1
|
Darveau CA. Insect Flight Energetics and the Evolution of Size, Form, and Function. Integr Comp Biol 2024; 64:586-597. [PMID: 38688867 PMCID: PMC11406158 DOI: 10.1093/icb/icae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024] Open
Abstract
Flying insects vary greatly in body size and wing proportions, significantly impacting their flight energetics. Generally, the larger the insect, the slower its flight wingbeat frequency. However, variation in frequency is also explained by differences in wing proportions, where larger-winged insects tend to have lower frequencies. These associations affect the energy required for flight. The correlated evolution of flight form and function can be further defined using a lineage of closely related bee species varying in body mass. The decline in flight wingbeat frequency with increasing size is paralleled by the flight mass-specific metabolic rate. The specific scaling exponents observed can be predicted from the wing area allometry, where a greater increase (hyperallometry) leads to a more pronounced effect on flight energetics, and hypoallometry can lead to no change in frequency and metabolic rate across species. The metabolic properties of the flight muscles also vary with body mass and wing proportions, as observed from the activity of glycolytic enzymes and the phospholipid compositions of muscle tissue, connecting morphological differences with muscle metabolic properties. The evolutionary scaling observed across species is recapitulated within species. The static allometry observed within the bumblebee Bombus impatiens, where the wing area is proportional and isometric, affects wingbeat frequency and metabolic rate, which is predicted to decrease with an increase in size. Intraspecific variation in flight muscle tissue properties is also related to flight metabolic rate. The role of developmental processes and phenotypic plasticity in explaining intraspecific differences is central to our understanding of flight energetics. These studies provide a framework where static allometry observed within species gives rise to evolutionary allometry, connecting the evolution of size, form, and function associated with insect flight.
Collapse
Affiliation(s)
- Charles-A Darveau
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
3
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Rhodes EM, Yap KN, Mesquita PHC, Parry HA, Kavazis AN, Krause JS, Hill GE, Hood WR. Flexibility underlies differences in mitochondrial respiratory performance between migratory and non-migratory White-crowned Sparrows (Zonotrichia leucophrys). Sci Rep 2024; 14:9456. [PMID: 38658588 PMCID: PMC11043447 DOI: 10.1038/s41598-024-59715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Migration is one of the most energy-demanding behaviors observed in birds. Mitochondria are the primary source of energy used to support these long-distance movements, yet how mitochondria meet the energetic demands of migration is scarcely studied. We quantified changes in mitochondrial respiratory performance in the White-crowned Sparrow (Zonotrichia leucophrys), which has a migratory and non-migratory subspecies. We hypothesized that the long-distance migratory Gambel's subspecies (Z. l. gambelii) would show higher mitochondrial respiratory performance compared to the non-migratory Nuttall's subspecies (Z. l. nuttalli). We sampled Gambel's individuals during spring pre-migration, active fall migration, and a period with no migration or breeding (winter). We sampled Nuttall's individuals during periods coinciding with fall migration and the winter period of Gambel's annual cycle. Overall, Gambel's individuals had higher citrate synthase, a proxy for mitochondrial volume, than Nuttall's individuals. This was most pronounced prior to and during migration. We found that both OXPHOS capacity (state 3) and basal respiration (state 4) of mitochondria exhibit high seasonal flexibility within Gambel's individuals, with values highest during active migration. These values in Nuttall's individuals were most similar to Gambel's individuals in winter. Our observations indicate that seasonal changes in mitochondrial respiration play a vital role in migration energetics.
Collapse
Affiliation(s)
- Emma M Rhodes
- Department of Biological Sciences, Auburn University, Auburn, USA.
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paulo H C Mesquita
- School of Kinesiology, Auburn University, Auburn, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | | | | | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| |
Collapse
|
5
|
Dederichs A, Fischer K, Michalik P, Beaulieu M. Enhanced dispersal capacity in edge population individuals of a rapidly expanding butterfly. Ecol Evol 2024; 14:e10885. [PMID: 38314314 PMCID: PMC10834214 DOI: 10.1002/ece3.10885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024] Open
Abstract
Natural range shifts offer the opportunity to study the phenotypic and genetic changes contributing to colonization success. The recent range shift of the Southern small white butterfly (Pieris mannii) from the South to the North of Europe offers a prime example to examine a potential dispersal syndrome in range-expanding individuals. We compared butterflies from the core and edge populations using a multimodal approach addressing behavioral, physiological, and morphological traits related to dispersal capacity. Relative to individuals from the core range (France), individuals from the edge (Germany) showed a higher capacity and motivation to fly, and a higher flight metabolic rate. They were also smaller, which may enhance their flight maneuverability and help them cope with limited resource availability, thereby increasing their settlement success in novel environments. Altogether, the behavioral, physiological, and morphological differences observed between core and edge populations in P. mannii suggest the existence of a dispersal syndrome in range-expanding individuals. Whether these differences result from genetic and/or phenotypic responses remains, however, to be determined.
Collapse
Affiliation(s)
- Anaïs Dederichs
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Klaus Fischer
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
- Institute for Integrated SciencesUniversity of KoblenzKoblenzGermany
| | - Peter Michalik
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Michaël Beaulieu
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
6
|
Analyses of adult transcriptomes from four different populations of the spongy moth, Lymantria dispar L., from China and the USA. Sci Rep 2022; 12:18232. [PMID: 36309575 PMCID: PMC9617907 DOI: 10.1038/s41598-022-18377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/10/2022] [Indexed: 12/31/2022] Open
Abstract
The spongy moth Lymantria dispar, formerly known as the gypsy moth, is a forest pest that occurs as two different biotypes: the European spongy moth (ESM), Lymantria dispar dispar, which is distributed in Europe and North America; and the Asian spongy moth (ASM), which consists of subspecies Lymantria dispar asiatica and Lymantria dispar japonica and is distributed in China, Russia, Korea, and Japan. The Asian biotype is classified as a quarantine pest by the U.S. Department of Agriculture because of the superior flight ability of adult females compared to females of the European biotype. To identify genes that potentially account for differences in female flight capability between the two biotypes, we assembled and compared transcriptional profiles of two North American populations of ESM and two Chinese populations of ASM, including samples of unmated female adults and females after mating and oviposition. Of 129,286 unigenes identified, 306 were up-regulated in ASM samples relative to ESM, including genes involved in egg production. In contrast, 2309 unigenes were down-regulated in ASM samples, including genes involved in energy production. Although a previous study found that ASM female flight was reduced after oviposition, a comparison of gene expression before and after mating and oviposition did not reveal any genes which were consistently up- or down-regulated in the two ASM populations.
Collapse
|
7
|
Treidel LA, Quintanilla Ramirez GS, Chung DJ, Menze MA, Vázquez-Medina JP, Williams CM. Selection on dispersal drives evolution of metabolic capacities for energy production in female wing-polymorphic sand field crickets, Gryllus firmus. J Evol Biol 2022; 35:599-609. [PMID: 35255175 PMCID: PMC9311679 DOI: 10.1111/jeb.13996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/21/2022] [Accepted: 02/20/2022] [Indexed: 01/08/2023]
Abstract
Life history and metabolism covary, but the mechanisms and individual traits responsible for these linkages remain unresolved. Dispersal capability is a critical component of life history that is constrained by metabolic capacities for energy production. Conflicting relationships between metabolism and life histories may be explained by accounting for variation in dispersal and maximal metabolic rates. We used female wing-polymorphic sand field crickets, Gryllus firmus, selected either for long wings (LW, flight-capable) or short wings (SW, flightless) to test the hypothesis that selection on dispersal capability drives the evolution of metabolic capacities. While resting metabolic rates were similar, long-winged crickets reached higher maximal metabolic rates than short-winged crickets, resulting in improved running performance. We further provided insight into the mechanisms responsible for covariation between life history and metabolism by comparing mitochondrial content of tissues involved in powering locomotion and assessing the function of mitochondria isolated from long- and short-winged crickets. Our results demonstrated that larger metabolic capacities in long-winged crickets were underpinned by increases in mitochondrial content of dorsoventral flight muscle and enhanced bioenergetic capacities of mitochondria within the fat body, a tissue responsible for fuel storage and mobilization. Thus, selection on flight capability correlates with increases in maximal, but not resting metabolic rates, through modifications of tissues powering locomotion at the cellular and organelle levels. This allows organisms to meet high energetic demands of activity for life history. Dispersal capability should therefore explicitly be considered as a potential factor driving the evolution of metabolic capacities.
Collapse
Affiliation(s)
- Lisa A Treidel
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | | | - Dillon J Chung
- National Institutes of Health, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - José P Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
8
|
Degut A, Fischer K, Quque M, Criscuolo F, Michalik P, Beaulieu M. Irreversible impact of early thermal conditions: an integrative study of developmental plasticity linked to mobility in a butterfly species. J Exp Biol 2022; 225:273908. [PMID: 34989809 DOI: 10.1242/jeb.243724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
Within populations, phenotypic plasticity may allow adaptive phenotypic variation in response to selection generated by environmental heterogeneity. For instance, in multivoltine species, seasonal changes between and within generations may trigger morphological and physiological variation enhancing fitness under different environmental conditions. These seasonal changes may irreversibly affect adult phenotypes when experienced during development. Yet, the irreversible effects of developmental plasticity on adult morphology have rarely been linked to life-history traits even though they may affect different fitness components such as reproduction, mobility and self-maintenance. To address this issue, we raised larvae of Pieris napi butterflies under warm or cool conditions to subsequently compare adult performance in terms of reproduction performance (as assessed through fecundity), displacement capacity (as assessed through flight propensity and endurance) and self-maintenance (as assessed through the measurement of oxidative markers). As expected in ectotherms, individuals developed faster under warm conditions and were smaller than individuals developing under cool conditions. They also had more slender wings and showed a higher wing surface ratio. These morphological differences were associated with changes in the reproductive and flight performances of adults, as individuals developing under warm conditions laid fewer eggs and flew larger distances. Accordingly, the examination of their oxidative status suggested that individuals developing under warm conditions invested more strongly into self-maintenance than individuals developing under cool conditions (possibly at the expense of reproduction). Overall, our results indicate that developmental conditions have long-term consequences on several adult traits in butterflies. This plasticity likely acts on life history strategies for each generation to keep pace with seasonal variations and may facilitate acclimation processes in the context of climate change.
Collapse
Affiliation(s)
- Anaïs Degut
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.,Institute for Integrated Sciences, University of Koblenz-Landau, Universität Str. 1, 56070 Koblenz, Germany
| | - Martin Quque
- Institut Pluridisciplinaire Hubert Curien
- IPHC · Department of Ecology, Physiology and Ethology, Strasbourg, France
| | - François Criscuolo
- Institut Pluridisciplinaire Hubert Curien
- IPHC · Department of Ecology, Physiology and Ethology, Strasbourg, France
| | - Peter Michalik
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Michaël Beaulieu
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.,German Oceanographic Museum, Katharinenberg 14-20, 18439 Stralsund, Germany
| |
Collapse
|
9
|
Cytochrome c Oxidase at Full Thrust: Regulation and Biological Consequences to Flying Insects. Cells 2021; 10:cells10020470. [PMID: 33671793 PMCID: PMC7931083 DOI: 10.3390/cells10020470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/24/2023] Open
Abstract
Flight dispersal represents a key aspect of the evolutionary and ecological success of insects, allowing escape from predators, mating, and colonization of new niches. The huge energy demand posed by flight activity is essentially met by oxidative phosphorylation (OXPHOS) in flight muscle mitochondria. In insects, mitochondrial ATP supply and oxidant production are regulated by several factors, including the energy demand exerted by changes in adenylate balance. Indeed, adenylate directly regulates OXPHOS by targeting both chemiosmotic ATP production and the activities of specific mitochondrial enzymes. In several organisms, cytochrome c oxidase (COX) is regulated at transcriptional, post-translational, and allosteric levels, impacting mitochondrial energy metabolism, and redox balance. This review will present the concepts on how COX function contributes to flying insect biology, focusing on the existing examples in the literature where its structure and activity are regulated not only by physiological and environmental factors but also how changes in its activity impacts insect biology. We also performed in silico sequence analyses and determined the structure models of three COX subunits (IV, VIa, and VIc) from different insect species to compare with mammalian orthologs. We observed that the sequences and structure models of COXIV, COXVIa, and COXVIc were quite similar to their mammalian counterparts. Remarkably, specific substitutions to phosphomimetic amino acids at critical phosphorylation sites emerge as hallmarks on insect COX sequences, suggesting a new regulatory mechanism of COX activity. Therefore, by providing a physiological and bioenergetic framework of COX regulation in such metabolically extreme models, we hope to expand the knowledge of this critical enzyme complex and the potential consequences for insect dispersal.
Collapse
|
10
|
Mena S, Kozak KM, Cárdenas RE, Checa MF. Forest stratification shapes allometry and flight morphology of tropical butterflies. Proc Biol Sci 2020; 287:20201071. [PMID: 33081613 DOI: 10.1098/rspb.2020.1071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Studies of altitudinal and latitudinal gradients have identified links between the evolution of insect flight morphology, landscape structure and microclimate. Although lowland tropical rainforests offer steeper shifts in conditions between the canopy and the understorey, this vertical gradient has received far less attention. Butterflies, because of their great phenotypic plasticity, are excellent models to study selection pressures that mould flight morphology. We examined data collected over 5 years on 64 Nymphalidae butterflies in the Ecuadorian Chocó rainforest. We used phylogenetic methods to control for similarity resulting from common ancestry, and explore the relationships between species stratification and flight morphology. We hypothesized that species should show morphological adaptations related to differing micro-environments, associated with canopy and understorey. We found that butterfly species living in each stratum presented significantly different allometric slopes. Furthermore, a preference for the canopy was significantly associated with low wing area to thoracic volume ratios and high wing aspect ratios, but not with the relative distance to the wing centroid, consistent with extended use of fast flapping flight for canopy butterflies and slow gliding for the understorey. Our results suggest that microclimate differences in vertical gradients are a key factor in generating morphological diversity in flying insects.
Collapse
Affiliation(s)
- Sebastián Mena
- Museo de Zoología QCAZ Invertebrados-Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Rafael E Cárdenas
- Museo de Zoología QCAZ Invertebrados-Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - María F Checa
- Museo de Zoología QCAZ Invertebrados-Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
11
|
Rank NE, Mardulyn P, Heidl SJ, Roberts KT, Zavala NA, Smiley JT, Dahlhoff EP. Mitonuclear mismatch alters performance and reproductive success in naturally introgressed populations of a montane leaf beetle. Evolution 2020; 74:1724-1740. [PMID: 32246837 DOI: 10.1111/evo.13962] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/22/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Coordination between nuclear and mitochondrial genomes is critical to metabolic processes underlying animals' ability to adapt to local environments, yet consequences of mitonuclear interactions have rarely been investigated in populations where individuals with divergent mitochondrial and nuclear genomes naturally interbreed. Genetic variation in the leaf beetle Chrysomela aeneicollis was assessed along a latitudinal thermal gradient in California's Sierra Nevada. Variation at mitochondrial cytochrome oxidase II (COII) and the nuclear gene phosphoglucose isomerase (PGI) shows concordance and was significantly greater along a 65 km transect than 10 other loci. STRUCTURE analyses using neutral loci identified a southern and northern subpopulation, which interbreed in the central drainage Bishop Creek. COII and PGI were used as indicators of mitochondrial and nuclear genetic variation in field and laboratory experiments conducted on beetles from this admixed population. Fecundity, larval development rate, running speed and male mating frequency were higher for beetles with geographically "matched" than "mismatched" mitonuclear genotypes. Effects of mitonuclear mismatch were largest for individuals with northern nuclear genotypes possessing southern mitochondria and were most pronounced after heat treatment or at high elevation. These findings suggest that mitonuclear incompatibility diminishes performance and reproductive success in nature, effects that could intensify at environmental extremes.
Collapse
Affiliation(s)
- Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Sarah J Heidl
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514
| | - Kevin T Roberts
- Department of Biology, Sonoma State University, Rohnert Park, California, 94928.,White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720
| | - Nicolas A Zavala
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| | - John T Smiley
- White Mountain Research Center, University of California, Bishop, California, 93514
| | - Elizabeth P Dahlhoff
- White Mountain Research Center, University of California, Bishop, California, 93514.,Department of Biology, Santa Clara University, Santa Clara, California, 95053
| |
Collapse
|
12
|
Dahlhoff EP, Dahlhoff VC, Grainger CA, Zavala NA, Otepola‐Bello D, Sargent BA, Roberts KT, Heidl SJ, Smiley JT, Rank NE. Getting chased up the mountain: High elevation may limit performance and fitness characters in a montane insect. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elizabeth P. Dahlhoff
- Department of Biology Santa Clara University Santa Clara California
- White Mountain Research Center University of California Bishop California
| | - Victoria C. Dahlhoff
- White Mountain Research Center University of California Bishop California
- Department of Biology Sonoma State University Rohnert Park California
| | - Corrine A. Grainger
- Department of Biology Santa Clara University Santa Clara California
- White Mountain Research Center University of California Bishop California
| | - Nicolas A. Zavala
- Department of Biology Santa Clara University Santa Clara California
- White Mountain Research Center University of California Bishop California
| | | | - Brynn A. Sargent
- Department of Biology Santa Clara University Santa Clara California
- White Mountain Research Center University of California Bishop California
| | - Kevin T. Roberts
- White Mountain Research Center University of California Bishop California
- Department of Biology Sonoma State University Rohnert Park California
| | - Sarah J. Heidl
- White Mountain Research Center University of California Bishop California
- Department of Biology Sonoma State University Rohnert Park California
| | - John T. Smiley
- White Mountain Research Center University of California Bishop California
| | - Nathan E. Rank
- White Mountain Research Center University of California Bishop California
- Department of Biology Sonoma State University Rohnert Park California
| |
Collapse
|
13
|
Pekny JE, Smith PB, Marden JH. Enzyme polymorphism, oxygen and injury: a lipidomic analysis of flight-induced oxidative damage in a succinate dehydrogenase d ( Sdhd)-polymorphic insect. ACTA ACUST UNITED AC 2018; 221:jeb.171009. [PMID: 29444838 DOI: 10.1242/jeb.171009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/04/2018] [Indexed: 12/19/2022]
Abstract
When active tissues receive insufficient oxygen to meet metabolic demand, succinate accumulates and has two fundamental effects: it causes ischemia-reperfusion injury while also activating the hypoxia-inducible factor pathway (HIF). The Glanville fritillary butterfly (Melitaea cinxia) possesses a balanced polymorphism in Sdhd, shown previously to affect HIF pathway activation and tracheal morphology and used here to experimentally test the hypothesis that variation in succinate dehydrogenase affects oxidative injury. We stimulated butterflies to fly continuously in a respirometer (3 min duration), which typically caused episodes of exhaustion and recovery, suggesting a potential for cellular injury from hypoxia and reoxygenation in flight muscles. Indeed, flight muscle from butterflies flown on consecutive days had lipidome profiles similar to those of rested paraquat-injected butterflies, but distinct from those of rested untreated butterflies. Many butterflies showed a decline in flight metabolic rate (FMR) on day 2, and there was a strong inverse relationship between the ratio of day 2 to day 1 FMR and the abundance of sodiated adducts of phosphatidylcholines and co-enzyme Q (CoQ). This result is consistent with elevation of sodiated lipids caused by disrupted intracellular ion homeostasis in mammalian tissues after hypoxia-reperfusion. Butterflies carrying the Sdhd M allele had a higher abundance of lipid markers of cellular damage, but the association was reversed in field-collected butterflies, where focal individuals typically flew for seconds at a time rather than continuously. These results indicate that Glanville fritillary flight muscles can be injured by episodes of high exertion, but injury severity appears to be determined by an interaction between SDH genotype and behavior (prolonged versus intermittent flight).
Collapse
Affiliation(s)
- Julianne E Pekny
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip B Smith
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA .,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Li Y, Andersson S. The 3-D Structural Basis for the Pgi Genotypic Differences in the Performance of the Butterfly Melitaea cinxia at Different Temperatures. PLoS One 2016; 11:e0160191. [PMID: 27462709 PMCID: PMC4962976 DOI: 10.1371/journal.pone.0160191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022] Open
Abstract
Although genotype-by-environment interaction has long been used to unveil the genetic variation that affects Darwinian fitness, the mechanisms underlying the interaction usually remain unknown. Genetic variation at the dimeric glycolytic enzyme phosphoglucoisomerase (Pgi) has been observed to interact with temperature to explain the variation in the individual performance of the butterfly Melitaea cinxia. At relatively high temperature, individuals with Pgi-non-f genotypes generally surpass those with Pgi-f genotypes, while the opposite applies at relatively low temperature. In this study, we did protein structure predictions and BlastP homology searches with the aim to understand the structural basis for this temperature-dependent difference in the performance of M. cinxia. Our results show that, at amino acid (AA) site 372, one of the two sites that distinguish Pgi-f (the translated polypeptide of the Pgi-f allele) from Pgi-non-f (the translated polypeptide of the Pgi-non-f allele), the Pgi-non-f-related residue strengthens an electrostatic attraction between a pair of residues (Glu373-Lys472) that are from different monomers, compared to the Pgi-f-related residue. Further, BlastP searches of animal protein sequences reveal a dramatic excess of electrostatically attractive combinations of the residues at the Pgi AA sites equivalent to sites 373 and 472 in M. cinxia. This suggests that factors enhancing the inter-monomer interaction between these two sites, and therefore helping the tight association of two Pgi monomers, are favourable. Our homology-modelling results also show that, at the second AA site that distinguishes Pgi-f from Pgi-non-f in M. cinxia, the Pgi-non-f-related residue is more entropy-favourable (leading to higher structural stability) than the Pgi-f-related residue. To sum up, this study suggests a higher structural stability of the protein products of the Pgi-non-f genotypes than those of the Pgi-f genotypes, which may explain why individuals carrying Pgi-non-f genotypes outperform those carrying Pgi-f genotypes at stressful high temerature.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | | |
Collapse
|
15
|
Klockmann M, Karajoli F, Kuczyk J, Reimer S, Fischer K. Fitness implications of simulated climate change in three species of copper butterflies (Lepidoptera: Lycaenidae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Klockmann
- Zoological Institute and Museum; University of Greifswald; D-17489 Greifswald Germany
| | - Fajes Karajoli
- Zoological Institute and Museum; University of Greifswald; D-17489 Greifswald Germany
| | - Josephine Kuczyk
- Zoological Institute and Museum; University of Greifswald; D-17489 Greifswald Germany
| | - Stephanie Reimer
- Zoological Institute and Museum; University of Greifswald; D-17489 Greifswald Germany
| | - Klaus Fischer
- Zoological Institute and Museum; University of Greifswald; D-17489 Greifswald Germany
| |
Collapse
|
16
|
Schulte PM. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J Exp Biol 2015; 218:1856-66. [DOI: 10.1242/jeb.118851] [Citation(s) in RCA: 387] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Because of its profound effects on the rates of biological processes such as aerobic metabolism, environmental temperature plays an important role in shaping the distribution and abundance of species. As temperature increases, the rate of metabolism increases and then rapidly declines at higher temperatures – a response that can be described using a thermal performance curve (TPC). Although the shape of the TPC for aerobic metabolism is often attributed to the competing effects of thermodynamics, which can be described using the Arrhenius equation, and the effects of temperature on protein stability, this account represents an over-simplification of the factors acting even at the level of single proteins. In addition, it cannot adequately account for the effects of temperature on complex multistep processes, such as aerobic metabolism, that rely on mechanisms acting across multiple levels of biological organization. The purpose of this review is to explore our current understanding of the factors that shape the TPC for aerobic metabolism in response to acute changes in temperature, and to highlight areas where this understanding is weak or insufficient. Developing a more strongly grounded mechanistic model to account for the shape of the TPC for aerobic metabolism is crucial because these TPCs are the foundation of several recent attempts to predict the responses of species to climate change, including the metabolic theory of ecology and the hypothesis of oxygen and capacity-limited thermal tolerance.
Collapse
|
17
|
Soares JBRC, Gaviraghi A, Oliveira MF. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production. PLoS One 2015; 10:e0120600. [PMID: 25803027 PMCID: PMC4372595 DOI: 10.1371/journal.pone.0120600] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/24/2015] [Indexed: 12/03/2022] Open
Abstract
Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data represent a significant step towards the understanding of fundamental mitochondrial processes in A. aegypti, with potential implications for its physiology and vectorial capacity.
Collapse
Affiliation(s)
- Juliana B. R. Correa Soares
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandro Gaviraghi
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcus F. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|