s Department, Ca’ Foncello Hospital, 31100 Treviso, Italy;
| | - Lorenzo Iughetti
- Pediatrics Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (F.C.); (S.C.); (L.I.)
| | - Alberto Berardi
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University Hospital of Modena, 41100 Modena, Italy; (E.G.); (I.G.); (L.B.); (E.M.D.C.); (M.F.R.); (A.B.)
| |
Collapse
|
4
|
Galinsky R, Dhillon SK, Kelly SB, Wassink G, Davidson JO, Lear CA, van den Heuij LG, Bennet L, Gunn AJ. Magnesium sulphate reduces tertiary gliosis but does not improve EEG recovery or white or grey matter cell survival after asphyxia in preterm fetal sheep. J Physiol 2023; 601:1999-2016. [PMID: 36999348 PMCID: PMC10952359 DOI: 10.1113/jp284381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Maternal magnesium sulphate (MgSO4 ) treatment is widely recommended before preterm birth for neuroprotection. However, this is controversial because there is limited evidence that MgSO4 provides long-term neuroprotection. Preterm fetal sheep (104 days gestation; term is 147 days) were assigned randomly to receive sham occlusion with saline infusion (n = 6) or i.v. infusion with MgSO4 (n = 7) or vehicle (saline, n = 6) from 24 h before hypoxia-ischaemia induced by umbilical cord occlusion until 24 h after occlusion. Sheep were killed after 21 days of recovery, for fetal brain histology. Functionally, MgSO4 did not improve long-term EEG recovery. Histologically, in the premotor cortex and striatum, MgSO4 infusion attenuated post-occlusion astrocytosis (GFAP+ ) and microgliosis but did not affect numbers of amoeboid microglia or improve neuronal survival. In the periventricular and intragyral white matter, MgSO4 was associated with fewer total (Olig-2+ ) oligodendrocytes compared with vehicle + occlusion. Numbers of mature (CC1+ ) oligodendrocytes were reduced to a similar extent in both occlusion groups compared with sham occlusion. In contrast, MgSO4 was associated with an intermediate improvement in myelin density in the intragyral and periventricular white matter tracts. In conclusion, a clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival. KEY POINTS: Magnesium sulphate is widely recommended before preterm birth for neuroprotection; however, there is limited evidence that magnesium sulphate provides long-term neuroprotection. In preterm fetal sheep exposed to hypoxia-ischaemia (HI), MgSO4 was associated with attenuated astrocytosis and microgliosis in the premotor cortex and striatum but did not improve neuronal survival after recovery to term-equivalent age, 21 days after HI. Magnesium sulphate was associated with loss of total oligodendrocytes in the periventricular and intragyral white matter tracts, whereas mature, myelinating oligodendrocytes were reduced to a similar extent in both occlusion groups. In the same regions, MgSO4 was associated with an intermediate improvement in myelin density. Functionally, MgSO4 did not improve long-term recovery of EEG power, frequency or sleep stage cycling. A clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityVictoriaAustralia
| | | | - Sharmony B. Kelly
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityVictoriaAustralia
| | - Guido Wassink
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | | | | | | | - Laura Bennet
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Alistair J. Gunn
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
5
|
Dhillon SK, Gunn ER, Pedersen MV, Lear CA, Wassink G, Davidson JO, Gunn AJ, Bennet L. Alpha-adrenergic receptor activation after fetal hypoxia-ischaemia suppresses transient epileptiform activity and limits loss of oligodendrocytes and hippocampal neurons. J Cereb Blood Flow Metab 2023; 43:947-961. [PMID: 36703575 DOI: 10.1177/0271678x231153723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure to hypoxic-ischaemia (HI) is consistently followed by a delayed fall in cerebral perfusion. In preterm fetal sheep this is associated with impaired cerebral oxygenation, consistent with mismatch between perfusion and metabolism. In the present study we tested the hypothesis that alpha-adrenergic inhibition after HI would improve cerebral perfusion, and so attenuate mismatch and reduce neural injury. Chronically instrumented preterm (0.7 gestation) fetal sheep received sham-HI (n = 10) or HI induced by complete umbilical cord occlusion for 25 minutes. From 15 minutes to 8 hours after HI, fetuses received either an intravenous infusion of a non-selective alpha-adrenergic antagonist, phentolamine (10 mg bolus, 10 mg/h infusion, n = 10), or saline (n = 10). Fetal brains were processed for histology 72 hours post-HI. Phentolamine infusion was associated with increased epileptiform transient activity and a greater fall in cerebral oxygenation in the early post-HI recovery phase. Histologically, phentolamine was associated with greater loss of oligodendrocytes and hippocampal neurons. In summary, contrary to our hypothesis, alpha-adrenergic inhibition increased epileptiform transient activity with an exaggerated fall in cerebral oxygenation, and increased neural injury, suggesting that alpha-adrenergic receptor activation after HI is an important endogenous neuroprotective mechanism.
Collapse
Affiliation(s)
| | - Eleanor R Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mette V Pedersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Therapeutic Interventions in Rat Models of Preterm Hypoxic Ischemic Injury: Effects of Hypothermia, Caffeine, and the Influence of Sex. Life (Basel) 2022; 12:life12101514. [PMID: 36294948 PMCID: PMC9605553 DOI: 10.3390/life12101514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Infants born prematurely have an increased risk of experiencing brain injury, specifically injury caused by Hypoxia Ischemia (HI). There is no approved treatment for preterm infants, in contrast to term infants that experience Hypoxic Ischemic Encephalopathy (HIE) and can be treated with hypothermia. Given this increased risk and lack of approved treatment, it is imperative to explore and model potential treatments in animal models of preterm injury. Hypothermia is one potential treatment, though cooling to current clinical standards has been found to be detrimental for preterm infants. However, mild hypothermia may prove useful. Caffeine is another treatment that is already used in preterm infants to treat apnea of prematurity, and has shown neuroprotective effects. Both of these treatments show sex differences in behavioral outcomes and neuroprotective effects, which are critical to explore when working to translate from animal to human. The effects and research history of hypothermia, caffeine and how sex affects these treatment outcomes will be explored further in this review article.
Collapse
|
7
|
Dhillon SK, Gunn ER, Lear BA, King VJ, Lear CA, Wassink G, Davidson JO, Bennet L, Gunn AJ. Cerebral Oxygenation and Metabolism After Hypoxia-Ischemia. Front Pediatr 2022; 10:925951. [PMID: 35903161 PMCID: PMC9314655 DOI: 10.3389/fped.2022.925951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) is still a significant contributor to mortality and adverse neurodevelopmental outcomes in term and preterm infants. HI brain injury evolves over hours to days, and involves complex interactions between the endogenous protective and pathological processes. Understanding the timing of evolution of injury is vital to guide treatment. Post-HI recovery is associated with a typical neurophysiological profile, with stereotypic changes in cerebral perfusion and oxygenation. After the initial recovery, there is a delayed, prolonged reduction in cerebral perfusion related to metabolic suppression, followed by secondary deterioration with hyperperfusion and increased cerebral oxygenation, associated with altered neurovascular coupling and impaired cerebral autoregulation. These changes in cerebral perfusion are associated with the stages of evolution of injury and injury severity. Further, iatrogenic factors can also affect cerebral oxygenation during the early period of deranged metabolism, and improving clinical management may improve neuroprotection. We will review recent evidence that changes in cerebral oxygenation and metabolism after HI may be useful biomarkers of prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Cho KH, Fraser M, Xu B, Dean JM, Gunn AJ, Bennet L. Induction of Tertiary Phase Epileptiform Discharges after Postasphyxial Infusion of a Toll-Like Receptor 7 Agonist in Preterm Fetal Sheep. Int J Mol Sci 2021; 22:ijms22126593. [PMID: 34205464 PMCID: PMC8234830 DOI: 10.3390/ijms22126593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/30/2023] Open
Abstract
Background: Toll-like receptor (TLR) agonists are key immunomodulatory factors that can markedly ameliorate or exacerbate hypoxic–ischemic brain injury. We recently demonstrated that central infusion of the TLR7 agonist Gardiquimod (GDQ) following asphyxia was highly neuroprotective after 3 days but not 7 days of recovery. We hypothesize that this apparent transient neuroprotection is associated with modulation of seizure-genic processes and hemodynamic control. Methods: Fetuses received sham asphyxia or asphyxia induced by umbilical cord occlusion (20.9 ± 0.5 min) and were monitored continuously for 7 days. GDQ 3.34 mg or vehicle were infused intracerebroventricularly from 1 to 4 h after asphyxia. Results: GDQ infusion was associated with sustained moderate hypertension that resolved after 72 h recovery. Electrophysiologically, GDQ infusion was associated with reduced number and burden of postasphyxial seizures in the first 18 h of recovery (p < 0.05). Subsequently, GDQ was associated with induction of slow rhythmic epileptiform discharges (EDs) from 72 to 96 h of recovery (p < 0.05 vs asphyxia + vehicle). The total burden of EDs was associated with reduced numbers of neurons in the caudate nucleus (r2 = 0.61, p < 0.05) and CA1/2 hippocampal region (r2 = 0.66, p < 0.05). Conclusion: These data demonstrate that TLR7 activation by GDQ modulated blood pressure and suppressed seizures in the early phase of postasphyxial recovery, with subsequent prolonged induction of epileptiform activity. Speculatively, this may reflect delayed loss of early protection or contribute to differential neuronal survival in subcortical regions.
Collapse
Affiliation(s)
- Kenta H.T. Cho
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
| | - Mhoyra Fraser
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
| | - Bing Xu
- Shenzhen Bay Laboratory, Shenzhen 518118, China;
| | - Justin M. Dean
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
| | - Alistair J. Gunn
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
- Correspondence: ; Tel.: +64-9-373-7499
| | - Laura Bennet
- The Department of Physiology, The University of Auckland, Auckland 1023, New Zealand; (K.H.T.C.); (M.F.); (J.M.D.); (L.B.)
| |
Collapse
|
9
|
Yates N, Gunn AJ, Bennet L, Dhillon SK, Davidson JO. Preventing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies. Int J Mol Sci 2021; 22:1671. [PMID: 33562339 PMCID: PMC7915709 DOI: 10.3390/ijms22041671] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Preterm birth is associated with a high risk of morbidity and mortality including brain damage and cerebral palsy. The development of brain injury in the preterm infant may be influenced by many factors including perinatal asphyxia, infection/inflammation, chronic hypoxia and exposure to treatments such as mechanical ventilation and corticosteroids. There are currently very limited treatment options available. In clinical trials, magnesium sulfate has been associated with a small, significant reduction in the risk of cerebral palsy and gross motor dysfunction in early childhood but no effect on the combined outcome of death or disability, and longer-term follow up to date has not shown improved neurological outcomes in school-age children. Recombinant erythropoietin has shown neuroprotective potential in preclinical studies but two large randomized trials, in extremely preterm infants, of treatment started within 24 or 48 h of birth showed no effect on the risk of severe neurodevelopmental impairment or death at 2 years of age. Preclinical studies have highlighted a number of promising neuroprotective treatments, such as therapeutic hypothermia, melatonin, human amnion epithelial cells, umbilical cord blood and vitamin D supplementation, which may be useful at reducing brain damage in preterm infants. Moreover, refinements of clinical care of preterm infants have the potential to influence later neurological outcomes, including the administration of antenatal and postnatal corticosteroids and more accurate identification and targeted treatment of seizures.
Collapse
Affiliation(s)
- Nathanael Yates
- The Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia;
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alistair J. Gunn
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Simerdeep K. Dhillon
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Joanne O. Davidson
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| |
Collapse
|
10
|
Lear CA, Davidson JO, Dhillon SK, King VJ, Lear BA, Magawa S, Maeda Y, Ikeda T, Gunn AJ, Bennet L. Effects of antenatal dexamethasone and hyperglycemia on cardiovascular adaptation to asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 319:R653-R665. [PMID: 33074015 DOI: 10.1152/ajpregu.00216.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antenatal glucocorticoids improve outcomes among premature infants but are associated with hyperglycemia, which can exacerbate hypoxic-ischemic injury. It is still unclear how antenatal glucocorticoids or hyperglycemia modulate fetal cardiovascular adaptations to severe asphyxia. In this study, preterm fetal sheep received either saline or 12 mg im maternal dexamethasone, followed 4 h later by complete umbilical cord occlusion (UCO) for 25 min. An additional cohort of fetuses received titrated glucose infusions followed 4 h later by UCO to control for the possibility that hyperglycemia contributed to the cardiovascular effects of dexamethasone. Fetuses were studied for 7 days after UCO. Maternal dexamethasone was associated with fetal hyperglycemia (P < 0.001), increased arterial pressure (P < 0.001), and reduced femoral (P < 0.005) and carotid (P < 0.05) vascular conductance before UCO. UCO was associated with bradycardia, femoral vasoconstriction, and transient hypertension. For the first 5 min of UCO, fetal blood pressure in the dexamethasone-asphyxia group was greater than saline-asphyxia (P < 0.001). However, the relative increase in arterial pressure was not different from saline-asphyxia. Fetal heart rate and femoral vascular conductance fell to similar nadirs in both saline and dexamethasone-asphyxia groups. Dexamethasone did not affect the progressive decline in femoral vascular tone or arterial pressure during continuing UCO. By contrast, there were no effects of glucose infusions on the response to UCO. In summary, maternal dexamethasone but not fetal hyperglycemia increased fetal arterial pressure before and for the first 5 min of prolonged UCO but did not augment the cardiovascular adaptations to acute asphyxia.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Victoria J King
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Shoichi Magawa
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Yoshiki Maeda
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
McPherson C, O'Mara K. Provision of Sedation and Treatment of Seizures During Neonatal Therapeutic Hypothermia. Neonatal Netw 2020; 39:227-235. [PMID: 32675319 DOI: 10.1891/0730-0832.39.4.227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2020] [Indexed: 06/11/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) produces a high rate of long-term neurodevelopmental disability in survivors. Therapeutic hypothermia dramatically improves the incidence of intact survival, but does not eliminate adverse outcomes. The ideal provision of sedation and treatment of seizures during therapeutic hypothermia represent therapeutic targets requiring optimization in practice. Physiologic stress from therapeutic hypothermia may obviate some of the benefits of this therapy. Morphine is commonly utilized to provide comfort, despite limited empiric evidence supporting safety and efficacy. Dexmedetomidine represents an interesting alternative, with preclinical data suggesting direct efficacy against shivering during induced hypothermia and neuroprotection in the setting of HIE. Pharmacokinetic properties must be considered when utilizing either agent, with safety dependent on conservative dosing and careful monitoring. HIE is the leading cause of neonatal seizures. Traditional therapies, including phenobarbital, fosphenytoin, and benzodiazepines, control seizures in the vast majority of neonates. Concerns about the acute and long-term effects of these agents have led to the exploration of alternative anticonvulsants, including levetiracetam. Unfortunately, levetiracetam is inferior to phenobarbital as first-line therapy for neonatal seizures. Considering both the benefits and risks of traditional anticonvulsant agents, treatment should be limited to the shortest duration indicated, with maintenance therapy reserved for neonates at high risk for recurrent seizures.
Collapse
|
12
|
Cho KHT, Zeng N, Anekal PV, Xu B, Fraser M. Effects of delayed intraventricular TLR7 agonist administration on long-term neurological outcome following asphyxia in the preterm fetal sheep. Sci Rep 2020; 10:6904. [PMID: 32327682 PMCID: PMC7181613 DOI: 10.1038/s41598-020-63770-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
In the preterm brain, accumulating evidence suggests toll-like receptors (TLRs) are key mediators of the downstream inflammatory pathways triggered by hypoxia-ischemia (HI), which have the potential to exacerbate or ameliorate injury. Recently we demonstrated that central acute administration of the TLR7 agonist Gardiquimod (GDQ) confers neuroprotection in the preterm fetal sheep at 3 days post-asphyxial recovery. However, it is unknown whether GDQ can afford long-term protection. To address this, we examined the long-term effects of GDQ. Briefly, fetal sheep (0.7 gestation) received sham asphyxia or asphyxia induced by umbilical cord occlusion, and were studied for 7 days recovery. Intracerebroventricular (ICV) infusion of GDQ (total dose 3.34 mg) or vehicle was performed from 1-4 hours after asphyxia. GDQ was associated with a robust increase in concentration of tumor necrosis factor-(TNF)-α in the fetal plasma, and interleukin-(IL)-10 in both the fetal plasma and cerebrospinal fluid. GDQ did not significantly change the number of total and immature/mature oligodendrocytes within the periventricular and intragyral white matter. No changes were observed in astroglial and microglial numbers and proliferating cells in both white matter regions. GDQ increased neuronal survival in the CA4 region of the hippocampus, but was associated with exacerbated neuronal injury within the caudate nucleus. In conclusion, our data suggest delayed acute ICV administration of GDQ after severe HI in the developing brain may not support long-term neuroprotection.
Collapse
Affiliation(s)
- Kenta H T Cho
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Nina Zeng
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Praju V Anekal
- Biomedical Imaging Research Unit, The University of Auckland, Auckland, New Zealand
| | - Bing Xu
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- The Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518000, People's Republic of China
| | - Mhoyra Fraser
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
13
|
Üner IL, Johansen T, Dahle J, Persson M, Stiris T, Andresen JH. Therapeutic hypothermia and N-PASS; results from implementation in a level 3 NICU. Early Hum Dev 2019; 137:104828. [PMID: 31357084 DOI: 10.1016/j.earlhumdev.2019.104828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Neonates that have been subjected to perinatal asphyxia and fulfill criteria for therapeutic hypothermia are cooled to 33.5 °C for 72 h. There is no consensus regarding sedation and analgesic use during hypothermia, but there is evidence supporting the importance of pain relief and adequate sedation. There is a need for assessment of the neonates need for pain relief and sedation, and for adjustments of medication to ensure adequate treatment. There are many different scoring tools available. We found the N-PASS (Neonatal Pain, Agitation and Sedation Scale) scoring tool to be the most suitable for this patient group as it assesses both pain and sedation. METHODS We translated the scoring tool according to guidelines published by Wilder et al., and scored neonates treated with therapeutic hypothermia. Sedation and analgesia were adjusted according to scoring results. At the end of the study a questionnaire was filled out by the nurses in charge of this group of patients. RESULTS Both pain and sedation scores did not reach the desired levels until day 3. The nurses reported a high level of satisfaction (79.7% were extremely of very satisfied), and 96.7% of the nurses found the neonates to be better pain relieved after the initiation of the study. CONCLUSION The implementation of the N-PASS scoring tool in our unit has been successful, and has led to better pain relief and sedation than before the implementation.
Collapse
Affiliation(s)
| | - Tove Johansen
- Department of Neonatology, Oslo University Hospital, Norway.
| | - Julie Dahle
- Department of Neonatology, Oslo University Hospital, Norway.
| | - Mette Persson
- Department of Neonatology, Oslo University Hospital, Norway.
| | - Tom Stiris
- Department of Neonatology, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway.
| | | |
Collapse
|
14
|
Holm SK, Madsen KS, Vestergaard M, Born AP, Paulson OB, Siebner HR, Uldall P, Baaré WFC. Previous glucocorticoid treatment in childhood and adolescence is associated with long-term differences in subcortical grey matter volume and microstructure. NEUROIMAGE-CLINICAL 2019; 23:101825. [PMID: 31004915 PMCID: PMC6475768 DOI: 10.1016/j.nicl.2019.101825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/24/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Glucocorticoids are widely used in the treatment of several pediatric diseases with undisputed disease-related benefits. Perinatal exposure to high levels of glucocorticoids can have long-term adverse cerebral effects. In adults, glucocorticoid treatment has been associated with smaller volumes of subcortical grey matter structures. Recently, we observed smaller total brain volumes in children and adolescents treated with glucocorticoid during childhood compared to healthy controls. The possible long-term effects of glucocorticoid treatment during childhood on subcortical brain volume and microstructure remain unknown. METHOD We examined 30 children and adolescents, who had previously been treated with glucocorticoids for nephrotic syndrome or rheumatic disease, and 30 healthy volunteers. Patients and healthy control groups were matched by age, gender, and level of parent education. Participants underwent 3 T magnetic resonance (MR) brain imaging. T1-weighted and diffusion-weighted images were acquired. Volume and mean diffusivity (MD) measures were extracted for hippocampus, amygdala, nucleus accumbens, caudate nucleus and putamen. Multiple linear regression analyses were used to assess differences between patients and controls, and to evaluate possible dose-response relationships. A priori, we expected patients to display lower hippocampal and amygdala volumes. RESULTS While children previously treated with glucocorticoids displayed smaller right hippocampal volumes than controls, this difference did not survive correction for multiple comparisons. Furthermore, patients as compared to controls showed lower right hippocampal MD, which remained when correcting for global changes in MD. The longer the time between the glucocorticoid treatment termination and MR-scan, the more right hippocampal MD values resembled that of healthy controls. Patient and controls did not differ in amygdala volume or MD. Analyses of the nucleus accumbens, caudate nucleus and putamen only revealed smaller putamen volumes in patients compared to controls, which remained significant when controlling for total brain volume. CONCLUSION The results suggest that extra-cerebral diseases during childhood treated with glucocorticoids may be associated with reduced subcortical grey matter volumes and lower right hippocampal mean diffusivity later in life. Our findings warrant replication and elaboration in larger, preferably prospective and longitudinal studies. Such studies may also allow disentangling disease-specific effects from possible glucocorticoid treatment effects.
Collapse
Affiliation(s)
- Sara Krøis Holm
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark; Department of Paediatrics and Adolescent Medicine, Neuropaediatric Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark; Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Martin Vestergaard
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Alfred Peter Born
- Department of Paediatrics and Adolescent Medicine, Neuropaediatric Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Olaf B Paulson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Peter Uldall
- Department of Paediatrics and Adolescent Medicine, Neuropaediatric Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.
| |
Collapse
|
15
|
Stojanovska V, Barton SK, Tolcos M, Gill AW, Kluckow M, Miller SL, Zahra V, Hooper SB, Galinsky R, Polglase GR. The Effect of Antenatal Betamethasone on White Matter Inflammation and Injury in Fetal Sheep and Ventilated Preterm Lambs. Dev Neurosci 2019; 40:497-507. [PMID: 30840951 DOI: 10.1159/000496466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
Antenatal administration of betamethasone (BM) is a common antecedent of preterm birth, but there is limited information about its impact on the acute evolution of preterm neonatal brain injury. We aimed to compare the effects of maternal BM in combination with mechanical ventilation on the white matter (WM) of late preterm sheep. At 0.85 of gestation, pregnant ewes were randomly assigned to receive intra-muscular (i.m.) saline (n = 9) or i.m. BM (n = 13). Lambs were delivered and unventilated controls (UVCSal, n = 4; UVCBM, n = 6) were humanely killed without intervention; ventilated lambs (VentSal, n = 5; VentBM, n = 7) were injuriously ventilated for 15 min, followed by conventional ventilation for 75 min. Cardiovascular and cerebral haemodynamics and oxygenation were measured continuously. The cerebral WM underwent assessment of inflammation and injury, and oxidative stress was measured in the cerebrospinal fluid (CSF). In the periventricular and subcortical WM tracts, the proportion of amoeboid (activated) microglia, the density of astrocytes, and the number of blood vessels with protein extravasation were higher in UVCBM than in UVCSal (p < 0.05 for all). During ventilation, tidal volume, mean arterial pressure, carotid blood flow, and oxygen delivery were higher in -VentBM lambs (p < 0.05 vs. VentSal). In the subcortical WM, microglial infiltration was increased in the VentSal group compared to UVCSal. The proportion of activated microglia and protein extravasation was higher in the VentBM group compared to VentSal within the periventricular and subcortical WM tracts (p < 0.05). CSF oxidative stress was increased in the VentBM group compared to UVCSal, UVCBM, and VentSal groups (p < 0.05). Antenatal BM was associated with inflammation and vascular permeability in the WM of late preterm fetal sheep. During the immediate neonatal period, the increased carotid perfusion and oxygen delivery in BM-treated lambs was associated with increased oxidative stress, microglial activation and microvascular injury.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Samantha K Barton
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Andrew W Gill
- Centre for Neonatal Research and Education, The University of Western Australia, Crawley, Washington, Australia
| | - Martin Kluckow
- Department of Neonatal Medicine, Royal North Shore Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Valerie Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia, .,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia,
| |
Collapse
|
16
|
Dhillon SK, Lear CA, Galinsky R, Wassink G, Davidson JO, Juul S, Robertson NJ, Gunn AJ, Bennet L. The fetus at the tipping point: modifying the outcome of fetal asphyxia. J Physiol 2018; 596:5571-5592. [PMID: 29774532 DOI: 10.1113/jp274949] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Brain injury around birth is associated with nearly half of all cases of cerebral palsy. Although brain injury is multifactorial, particularly after preterm birth, acute hypoxia-ischaemia is a major contributor to injury. It is now well established that the severity of injury after hypoxia-ischaemia is determined by a dynamic balance between injurious and protective processes. In addition, mothers who are at risk of premature delivery have high rates of diabetes and antepartum infection/inflammation and are almost universally given treatments such as antenatal glucocorticoids and magnesium sulphate to reduce the risk of death and complications after preterm birth. We review evidence that these common factors affect responses to fetal asphyxia, often in unexpected ways. For example, glucocorticoid exposure dramatically increases delayed cell loss after acute hypoxia-ischaemia, largely through secondary hyperglycaemia. This critical new information is important to understand the effects of clinical treatments of women whose fetuses are at risk of perinatal asphyxia.
Collapse
Affiliation(s)
| | - Christopher A Lear
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Department of Physiology, University of Auckland, Auckland, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Guido Wassink
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Alistair J Gunn
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Lemyre B, Chau V. L’hypothermie pour les nouveau-nés atteints d’encéphalopathie hypoxo-ischémique. Paediatr Child Health 2018. [DOI: 10.1093/pch/pxy051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brigitte Lemyre
- Société canadienne de pédiatrie, comité d’étude du fœtus et du nouveau-né, Ottawa (Ontario)
| | - Vann Chau
- Société canadienne de pédiatrie, comité d’étude du fœtus et du nouveau-né, Ottawa (Ontario)
| |
Collapse
|
18
|
Lemyre B, Chau V. Hypothermia for newborns with hypoxic-ischemic encephalopathy. Paediatr Child Health 2018; 23:285-291. [PMID: 30657134 DOI: 10.1093/pch/pxy028] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Therapeutic hypothermia is a standard of care for infants ≥36 weeks gestational age (GA) with moderate-to-severe hypoxic-ischemic encephalopathy. Because some studies included infants born at 35 weeks GA, hypothermia should be considered if they meet other criteria. Cooling for infants <35 weeks GA is not recommended. Passive cooling should be started promptly in community centres, in consultation with a tertiary care centre neonatologist, while closely monitoring the infant's temperature. Best evidence suggests that maintaining core body temperature between 33°C and 34°C for 72 hours, followed by a period of rewarming of 6 to 12 hours, is optimal. Antiepileptic medications should be used when clinical or electrographic seizures are present. Maintaining serum electrolytes and glucose within normal ranges, and avoiding hypo- or hypercarbia and hyperoxia, are important adjunct treatments. A brain magnetic resonance image (MRI) is advised shortly after rewarming and, in cases where earlier findings do not match the clinical picture, a repeat MRI after 10 days of life is suggested. Multidisciplinary neurodevelopmental follow-up is recommended.
Collapse
Affiliation(s)
- Brigitte Lemyre
- Canadian Paediatric Society, Fetus and Newborn Committee, Ottawa, Ontario
| | - Vann Chau
- Canadian Paediatric Society, Fetus and Newborn Committee, Ottawa, Ontario
| |
Collapse
|
19
|
Bennet L, Galinsky R, Draghi V, Lear CA, Davidson JO, Unsworth CP, Gunn AJ. Time and sex dependent effects of magnesium sulphate on post-asphyxial seizures in preterm fetal sheep. J Physiol 2018; 596:6079-6092. [PMID: 29572829 DOI: 10.1113/jp275627] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/12/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We evaluated the effect of magnesium sulphate (MgSO4 ) on seizures induced by asphyxia in preterm fetal sheep. MgSO4 did not prevent seizures, but significantly reduced the total duration, number of seizures, seizure amplitude and average seizure burden. Saline-asphyxia male fetuses had significantly more seizures than female fetuses, but male fetuses showed significantly greater reduction in seizures during MgSO4 infusion than female fetuses. A circadian profile of seizure activity was observed in all fetuses, with peak seizures seen around 04.00-06.00 h on the first and second days after the end of asphyxia. This study is the first to demonstrate that MgSO4 has utility as an anti-seizure agent after hypoxia-ischaemia. More information is needed about the mechanisms mediating the effect of MgSO4 on seizures and sexual dimorphism, and the influence of circadian rhythms on seizure expression. ABSTRACT Seizures are common in newborns after asphyxia at birth and are often refractory to anti-seizure agents. Magnesium sulphate (MgSO4 ) has anticonvulsant effects and is increasingly given to women in preterm labour for potential neuroprotection. There is limited information on its effects on perinatal seizures. We examined the hypothesis that MgSO4 infusion would reduce fetal seizures after asphyxia in utero. Preterm fetal sheep at 0.7 gestation (104 days, term = 147 days) were given intravenous infusions of either saline (n = 14) or MgSO4 (n = 12, 160 mg bolus + 48 mg h-1 infusion over 48 h). Fetuses underwent umbilical cord occlusion (UCO) for 25 min, 24 h after the start of infusion. The start time for seizures did not differ between groups, but MgSO4 significantly reduced the total number of seizures (P < 0.001), peak seizure amplitude (P < 0.05) and seizure burden (P < 0.005). Within the saline-asphyxia group, male fetuses had significantly more seizures than females (P < 0.05). Within the MgSO4 -asphyxia group, although both sexes had fewer seizures than the saline-asphyxia group, the greatest effect of MgSO4 was on male fetuses, with reduced numbers of seizures (P < 0.001) and seizure burden (P < 0.005). Only 1 out of 6 MgSO4 males had seizures on the second day post-UCO compared to 5 out of 6 MgSO4 female fetuses (P = 0.08). Finally, seizures showed a circadian profile with peak seizures between 04.00 and 06.00 h on the first and second day post-UCO. Collectively, these results suggest that MgSO4 may have utility in treating perinatal seizures and has sexually dimorphic effects.
Collapse
Affiliation(s)
- Laura Bennet
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Vittoria Draghi
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Lear CA, Davidson JO, Mackay GR, Drury PP, Galinsky R, Quaedackers JS, Gunn AJ, Bennet L. Antenatal dexamethasone before asphyxia promotes cystic neural injury in preterm fetal sheep by inducing hyperglycemia. J Cereb Blood Flow Metab 2018; 38:706-718. [PMID: 28387144 PMCID: PMC5888852 DOI: 10.1177/0271678x17703124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antenatal glucocorticoid therapy significantly improves the short-term systemic outcomes of prematurely born infants, but there is limited information available on their impact on neurodevelopmental outcomes in at-risk preterm babies exposed to perinatal asphyxia. Preterm fetal sheep (0.7 of gestation) were exposed to a maternal injection of 12 mg dexamethasone or saline followed 4 h later by asphyxia induced by 25 min of complete umbilical cord occlusion. In a subsequent study, fetuses received titrated glucose infusions followed 4 h later by asphyxia to examine the hypothesis that hyperglycemia mediated the effects of dexamethasone. Post-mortems were performed 7 days after asphyxia for cerebral histology. Maternal dexamethasone before asphyxia was associated with severe, cystic brain injury compared to diffuse injury after saline injection, with increased numbers of seizures, worse recovery of brain activity, and increased arterial glucose levels before, during, and after asphyxia. Glucose infusions before asphyxia replicated these adverse outcomes, with a strong correlation between greater increases in glucose before asphyxia and greater neural injury. These findings strongly suggest that dexamethasone exposure and hyperglycemia can transform diffuse injury into cystic brain injury after asphyxia in preterm fetal sheep.
Collapse
Affiliation(s)
- Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Georgia R Mackay
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Paul P Drury
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | | | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Bennet L, Dhillon S, Lear CA, van den Heuij L, King V, Dean JM, Wassink G, Davidson JO, Gunn AJ. Chronic inflammation and impaired development of the preterm brain. J Reprod Immunol 2018; 125:45-55. [DOI: 10.1016/j.jri.2017.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
|
22
|
Garabedian C, Clermont-Hama Y, Sharma D, Aubry E, Butruille L, Deruelle P, Storme L, De Jonckheere J, Houfflin-Debarge V. Correlation of a new index reflecting the fluctuation of parasympathetic tone and fetal acidosis in an experimental study in a sheep model. PLoS One 2018; 13:e0190463. [PMID: 29320537 PMCID: PMC5761865 DOI: 10.1371/journal.pone.0190463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system plays a leading role in the control of fetal homeostasis. Fetal heart rate variability (HRV) analysis is a reflection of its activity. We developed a new index (the Fetal Stress Index, FSI) reflecting parasympathetic tone. The objective of this study was to evaluate this index as a predictor of fetal acid-base status. This was an experimental study on chronically instrumented fetal lambs (n = 11, surgery at 128 +/- 2 days gestational age, term = 145 days). The model was based on 75% occlusion of the umbilical cord for a maximum of 120 minutes or until an arterial pH ≤ 7.20 was reached. Hemodynamic, gasometric and FSI parameters were recorded throughout the experimentation. We studied the FSI during the 10 minutes prior to pH samplings and compared values for pH>7.20 and pH≤ 7.20. In order to analyze the FSI evolution during the 10 minutes periods, we analyzed the minimum, maximum and mean values of the FSI (respectively FSImin, FSImax and FSImean) over the periods. 11 experimentations were performed. During occlusion, the heart rate dropped with an increase in blood pressure (respectively 160(155-182) vs 106(101-120) bpm and 42(41-45) vs 58(55-62) mmHg after occlusion). The FSImin was 38.6 (35.2-43.3) in the group pH>7.20 and was higher in the group pH less than 7.20 (46.5 (43.3-52.0), p = 0.012). The correlation of FSImin was significant for arterial pH (coefficient of -0.671; p = 0.004) and for base excess (coefficient of -0.632; p = 0.009). The correlations were not significant for the other parameters. In conclusion, our new index seems well correlated with the fetal acid-base status. Other studies must be carried out in a situation close to the physiology of labor by sequential occlusion of the cord.
Collapse
Affiliation(s)
- C. Garabedian
- Univ. Lille, EA 4489 –Perinatal Environment and Health, Lille, France
- CHU Lille, Department of Obstetrics, Lille, France
- * E-mail:
| | - Y. Clermont-Hama
- Univ. Lille, EA 4489 –Perinatal Environment and Health, Lille, France
- CHU Lille, Department of Obstetrics, Lille, France
| | - D. Sharma
- Univ. Lille, EA 4489 –Perinatal Environment and Health, Lille, France
- CHU Lille, Department of Pediatric Surgery, Lille, France
| | - E. Aubry
- Univ. Lille, EA 4489 –Perinatal Environment and Health, Lille, France
- CHU Lille, Department of Pediatric Surgery, Lille, France
| | - L. Butruille
- Univ. Lille, EA 4489 –Perinatal Environment and Health, Lille, France
| | - P. Deruelle
- Univ. Lille, EA 4489 –Perinatal Environment and Health, Lille, France
- CHU Lille, Department of Obstetrics, Lille, France
| | - L. Storme
- Univ. Lille, EA 4489 –Perinatal Environment and Health, Lille, France
- CHU Lille, Department of Neonatology, Lille, France
| | - J. De Jonckheere
- Univ. Lille, EA 4489 –Perinatal Environment and Health, Lille, France
- CHU Lille, CIC-IT 1403, Lille, France
| | - V. Houfflin-Debarge
- Univ. Lille, EA 4489 –Perinatal Environment and Health, Lille, France
- CHU Lille, Department of Obstetrics, Lille, France
| |
Collapse
|
23
|
Bennet L. Sex, drugs and rock and roll: tales from preterm fetal life. J Physiol 2017; 595:1865-1881. [PMID: 28094441 DOI: 10.1113/jp272999] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Premature fetuses and babies are at greater risk of mortality and morbidity than their term counterparts. The underlying causes are multifactorial, but include exposure to hypoxia. Immaturity of organs and their functional control may impair the physiological defence responses to hypoxia and the preterm fetal responses, or lack thereof, to moderate hypoxia appear to support this concept. However, as this review demonstrates, despite immaturity, the preterm fetus responds to asphyxia in a qualitatively similar manner to that seen at term. This highlights the importance in understanding metabolism versus homeostatic threat when assessing fetal responses to adverse challenges such as hypoxia. Data are presented to show that the preterm fetal adaptation to asphyxia is triphasic in nature. Phase one represents the rapid institution of maximal defences, designed to maintain blood pressure and central perfusion at the expense of peripheral organs. Phase two is one of adaptive compensation. Controlled reperfusion partially offsets peripheral tissue oxygen debt, while maintaining sufficient vasoconstriction to limit the fall in perfusion. Phase three is about decompensation. Strikingly, the preterm fetus generally performs better during phases two and three, and can survive for longer without injury. Paradoxically, however, the ability to survive can lead to longer exposure to hypotension and hypoperfusion and thus potentially greater injury. The effects of fetal sex, inflammation and drugs on the triphasic adaptations are reviewed. Finally, the review highlights the need for more comprehensive studies to understand the complexity of perinatal physiology if we are to develop effective strategies to improve preterm outcomes.
Collapse
Affiliation(s)
- Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
24
|
Effect of perinatal glucocorticoids on vascular health and disease. Pediatr Res 2017; 81:4-10. [PMID: 27656772 DOI: 10.1038/pr.2016.188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/26/2016] [Indexed: 11/09/2022]
Abstract
The benefits of antenatal glucocorticoids are now firmly established in the perinatal management of threatened preterm birth. Postnatal glucocorticoid therapy, however, remains controversial in neonatal medicine, with the need to balance short-term physiological benefits against the potential for long-term adverse consequences. This review focuses on the vascular effects of prenatal and postnatal glucocorticoids, synthesizing data from both experimental animal models and human infants with the goal of better appreciation of the short and long-term effects of these commonly used drugs. Due to their widespread and varied use, improved understanding of the cellular and molecular impact of glucocorticoids is important in guiding current practice and future research.
Collapse
|
25
|
Basu SK, Kaiser JR, Guffey D, Minard CG, Guillet R, Gunn AJ. Hypoglycaemia and hyperglycaemia are associated with unfavourable outcome in infants with hypoxic ischaemic encephalopathy: a post hoc analysis of the CoolCap Study. Arch Dis Child Fetal Neonatal Ed 2016; 101:F149-55. [PMID: 26283669 DOI: 10.1136/archdischild-2015-308733] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 07/29/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the association of neonatal hypoglycaemia and hyperglycaemia with outcomes in infants with hypoxic ischaemic encephalopathy (HIE). DESIGN Post hoc analysis of the CoolCap Study. SETTING 25 perinatal centres in the UK, the USA and New Zealand during 1999-2002. PATIENTS 234 infants at ≥36 weeks' gestation with moderate-to-severe HIE enrolled in the CoolCap Study. 214 (91%) infants had documented plasma glucose and follow-up outcome data. INTERVENTION Infants were randomised to head cooling for 72 h starting within 6 h of birth, or standard care. Plasma glucose levels were measured at predetermined time intervals after randomisation. MAIN OUTCOME MEASURE The unfavourable primary outcome of the study was death and/or severe neurodevelopmental disability at 18 months. Hypoglycaemia (≤40 mg/dL, ≤2.2 mmol/L) and hyperglycaemia (>150 mg/dL, >8.3 mmol/L) during the first 12 h after randomisation were investigated for univariable and multivariable associations with unfavourable primary outcome. RESULTS 121 (57%) infants had abnormal plasma glucose values within 12 h of randomisation. Unfavourable outcome was observed in 126 (60%) infants and was more common among subjects with hypoglycaemia (81%, p=0.004), hyperglycaemia (67%, p=0.01) and any glucose derangement within the first 12 h (67%, p=0.002) compared with normoglycaemic infants (48%) in univariable analysis. These associations remained significant after adjusting for birth weight, Apgar score, pH, Sarnat stage and hypothermia therapy. CONCLUSIONS Both hypoglycaemia and hyperglycaemia in infants with moderate-to-severe HIE were independently associated with unfavourable outcome. Future studies are needed to investigate the prognostic significance of these associations and their role as biomarkers of brain injury. TRIAL REGISTRATION NUMBER (ClinicalTrials.gov NCT00383305).
Collapse
Affiliation(s)
- Sudeepta K Basu
- Baylor College of Medicine, Houston, Texas, USA Children's National Medical Center, Washington, DC, USA
| | | | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Charles G Minard
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Ronnie Guillet
- University of Rochester Medical Center, Rochester, Texas, New York, USA
| | | | | |
Collapse
|
26
|
Wassink G, Lear CA, Gunn KC, Dean JM, Bennet L, Gunn AJ. Analgesics, sedatives, anticonvulsant drugs, and the cooled brain. Semin Fetal Neonatal Med 2015; 20:109-14. [PMID: 25457080 DOI: 10.1016/j.siny.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multiple randomized controlled trials have shown that prolonged, moderate cerebral hypothermia initiated within a few hours after severe hypoxia-ischemia and continued until resolution of the acute phase of delayed cell death reduces mortality and improves neurodevelopmental outcome in term infants. The challenge is now to find ways to further improve outcomes. In the present review, we critically examine the evidence that conventional analgesic, sedative, or anticonvulsant agents might improve outcomes, in relation to the known window of opportunity for effective protection with hypothermia. This review strongly indicates that there is insufficient evidence to recommend routine use of these agents during therapeutic hypothermia. Further systematic research into the effects of pain and stress on the injured brain, and their treatment during hypothermia, is essential to guide the rational development of clinical treatment protocols.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Katherine C Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
27
|
Kang SK, Kadam SD. Neonatal Seizures: Impact on Neurodevelopmental Outcomes. Front Pediatr 2015; 3:101. [PMID: 26636052 PMCID: PMC4655485 DOI: 10.3389/fped.2015.00101] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022] Open
Abstract
Neonatal period is the most vulnerable time for the occurrence of seizures, and neonatal seizures often pose a clinical challenge both for their acute management and frequency of associated long-term co-morbidities. Etiologies of neonatal seizures are known to play a primary role in the anti-epileptic drug responsiveness and the long-term sequelae. Recent studies have suggested that burden of acute recurrent seizures in neonates may also impact chronic outcomes independent of the etiology. However, not many studies, either clinical or pre-clinical, have addressed the long-term outcomes of neonatal seizures in an etiology-specific manner. In this review, we briefly review the available clinical and pre-clinical research for long-term outcomes following neonatal seizures. As the most frequent cause of acquired neonatal seizures, we focus on the studies evaluating long-term effects of HIE-seizures with the goal to evaluate (1) what parameters evaluated during acute stages of neonatal seizures can reliably be used to predict long-term outcomes? and (2) what available clinical and pre-clinical data are available help determine importance of etiology vs. seizure burdens in long-term sequelae.
Collapse
Affiliation(s)
- Seok Kyu Kang
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger , Baltimore, MD , USA
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger , Baltimore, MD , USA ; Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
28
|
Lear CA, Koome ME, Davidson JO, Drury PP, Quaedackers JS, Galinsky R, Gunn AJ, Bennet L. The effects of dexamethasone on post-asphyxial cerebral oxygenation in the preterm fetal sheep. J Physiol 2014; 592:5493-505. [PMID: 25384775 DOI: 10.1113/jphysiol.2014.281253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to clinical doses of the glucocorticoid dexamethasone increases brain activity and causes seizures in normoxic preterm fetal sheep without causing brain injury. In contrast, the same treatment after asphyxia increased brain injury. We hypothesised that increased injury was in part mediated by a mismatch between oxygen demand and oxygen supply. In preterm fetal sheep at 0.7 gestation we measured cerebral oxygenation using near-infrared spectroscopy, electroencephalographic (EEG) activity, and carotid blood flow (CaBF) from 24 h before until 72 h after asphyxia induced by 25 min of umbilical cord occlusion. Ewes received dexamethasone intramuscularly (12 mg 3 ml(-1)) or saline 15 min after the end of asphyxia. Fetuses were studied for 3 days after occlusion. During the first 6 h of recovery after asphyxia, dexamethasone treatment was associated with a significantly greater fall in CaBF (P < 0.05), increased carotid vascular resistance (P < 0.001) and a greater fall in cerebral oxygenation as measured by the difference between oxygenated and deoxygenated haemoglobin (delta haemoglobin; P < 0.05). EEG activity was similarly suppressed in both groups. From 6 to 10 h onward, dexamethasone treatment was associated with a return of CaBF to saline control levels, increased EEG power (P < 0.005), greater epileptiform transient activity (P < 0.001), increased oxidised cytochrome oxidase (P < 0.05) and an attenuated increase in [delta haemoglobin] (P < 0.05). In conclusion, dexamethasone treatment after asphyxia is associated with greater hypoperfusion in the critical latent phase, leading to impaired intracerebral oxygenation that may exacerbate neural injury after asphyxia.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Miriam E Koome
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Josine S Quaedackers
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Maternal treatment with glucocorticoids modulates gap junction protein expression in the ovine fetal brain. Neuroscience 2014; 275:248-58. [PMID: 24929069 DOI: 10.1016/j.neuroscience.2014.05.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/28/2014] [Accepted: 05/14/2014] [Indexed: 12/31/2022]
Abstract
Gap junctions facilitate intercellular communication and are important in brain development. Connexins (Cx) comprise a transmembrane protein family that forms gap junctions. Cx-32 is expressed in oligodendrocytes and neurons, Cx-36 in neurons, and Cx-43 in astrocytes. Although single antenatal steroid courses are recommended for fetal lung maturation, multiple courses can be given to women at recurrent risk for premature delivery. We examined the effects of single and multiple glucocorticoid courses on Cx-32, Cx-36, and Cx-43 protein expressions in the fetal cerebral cortex, cerebellum, and spinal cord, and differences in Cx expression among brain regions under basal conditions. In the single-course groups, the ewes received dexamethasone (6 mg) or placebo as four intramuscular injections every 12h over 48 h. In the multiple-course groups, the ewes received the same treatment, once a week for 5 weeks starting at 76-78 days of gestation. Cx were measured by Western immunoblot on brain samples from 105 to 108-day gestation fetuses. A single dexamethasone course was associated with increases (P<0.05) in cerebral cortical and spinal cord Cx-36 and Cx-43 and multiple courses with increases in cerebellar and spinal cord Cx-36, and cerebral cortical and cerebellar Cx-43. Cx-32 did not change. Cx-32 was higher in the cerebellum than cerebral cortex and spinal cord, Cx-36 higher in the spinal cord than cerebellum, and Cx-43 higher in the cerebellum and spinal cord than cerebral cortex during basal conditions. In conclusion, maternal glucocorticoid therapy increases specific Cx, responses to different maternal courses vary among Cx and brain regions, and Cx expression differs among brain regions under basal conditions. Maternal treatment with glucocorticoids differentially modulates Cx in the fetal brain.
Collapse
|