1
|
Petropavlovskaia M, Assouline-Thomas B, Cuerquis J, Zhao J, Violette-Deslauriers S, Nano E, Eliopoulos N, Rosenberg L. Characterization of MSCs expressing islet neogenesis associated protein (INGAP): INGAP secretion and cell survival in vitro and in vivo. Heliyon 2024; 10:e35372. [PMID: 39170459 PMCID: PMC11336584 DOI: 10.1016/j.heliyon.2024.e35372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are emerging as a new therapy for diabetes. Here we investigate the properties of MSCs engineered to express Islet Neogenesis Associated Protein (INGAP) previously shown to reverse diabetes in animal models and evaluate their potential for anti-diabetic applications in mice. Mouse bone marrow-derived MSCs retrovirally transduced to co-express INGAP, Firefly Luciferase and EGFP (INGAP-MSCs), were characterized in vitro and implanted intraperitoneally (IP) into non-diabetic and diabetic C57BL/6 mice (Streptozotocin model) and tracked by live bioluminescence imaging (BLI). Distribution and survival of IP injected INGAP-MSCs differed between diabetic and non-diabetic mice, with a rapid clearance of cells in the latter, and a stronger retention (up to 4 weeks) in diabetic mice concurring with homing towards the pancreas. Interestingly, INGAP-MSCs inhibited the progression of hyperglycemia starting at day 3 and lasting for the entire 6 weeks of the study. Pursuing greater retention, we investigated the survival of INGAP-MSCs in hydrogel matrices. When mixed with Matrigel™ and injected subcutaneously into non-diabetic mice, INGAP-MSCs remained in the implant up to 16 weeks. In vitro tests in three matrices (Matrigel™, Type I Collagen and VitroGel®-MSC) demonstrated that INGAP-MSCs survive and secrete INGAP, with best results at the density of 1-2 x 106 cells/mL. However, all matrices induced spontaneous adipogenic differentiation of INGAP-MSCs in vitro and in vivo, which requires further investigation of its potential impact on MSC therapeutic properties. In summary, based on their ability to stop the rise in hyperglycemia in STZ-treated mice, INGAP-MSCs are a promising therapeutic tool against diabetes but require further research to improve cell delivery and survival.
Collapse
Affiliation(s)
- Maria Petropavlovskaia
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Jessica Cuerquis
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
| | - Jing Zhao
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
| | - Shaun Violette-Deslauriers
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Eni Nano
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Lawrence Rosenberg
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Gou W, Hua W, Swaby L, Cui W, Green E, Morgan KA, Strange C, Wang H. Stem Cell Therapy Improves Human Islet Graft Survival in Mice via Regulation of Macrophages. Diabetes 2022; 71:2642-2655. [PMID: 36084289 PMCID: PMC9750955 DOI: 10.2337/db22-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/01/2022] [Indexed: 01/23/2023]
Abstract
Islet/β-cell transplantation offers great hope for patients with type 1 diabetes. We assessed the mechanisms of how intrahepatic coinfusion of human α-1 antitrypsin (hAAT)-engineered mesenchymal stromal cells (hAAT-MSCs) improves survival of human islet grafts posttransplantation (PT). Longitudinal in vivo bioluminescence imaging studies identified significantly more islets in the livers bearing islets cotransplanted with hAAT-MSCs compared with islets transplanted alone. In vitro mechanistic studies revealed that hAAT-MSCs inhibit macrophage migration and suppress IFN-γ-induced M1-like macrophages while promoting IL-4-induced M2-like macrophages. In vivo this translated to significantly reduced CD11c+ and F4/80+ cells and increased CD206+ cells around islets cotransplanted with hAAT-MSCs as identified by multiplex immunofluorescence staining. Recipient-derived F4/80+and CD11b+ macrophages were mainly present in the periphery of an islet, while CD11c+ and CD206+ cells appeared inside an islet. hAAT-MSCs inhibited macrophage migration and skewed the M1-like phenotype toward an M2 phenotype both in vitro and in vivo, which may have favored islet survival. These data provide evidence that hAAT-MSCs cotransplanted with islets remain in the liver and shift macrophages to a protective state that favors islet survival. This novel strategy may be used to enhance β-cell survival during islet/β-cell transplantation for the treatment of type 1 diabetes or other diseases.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
| | - Wei Hua
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Lindsay Swaby
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Erica Green
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
3
|
Li H, Zhu H, Ge T, Wang Z, Zhang C. Mesenchymal Stem Cell-Based Therapy for Diabetes Mellitus: Enhancement Strategies and Future Perspectives. Stem Cell Rev Rep 2021; 17:1552-1569. [PMID: 33675006 DOI: 10.1007/s12015-021-10139-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM), a chronic disorder of carbohydrate metabolism, is characterized by the unbridled hyperglycemia resulted from the impaired ability of the body to either produce or respond to insulin. As a cell-based regenerative therapy, mesenchymal stem cells (MSCs) hold immense potency for curing DM duo to their easy isolation, multi-differentiation potential, and immunomodulatory property. However, despite the promising efficacy in pre-clinical animal models, naive MSC administration fails to exhibit clinically satisfactory therapeutic outcomes, which varies greatly among individuals with DM. Recently, numbers of innovative strategies have been applied to improve MSC-based therapy. Preconditioning, genetic modification, combination therapy and exosome application are representative strategies to maximize the therapeutic benefits of MSCs. Therefore, in this review, we summarize recent advancements in mechanistic studies of MSCs-based treatment for DM, and mainly focus on the novel approaches aiming to improve the anti-diabetic potentials of naive MSCs. Additionally, the potential directions of MSCs-based therapy for DM are also proposed at a glance.
Collapse
Affiliation(s)
- Haisen Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Sinoneural Cell Engineering Group Holdings Co., Ltd., Shanghai 201100, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Holdings Co., Ltd., Shanghai 201100, China
| | - Ting Ge
- Xinxiang First People's Hospital, Xinxiang 453000, China
| | - Zhifeng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China. .,Sinoneural Cell Engineering Group Holdings Co., Ltd., Shanghai 201100, China.
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Xu T, Lv Z, Chen Q, Guo M, Wang X, Huang F. Vascular endothelial growth factor over-expressed mesenchymal stem cells-conditioned media ameliorate palmitate-induced diabetic endothelial dysfunction through PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathway. Biomed Pharmacother 2018; 106:491-498. [PMID: 29990837 DOI: 10.1016/j.biopha.2018.06.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
In the pathogenesis of diabetes mellitus (DM), islet microvasculares are severely damaged due to glucolipotoxicity and other reasons. Vascular endothelial growth factor (VEGF) is an indispensable and specific angiogenic factor in the pathogenesis and treatment of diabetic islet microvascular disease. Mesenchymal stem cells (MSCs) are regarded as a promising treatment of diabetes because of their immunosuppressive effect and multipotential differentiation potency. In this study, we tested whether MSCs over-expressing VEGF conditioned medium (MSC-VEGF-CM) could ameliorate pancreatic islet endothelial cells (MS-1) dysfunction induced by a common diabetic inducer palmitate (PA). We found that cell survival and migration were restrained by PA and partly repaired by the pro-protected of MSC-VEGF-CM. Meanwhile, PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathways were also up-regulated. Though apoptosis-related proteins, caspase-3 and caspase-9, had no significantly suppressed between MSC-VEGF-CM and MSC-CM alone, the expression levels of vascular surface factors such as CD31, VE-cadherin, occludin and ICAM-1, were remarkably up-regulated by the pro-protected of MSC-VEGF-CM. Our data suggested that MSC-VEGF-CM had therapeutic effect on the PA-induced dysfunction through the re-activation of PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Tianwei Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhengbing Lv
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuhua Chen
- Intensive Care Unit, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Min Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xufang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fengjie Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
He S, Wang C, Du X, Chen Y, Zhao J, Tian B, Lu H, Zhang Y, Liu J, Yang G, Li L, Li H, Cheng J, Lu Y. MSCs promote the development and improve the function of neonatal porcine islet grafts. FASEB J 2018; 32:3242-3253. [DOI: 10.1096/fj.201700991r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sirong He
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
- Department of ImmunologyCollege of Basic MedicineChongqing Medical University Chongqing China
| | - Chengshi Wang
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Xiaojiong Du
- Department of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Younan Chen
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Jiuming Zhao
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Bole Tian
- Department of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Huimin Lu
- Department of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Yi Zhang
- Department of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Jingping Liu
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Guang Yang
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Lan Li
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Hongxia Li
- National Center for Safety Evaluation of Traditional Chinese Medicine Chengdu China
| | - Jingqiu Cheng
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| | - Yanrong Lu
- Laboratory of Transplant Engineering and ImmunologyRegenerative Medicine Research CenterDepartment of Pancreatic SurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|
6
|
Krishnan R, Ko D, Foster CE, Liu W, Smink AM, de Haan B, De Vos P, Lakey JRT. Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials. Methods Mol Biol 2017; 1479:305-333. [PMID: 27738946 DOI: 10.1007/978-1-4939-6364-5_24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining characteristics of the response itself.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - David Ko
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - Clarence E Foster
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA.,Department of Transplantation, University of California Irvine, Orange, CA, USA
| | - Wendy Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - A M Smink
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Bart de Haan
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Paul De Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA. .,Department of Transplantation, University of California Irvine, Orange, CA, USA. .,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Huang Y, Ding L, Shao Y, Chen Z, Shen B, Ma Y, Zhu L, Wei Z. Integrin-Linked Kinase Improves Functional Recovery of Diabetic Cystopathy and Mesenchymal Stem Cell Survival and Engraftment in Rats. Can J Diabetes 2017; 41:312-321. [DOI: 10.1016/j.jcjd.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 07/15/2016] [Accepted: 11/01/2016] [Indexed: 01/27/2023]
|
8
|
Yang Y, Song HL, Zhang W, Wu BJ, Fu NN, Dong C, Shen ZY. Heme oxygenase-1-transduced bone marrow mesenchymal stem cells in reducing acute rejection and improving small bowel transplantation outcomes in rats. Stem Cell Res Ther 2016; 7:164. [PMID: 27866474 PMCID: PMC5116370 DOI: 10.1186/s13287-016-0427-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/22/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Background We determined whether bone marrow mesenchymal stem cells (BMMSCs) transduced with heme oxygenase-1 (HO-1), a cytoprotective and immune-protective factor, could improve outcomes for small bowel transplantation (SBTx) in rats. Methods We performed heterotopic SBTx from Brown Norway rats to Lewis rats, before infusing Ad/HO-1-transduced BMMSCs (Ad/HO-1/BMMSCs) through the superficial dorsal veins of the penis. Respective infusions with Ad/BMMSCs, BMMSCs, and normal saline served as controls. The animals were sacrificed after 1, 5, 7, or 10 days. At each time point, we measured small bowel histology and apoptosis, HO-1 protein and mRNA expression, natural killer (NK) cell activity, cytokine concentrations in serum and intestinal graft, and levels of regulatory T (Treg) cells. Results The saline-treated control group showed aggravated acute cellular rejection over time, with mucosal destruction, increased apoptosis, NK cell activation, and upregulation of proinflammatory and immune-related mediators. Both the Ad/BMMSC-treated group and the BMMSC-treated group exhibited attenuated acute cellular rejection at an early stage, but the effects receded 7 days after transplantation. Strikingly, the Ad/HO-1/BMMSC-treated group demonstrated significantly attenuated acute cellular rejection, reduced apoptosis and NK cell activity, and suppressed concentrations of inflammation and immune-related cytokines, and upregulated expression of anti-inflammatory cytokine mediators and increased Treg cell levels. Conclusion Our data suggest that Ad/HO-1-transduced BMMSCs have a reinforced effect on reducing acute rejection and protecting the outcome of SBTx in rats.
Collapse
Affiliation(s)
- Yang Yang
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Hong Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Tianjin Key Laboratory of Organ Transplantation, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| | - Wen Zhang
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Ben Juan Wu
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Nan Nan Fu
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Chong Dong
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Zhong Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
9
|
Quaranta P, Focosi D, Freer G, Pistello M. Tweaking Mesenchymal Stem/Progenitor Cell Immunomodulatory Properties with Viral Vectors Delivering Cytokines. Stem Cells Dev 2016; 25:1321-41. [PMID: 27476883 DOI: 10.1089/scd.2016.0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) can be found in various body sites. Their main role is to differentiate into cartilage, bone, muscle, and fat cells to allow tissue maintenance and repair. During inflammation, MSCs exhibit important immunomodulatory properties that are not constitutive, but require activation, upon which they may exert immunosuppressive functions. MSCs are defined as "sensors of inflammation" since they modulate their ability of interfering with the immune system both in vitro and in vivo upon interaction with different factors. MSCs may influence immune responses through different mechanisms, such as direct cell-to-cell contact, release of soluble factors, and through the induction of anergy and apoptosis. Human MSCs are defined as plastic-adherent cells expressing specific surface molecules. Lack of MHC class II antigens makes them appealing as allogeneic tools for the therapy of both autoimmune diseases and cancer. MSC therapeutic potential could be highly enhanced by the expression of exogenous cytokines provided by transduction with viral vectors. In this review, we attempt to summarize the results of a great number of in vitro and in vivo studies aimed at improving the ability of MSCs as immunomodulators in the therapy of autoimmune, degenerative diseases and cancer. We will also compare results obtained with different vectors to deliver heterologous genes to these cells.
Collapse
Affiliation(s)
- Paola Quaranta
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy
| | - Daniele Focosi
- 2 North-Western Tuscany Blood Bank, Pisa University Hospital , Pisa, Italy
| | - Giulia Freer
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| | - Mauro Pistello
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| |
Collapse
|
10
|
Human Wharton's jelly–derived mesenchymal stromal cells engineered to secrete Epstein-Barr virus interleukin-10 show enhanced immunosuppressive properties. Cytotherapy 2016; 18:205-18. [DOI: 10.1016/j.jcyt.2015.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023]
|
11
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
12
|
D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015; 13:186. [PMID: 26265166 PMCID: PMC4534031 DOI: 10.1186/s12916-015-0426-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.
Collapse
Affiliation(s)
- Naomi D'souza
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Filippo Rossignoli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Satoru Osturu
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Fabio Catani
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Paolo Paolucci
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Edwin M Horwitz
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
13
|
JAM-A promotes wound healing by enhancing both homing and secretory activities of mesenchymal stem cells. Clin Sci (Lond) 2015; 129:575-88. [PMID: 25994236 DOI: 10.1042/cs20140735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/20/2015] [Indexed: 12/13/2022]
Abstract
The homing ability and secretory function of mesenchymal stem cells (MSCs) are key factors that influence cell involvement in wound repair. These factors are controlled by multilayer regulatory circuitry, including adhesion molecules, core transcription factors (TFs) and certain other regulators. However, the role of adhesion molecules in this regulatory circuitry and their underlying mechanism remain undefined. In the present paper, we demonstrate that an adhesion molecule, junction adhesion molecule A (JAM-A), may function as a key promoter molecule to regulate skin wound healing by MSCs. In in vivo experiments, we show that JAM-A up-regulation promoted both MSC homing to full-thickness skin wounds and wound healing-related cytokine secretion by MSCs. In vitro experiments also showed that JAM-A promoted MSC proliferation and migration by activating T-cell lymphoma invasion and metastasis 1 (Tiam1). We suggest that JAM-A up-regulation can increase the proliferation, cytokine secretion and wound-homing ability of MSCs, thus accelerating the repair rate of full-thickness skin defects. These results may provide insights into a novel and potentially effective approach to improve the efficacy of MSC treatment.
Collapse
|
14
|
Yang Y, Chen XH, Li FG, Chen YX, Gu LQ, Zhu JK, Li P. In VitroInduction of Human Adipose-Derived Stem Cells into Lymphatic Endothelial-Like Cells. Cell Reprogram 2015; 17:69-76. [PMID: 25647247 DOI: 10.1089/cell.2014.0043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Yi Yang
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- These authors contributed equally to this work
| | - Xiao-hu Chen
- Department of Orthopedic Trauma, The Hui Ya Hospital of Sun Yat-sen University, Huizhou, 516000, China
- These authors contributed equally to this work
| | - Fu-gui Li
- Department of Cancer Institute, The Zhong Shan Hospital of Sun Yat-sen University, Zhongshan, 528403, China
| | - Yun-xian Chen
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-qiang Gu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-kai Zhu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ping Li
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
15
|
Abstract
Diabetes is affecting more than 25.8 million people in the United States, causing huge burden on the health care system and economy. Insulin injection, which is the predominant treatment for diabetes, is incapable of replenishing the lost insulin-producing beta cell in patients. Restoring beta cell mass through replacement therapy such as islet transplantation or beta cell regeneration through in vitro and in vivo strategies has attracted particular attentions in the field due to its potential to cure diabetes. In the aspect of islet transplantation, gene therapy, stem cell therapy, and more biocompatible immunosuppressive drugs have been tested in various preclinical animal models to improve the longevity and function of human islets against the posttransplantation challenges. In the islet regeneration aspect, insulin-producing cells have been generated through in vitro transdifferentiation of stem cells and other types of cells and demonstrated to be capable of glycemic control. Moreover, several biomarkers including cell-surface receptors, soluble factors, and transcriptional factors have been identified or rediscovered in mediating the process of beta cell proliferation in rodents. This review summarizes the current progress and hurdles in the preclinical efforts in resurrecting beta cells. It may provide some useful insights into the future drug discovery for antidiabetic purposes.
Collapse
Affiliation(s)
| | - Hao Wu
- NGM Biopharmaceuticals, Inc, South San Francisco, CA, USA
| |
Collapse
|