1
|
Serrano R, Feyen DAM, Bruyneel AAN, Hnatiuk AP, Vu MM, Amatya PL, Perea-Gil I, Prado M, Seeger T, Wu JC, Karakikes I, Mercola M. A deep learning platform to assess drug proarrhythmia risk. Cell Stem Cell 2023; 30:86-95.e4. [PMID: 36563695 PMCID: PMC9924077 DOI: 10.1016/j.stem.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Drug safety initiatives have endorsed human iPSC-derived cardiomyocytes (hiPSC-CMs) as an in vitro model for predicting drug-induced cardiac arrhythmia. However, the extent to which human-defined features of in vitro arrhythmia predict actual clinical risk has been much debated. Here, we trained a convolutional neural network classifier (CNN) to learn features of in vitro action potential recordings of hiPSC-CMs that are associated with lethal Torsade de Pointes arrhythmia. The CNN classifier accurately predicted the risk of drug-induced arrhythmia in people. The risk profile of the test drugs was similar across hiPSC-CMs derived from different healthy donors. In contrast, pathogenic mutations that cause arrhythmogenic cardiomyopathies in patients significantly increased the proarrhythmic propensity to certain intermediate and high-risk drugs in the hiPSC-CMs. Thus, deep learning can identify in vitro arrhythmic features that correlate with clinical arrhythmia and discern the influence of patient genetics on the risk of drug-induced arrhythmia.
Collapse
Affiliation(s)
- Ricardo Serrano
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dries A M Feyen
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Arne A N Bruyneel
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Anna P Hnatiuk
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michelle M Vu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Prashila L Amatya
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Isaac Perea-Gil
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Maricela Prado
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Timon Seeger
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Giri P, Mukhopadhyay A, Gupta M, Mohapatra B. Dilated cardiomyopathy: a new insight into the rare but common cause of heart failure. Heart Fail Rev 2021; 27:431-454. [PMID: 34245424 DOI: 10.1007/s10741-021-10125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
Heart failure is a global health burden responsible for high morbidity and mortality with a prevalence of greater than 60 million individuals worldwide. One of the major causes of heart failure is dilated cardiomyopathy (DCM), characterized by associated systolic dysfunction. During the last few decades, there have been remarkable advances in our understanding about the genetics of dilated cardiomyopathy. The genetic causes were initially thought to be associated with mutations in genes encoding proteins that are localized to cytoskeleton and sarcomere only; however, with the advancement in mechanistic understanding, the roles of ion channels, Z-disc, mitochondria, nuclear proteins, cardiac transcription factors (e.g., NKX-2.5, TBX20, GATA4), and the factors involved in calcium homeostasis have also been identified and found to be implicated in both familial and sporadic DCM cases. During past few years, next-generation sequencing (NGS) has been established as a diagnostic tool for genetic analysis and it has added significantly to the existing candidate gene list for DCM. The animal models have also provided novel insights to develop a better treatment strategy based on phenotype-genotype correlation, epigenetic and phenomic profiling. Most of the DCM biomarkers that are used in routine genetic and clinical testing are structural proteins, but during the last few years, the role of mi-RNA has also emerged as a biomarker due to their accessibility through noninvasive methods. Our increasing genetic knowledge can improve the clinical management of DCM by bringing clinicians and geneticists on one platform, thereby influencing the individualized clinical decision making and leading to precision medicine.
Collapse
Affiliation(s)
- Prerna Giri
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Amrita Mukhopadhyay
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Mohini Gupta
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India.
| |
Collapse
|
3
|
Sabri MR, Gharipour M, Tayebi N, Sadeghian L, Javanmard SH, Sarrafzadegan N. Determining genetic variants in children and adolescents suffering from tetralogy of Fallot with a positive family history: methodology. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020096. [PMID: 33525261 PMCID: PMC7927530 DOI: 10.23750/abm.v91i4.8410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/08/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM Congenital heart disease (CHD) affects near 1% of all live births and is considered to be the main reason of morbidity and mortality in early childhood. In this study, we investigated molecular genetics factors associated with Tetralogy of Fallot (TOF) using high throughput technologies in the consanguineous families with at least 2 affected individual. METHOD This family study started in March 2017 to May 2018 in pediatric cardiovascular research center, Cardiovascular Research Institute, Isfahan, Iran. After obtaining informed consent, we invited families who had at least 2 individuals in one generation or previous generations with familial marriage history and they were included in the study. Genomic DNA was extracted from peripheral blood lymphocytes of the patient and samples were investigated for structural variations such as deletion or duplication in the genome using single nucleotide polymorphism array (SNP array). In the next step, if the SNP array is negative, next generation study will be performed in the propend and after analyzing the raw data and filtering for rare pathogenic variants. RESULTS In this study, totally 5 families were evaluated. All affected and unaffected individuals of each family included in the pedigree. This study comprised 14 subjects (9 males and 5 females; 8.92 ± 6.21 years old). Baseline characteristics and clinical data of the study subjects are presented in Table 1. The prevalence of consanguineous marriage is 92.2% among parents, 71.4% among mother grandparents and 28.6% among father grandparents. 64.3 % of our participants have sibling with similar disease. The prevalence of atrial septal defect (ASD), ventricular septal defect (VSD), and arrhythmia and TOF was 7.1%. CONCLUSION We found some families with 2 or more CHD and with a high rate of consanguineous marriage and probably suffering from a genetic predisposition. We aim to exam them further with next generation study (NGS) to find any genetic defect and then to exam other CHD's in our region. Key words: gene mutations, children, adolescents, tetralogy of Fallot, family history.
Collapse
Affiliation(s)
- Mohammad Reza Sabri
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran .
| | - Mojgan Gharipour
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Naeimeh Tayebi
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran .
| | - Ladan Sadeghian
- Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Science, Isfahan, Iran .
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Gigli M, Merlo M, Graw SL, Barbati G, Rowland TJ, Slavov DB, Stolfo D, Haywood ME, Dal Ferro M, Altinier A, Ramani F, Brun F, Cocciolo A, Puggia I, Morea G, McKenna WJ, La Rosa FG, Taylor MRG, Sinagra G, Mestroni L. Genetic Risk of Arrhythmic Phenotypes in Patients With Dilated Cardiomyopathy. J Am Coll Cardiol 2020; 74:1480-1490. [PMID: 31514951 DOI: 10.1016/j.jacc.2019.06.072] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genotype-phenotype correlations in dilated cardiomyopathy (DCM) and, in particular, the effects of gene variants on clinical outcomes remain poorly understood. OBJECTIVES The purpose of this study was to investigate the prognostic role of genetic variant carrier status in a large cohort of DCM patients. METHODS A total of 487 DCM patients were analyzed by next-generation sequencing and categorized the disease genes into functional gene groups. The following composite outcome measures were assessed: 1) all-cause mortality; 2) heart failure-related death, heart transplantation, or destination left ventricular assist device implantation (DHF/HTx/VAD); and 3) sudden cardiac death/sustained ventricular tachycardia/ventricular fibrillation (SCD/VT/VF). RESULTS A total of 183 pathogenic/likely pathogenic variants were found in 178 patients (37%): 54 (11%) Titin; 19 (4%) Lamin A/C (LMNA); 24 (5%) structural cytoskeleton-Z disk genes; 16 (3.5%) desmosomal genes; 46 (9.5%) sarcomeric genes; 8 (1.6%) ion channel genes; and 11 (2.5%) other genes. All-cause mortality was no different between variant carriers and noncarriers (p = 0.99). A trend toward worse SCD/VT/VF (p = 0.062) and DHF/HTx/VAD (p = 0.061) was found in carriers. Carriers of desmosomal and LMNA variants experienced the highest rate of SCD/VT/VF, which was independent of the left ventricular ejection fraction. CONCLUSIONS Desmosomal and LMNA gene variants identify the subset of DCM patients who are at greatest risk for SCD and life-threatening ventricular arrhythmias, regardless of the left ventricular ejection fraction.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy; Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marco Merlo
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Giulia Barbati
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Teisha J Rowland
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dobromir B Slavov
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Davide Stolfo
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy
| | - Mary E Haywood
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matteo Dal Ferro
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy
| | - Alessandro Altinier
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy
| | - Federica Ramani
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy
| | - Francesca Brun
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy
| | - Andrea Cocciolo
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy; Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ilaria Puggia
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy; Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gaetano Morea
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy; Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Francisco G La Rosa
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata Trieste "ASUITS," Trieste, Italy
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
5
|
Ramchand J, Wallis M, Macciocca I, Lynch E, Farouque O, Martyn M, Phelan D, Chong B, Lockwood S, Weintraub R, Thompson T, Trainer A, Zentner D, Vohra J, Chetrit M, Hare DL, James P. Prospective Evaluation of the Utility of Whole Exome Sequencing in Dilated Cardiomyopathy. J Am Heart Assoc 2020; 9:e013346. [PMID: 31931689 PMCID: PMC7033851 DOI: 10.1161/jaha.119.013346] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Dilated cardiomyopathy may be heritable but shows extensive genetic heterogeneity. The utility of whole exome sequencing as a first-line genetic test for patients with dilated cardiomyopathy in a contemporary "real-world" setting has not been specifically established. Using whole exome sequencing with rigorous, evidence-based variant interpretation, we aimed to identify the prevalence of a molecular diagnosis in patients with dilated cardiomyopathy in a clinical setting. Methods and Results Whole exome sequencing was performed in eligible patients (n=83) with idiopathic or familial dilated cardiomyopathy. Variants were prioritized for curation in up to 247 genes and classified using American College of Medical Genetics and Genomics-based criteria. Ten (12%) had a pathogenic or likely pathogenic variant. Eight (10%) participants had truncating TTN variants classified as variants of uncertain significance. Five (6%) participants had variants of unknown significance according to strict American College of Medical Genetics and Genomics criteria but classified as either pathogenic or likely pathogenic by other clinical laboratories. Pathogenic or likely pathogenic variants were found in 8 genes (all within tier 1 genes), 2 (20%) of which are not included in a standard commercially available dilated cardiomyopathy panel. Using our bioinformatics pipeline, there was an average of 0.74 variants of uncertain significance per case with ≈0.75 person-hours needed to interpret each of these variants. Conclusions Whole exome sequencing is an effective diagnostic tool for patients with dilated cardiomyopathy. With stringent classification using American College of Medical Genetics and Genomics criteria, the rate of detection of pathogenic variants is lower than previous reports. Efforts to improve adherence to these guidelines will be important to prevent erroneous misclassification of nonpathogenic variants in dilated cardiomyopathy genetic testing and inappropriate cascade screening.
Collapse
Affiliation(s)
- Jay Ramchand
- Department of Medicine Austin Health The University of Melbourne Heidelberg Victoria Australia.,Department of Cardiology Austin Health Heidelberg Victoria Australia
| | - Mathew Wallis
- Department of Genetics Austin Health Heidelberg Victoria Australia
| | - Ivan Macciocca
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia
| | - Elly Lynch
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia.,Melbourne Genomics Health Alliance Melbourne Victoria Australia
| | - Omar Farouque
- Department of Medicine Austin Health The University of Melbourne Heidelberg Victoria Australia.,Department of Cardiology Austin Health Heidelberg Victoria Australia
| | - Melissa Martyn
- Melbourne Genomics Health Alliance Melbourne Victoria Australia.,Department of Paediatrics University of Melbourne Parkville Victoria Australia.,Murdoch Children's Research Institute Parkville Victoria Australia
| | - Dean Phelan
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia
| | - Siobhan Lockwood
- Monash Cardiovascular Research Centre and Monash Heart Monash University and Monash Health Melbourne Australia
| | - Robert Weintraub
- Victorian Clinical Genetics Services Murdoch Children's Research Institute Royal Children's Hospital Flemington Victoria Australia
| | - Tina Thompson
- Genetic Medicine Melbourne Health Parkville Victoria Australia
| | - Alison Trainer
- Genetic Medicine Melbourne Health Parkville Victoria Australia
| | - Dominica Zentner
- Department of Cardiology Melbourne Health Parkville Victoria Australia.,Genetic Medicine Melbourne Health Parkville Victoria Australia.,Royal Melbourne Hospital Clinical School Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Victoria Australia
| | - Jitendra Vohra
- Department of Cardiology Melbourne Health Parkville Victoria Australia.,Genetic Medicine Melbourne Health Parkville Victoria Australia.,Royal Melbourne Hospital Clinical School Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Victoria Australia
| | | | - David L Hare
- Department of Medicine Austin Health The University of Melbourne Heidelberg Victoria Australia.,Department of Cardiology Austin Health Heidelberg Victoria Australia
| | - Paul James
- Genetic Medicine Melbourne Health Parkville Victoria Australia
| |
Collapse
|
6
|
Benjelloun B, Boyer F, Streeter I, Zamani W, Engelen S, Alberti A, Alberto FJ, BenBati M, Ibnelbachyr M, Chentouf M, Bechchari A, Rezaei HR, Naderi S, Stella A, Chikhi A, Clarke L, Kijas J, Flicek P, Taberlet P, Pompanon F. An evaluation of sequencing coverage and genotyping strategies to assess neutral and adaptive diversity. Mol Ecol Resour 2019; 19:1497-1515. [PMID: 31359622 PMCID: PMC7115901 DOI: 10.1111/1755-0998.13070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Whole genome sequences (WGS) greatly increase our ability to precisely infer population genetic parameters, demographic processes, and selection signatures. However, WGS may still be not affordable for a representative number of individuals/populations. In this context, our goal was to assess the efficiency of several SNP genotyping strategies by testing their ability to accurately estimate parameters describing neutral diversity and to detect signatures of selection. We analysed 110 WGS at 12× coverage for four different species, i.e., sheep, goats and their wild counterparts. From these data we generated 946 data sets corresponding to random panels of 1K to 5M variants, commercial SNP chips and exome capture, for sample sizes of five to 48 individuals. We also extracted low-coverage genome resequencing of 1×, 2× and 5× by randomly subsampling reads from the 12× resequencing data. Globally, 5K to 10K random variants were enough for an accurate estimation of genome diversity. Conversely, commercial panels and exome capture displayed strong ascertainment biases. Besides the characterization of neutral diversity, the detection of the signature of selection and the accurate estimation of linkage disequilibrium (LD) required high-density panels of at least 1M variants. Finally, genotype likelihoods increased the quality of variant calling from low coverage resequencing but proportions of incorrect genotypes remained substantial, especially for heterozygote sites. Whole genome resequencing coverage of at least 5× appeared to be necessary for accurate assessment of genomic variations. These results have implications for studies seeking to deploy low-density SNP collections or genome scans across genetically diverse populations/species showing similar genetic characteristics and patterns of LD decay for a wide variety of purposes.
Collapse
Affiliation(s)
- Badr Benjelloun
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, 23000 Beni-Mellal, Morocco
| | - Frédéric Boyer
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Wahid Zamani
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran
| | - Stefan Engelen
- CEA - Institut de biologie François-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Adriana Alberti
- CEA - Institut de biologie François-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Florian J. Alberto
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Mohamed BenBati
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, 23000 Beni-Mellal, Morocco
| | - Mustapha Ibnelbachyr
- National Institute of Agronomic Research (INRA Maroc), CRRA Errachidia, 52000 Errachidia, Morocco
| | - Mouad Chentouf
- National Institute of Agronomic Research (INRA Maroc), CRRA Tangier, 90010 Tangier, Morocco
| | - Abdelmajid Bechchari
- National Institute of Agronomic Research (INRA Maroc), CRRA Oujda, 60000 Oujda, Morocco
| | - Hamid R. Rezaei
- Department of Environmental Sci, Gorgan University of Agricultural Sciences & Natural Resources, 41996-13776 Gorgan, Iran
| | - Saeid Naderi
- Environmental Sciences Department, Natural Resources Faculty, University of Guilan, 49138-15749 Guilan, Iran
| | - Alessandra Stella
- PTP Science Park, Bioinformatics Unit, Via Einstein-Loc. Cascina Codazza, 26900 Lodi, Italy
| | - Abdelkader Chikhi
- National Institute of Agronomic Research (INRA Maroc), CRRA Errachidia, 52000 Errachidia, Morocco
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - James Kijas
- Commonwealth Scientific and Industrial Research Organisation Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Pierre Taberlet
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - François Pompanon
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| |
Collapse
|
7
|
Reda SM, Chandra M. Dilated cardiomyopathy mutation (R174W) in troponin T attenuates the length-mediated increase in cross-bridge recruitment and myofilament Ca 2+ sensitivity. Am J Physiol Heart Circ Physiol 2019; 317:H648-H657. [PMID: 31373515 DOI: 10.1152/ajpheart.00171.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alterations in length-dependent activation (LDA) may constitute a mechanism by which cardiomyopathy mutations lead to deleterious phenotypes and compromised heart function, because LDA underlies the molecular basis by which the heart tunes myocardial force production on a beat-to-beat basis (Frank-Starling mechanism). In this study, we investigated the effect of DCM-linked mutation (R173W) in human cardiac troponin T (TnT) on myofilament LDA. R173W mutation is associated with left ventricular dilatation and systolic dysfunction and is found in multiple families. R173W mutation is in the central region (residues 80-180) of TnT, which is known to be important for myofilament cooperativity and cross-bridge (XB) recruitment. Steady-state and dynamic contractile parameters were measured in detergent-skinned guinea pig left ventricular muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnTWT) or mutant TnT (TnTR174W; guinea pig analog of human R173W mutation) at two different sarcomere lengths (SL): short (1.9 µm) and long (2.3 µm). TnTR174W decreased pCa50 (-log [Ca2+]free required for half-maximal activation) to a greater extent at long than at short SL; for example, pCa50 decreased by 0.12 pCa units at long SL and by 0.06 pCa units at short SL. Differential changes in pCa50 at short and long SL attenuated the SL-dependent increase in myofilament Ca2+ sensitivity (ΔpCa50) in TnTR174W fibers; ΔpCa50 was 0.10 units in TnTWT fibers but only 0.04 units in TnTR174W fibers. Furthermore, TnTR174W blunted the SL-dependent increase in the magnitude of XB recruitment. Our observations suggest that the R173W mutation in human cardiac TnT may impair Frank-Starling mechanism.NEW & NOTEWORTHY This work characterizes the effect of dilated cardiomyopathy mutation in cardiac troponin T (TnTR174W) on myofilament length-dependent activation. TnTR174W attenuates the length-dependent increase in cross-bridge recruitment and myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Sherif M Reda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
8
|
Sousa A, Canedo P, Campelo M, Moura B, Leite S, Baixia M, Belo A, Rocha-Gonçalves F, Machado JC, Silva-Cardoso J, Martins E, FATIMA Investigators. Genetic Variants Are Not Rare in ICD Candidates with Dilated Cardiomyopathy: Time for Next-Generation Sequencing? Cardiol Res Pract 2019; 2019:2743650. [PMID: 31179125 PMCID: PMC6507268 DOI: 10.1155/2019/2743650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/20/2018] [Accepted: 02/12/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Sudden cardiac death (SCD) risk stratification in dilated cardiomyopathy (DCM) has been based on left ventricular ejection fraction (LVEF), even though SCD may occur with LVEF > 35%. Family history of unexplained SCD, especially in the young, raises concern about potential inheritable risk factors. It remains largely unknown how genetic tests can be integrated into clinical practice, particularly in the selection of implantable cardioverter defibrillator (ICD) candidates. We aimed to assess the diagnostic yield of genetic testing in DCM patients with a class I recommendation for ICD implantation, based on current guidelines. METHODS We included ambulatory stable adult patients with idiopathic or familial DCM with previously implanted ICD. Molecular analysis included 15 genes (LMNA, MYH7, MYBPC3, TNNT2, ACTC1, TPM1, CSRP3, TCAP, SGCD, PLN, MYL2, MYL3, TNNI3, TAZ, and LDB3) using next-generation sequencing. RESULTS We evaluated 21 patients, 12 (57%) males and 9 (43%) with familial DCM, including 3 (14%) with a family history of premature unexplained SCD. Mean age at DCM diagnosis was 40 ± 2 years, and mean age at ICD implantation was 50 ± 12 years. LVEF was 27 ± 9%, and LV end-diastolic diameter was 65 ± 7 mm. Genetic variants were found in six (29%) patients, occurring in 5 genes: TPM1, TNNT2, MYH7, PLN, and MYBPC3. The majority were classified as variants of uncertain significance. Family history of SCD was present in both patients with PLN variants. CONCLUSION In patients with DCM and ICD, genetic variants could be identified in a significant proportion of patients in several genes, highlighting the potential role of genetics in DCM SCD risk stratification.
Collapse
Affiliation(s)
- Alexandra Sousa
- Department of Medicine, Faculty of Medicine, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Cintesis-Center for Research in Health Technologies and Services, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Department of Cardiology, Santa Maria Maior Hospital, Campo da República, Apartado 181, 4754-909 Barcelos, Portugal
| | - Paulo Canedo
- i3S‐Institute for Research and Innovation in Health, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Manuel Campelo
- Department of Medicine, Faculty of Medicine, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Cintesis-Center for Research in Health Technologies and Services, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Department of Cardiology, Centro Hospitalar Universitário de São João, E.P.E., Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Brenda Moura
- Department of Cardiology, Hospital das Forças Armadas - Pólo Porto, Av. Da Boavista, 4050-113 Porto, Portugal
| | - Sérgio Leite
- Department of Cardiology, Alto Ave Hospital Center–Guimarães Unity, Rua dos Cutileiros 114, Creixomil, 4835-044 Guimarães, Portugal
| | - Márcia Baixia
- i3S‐Institute for Research and Innovation in Health, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Adriana Belo
- National Center for Data Collection in Cardiology, Rua de Olivença n° 11, 7° Piso, Sala 701, 3000-306 Coimbra, Portugal
| | - Francisco Rocha-Gonçalves
- Department of Medicine, Faculty of Medicine, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- i3S‐Institute for Research and Innovation in Health, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - José Carlos Machado
- i3S‐Institute for Research and Innovation in Health, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - José Silva-Cardoso
- Department of Medicine, Faculty of Medicine, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Cintesis-Center for Research in Health Technologies and Services, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Department of Cardiology, Centro Hospitalar Universitário de São João, E.P.E., Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Elisabete Martins
- Department of Medicine, Faculty of Medicine, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- i3S‐Institute for Research and Innovation in Health, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Department of Cardiology, Centro Hospitalar Universitário de São João, E.P.E., Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - FATIMA Investigators
- National Center for Data Collection in Cardiology, Rua de Olivença n° 11, 7° Piso, Sala 701, 3000-306 Coimbra, Portugal
| |
Collapse
|
9
|
Moving beyond simple answers to complex disorders in sarcomeric cardiomyopathies: the role of integrated systems. Pflugers Arch 2019; 471:661-671. [PMID: 30848350 DOI: 10.1007/s00424-019-02269-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
The classic clinical definition of hypertrophic cardiomyopathy (HCM) as originally described by Teare is deceptively simple, "left ventricular hypertrophy in the absence of any identifiable cause." Longitudinal studies, however, including a seminal study performed by Frank and Braunwald in 1968, clearly described the disorder much as we know it today, a complex, progressive, and highly variable cardiomyopathy affecting ~ 1/500 individuals worldwide. Subsequent genetic linkage studies in the early 1990s identified mutations in virtually all of the protein components of the cardiac sarcomere as the primary molecular cause of HCM. In addition, a substantial proportion of inherited dilated cardiomyopathy (DCM) has also been linked to sarcomeric protein mutations. Despite our deep understanding of the overall function of the sarcomere as the primary driver of cardiac contractility, the ability to use genotype in patient management remains elusive. A persistent challenge in the field from both the biophysical and clinical standpoints is how to rigorously link high-resolution protein dynamics and mechanics to the long-term cardiovascular remodeling process that characterizes these complex disorders. In this review, we will explore the depth of the problem from both the standpoint of a multi-subunit, highly conserved and dynamic "machine" to the resultant clinical and structural human phenotype with an emphasis on new, integrative approaches that can be widely applied to identify both novel disease mechanisms and new therapeutic targets for these primary biophysical disorders of the cardiac sarcomere.
Collapse
|
10
|
Refaat MM, Hassanieh S, Ballout JA, Zakka P, Hotait M, Khalil A, Bitar F, Arabi M, Arnaout S, Skouri H, Abchee A, Abi-Saleh B, Khoury M, Massouras A, Nemer G. Non-familial cardiomyopathies in Lebanon: exome sequencing results for five idiopathic cases. BMC Med Genomics 2019; 12:33. [PMID: 30764827 PMCID: PMC6375196 DOI: 10.1186/s12920-019-0478-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Cardiomyopathies affect more than 0.5% of the general population. They are associated with high risk of sudden cardiac death, which can result from either heart failure or electrical abnormalities. Although different mechanisms underlie the various types of cardiomyopathies, a principal pathology is common to all and is usually at the level of the cardiac muscle. With a relatively high incidence rate in most countries, and a subsequent major health burden on both the families and governments, cardiomyopathies are gaining more attention by researchers and pharmaceutical companies as well as health government bodies. In Lebanon, there is no official data about the spectrum of the diseases in terms of their respective prevalence, clinical, or genetic profiles. Methods We used exome sequencing to unravel the genetic basis of idiopathic cases of cardiomyopathies in Lebanon, a relatively small country with high rates of consanguineous marriages. Results Five cases were diagnosed with different forms of cardiomyopathies, and exome sequencing revealed the presence of already documented or novel mutations in known genes in three cases: LMNA for an Emery Dreifuss Muscular Dystrophy case, PKP2 for an arrhythmogenic right ventricle dysplasia case, and MYPN for a dilated cardiomyopathy case. Interestingly two brothers with hypertrophic cardiomyopathy have a novel missense variation in NPR1, the gene encoding the natriuretic peptides receptor type I, not reported previously to be causing cardiomyopathies. Conclusion Our results unravel novel mutations in known genes implicated in cardiomyopathies in Lebanon. Changes in clinical management however, require genetic profiling of a larger cohort of patients. Electronic supplementary material The online version of this article (10.1186/s12920-019-0478-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marwan M Refaat
- Department of Internal Medicine, Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon. .,Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon.
| | - Sylvana Hassanieh
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Jad A Ballout
- Department of Internal Medicine, Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Patrick Zakka
- Department of Internal Medicine, Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Mostafa Hotait
- Department of Internal Medicine, Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Athar Khalil
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Fadi Bitar
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Mariam Arabi
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Samir Arnaout
- Department of Internal Medicine, Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Hadi Skouri
- Department of Internal Medicine, Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Antoine Abchee
- Department of Internal Medicine, Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Bernard Abi-Saleh
- Department of Internal Medicine, Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Maurice Khoury
- Department of Internal Medicine, Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | | | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center (AUBMC), Phase I, 8th floor, Room C-823, PO Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| |
Collapse
|
11
|
"Omics" data integration and functional analyses link Enoyl-CoA hydratase, short chain 1 to drug refractory dilated cardiomyopathy. BMC Med Genomics 2018; 11:110. [PMID: 30541556 PMCID: PMC6292014 DOI: 10.1186/s12920-018-0439-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/27/2018] [Indexed: 01/06/2023] Open
Abstract
Background Large-scale “omics” datasets have not been leveraged and integrated with functional analyses to discover potential drivers of cardiomyopathy. This study addresses the knowledge gap. Methods We coupled RNA sequence (RNA-Seq) variant detection and transcriptome profiling with pathway analysis to model drug refractory dilated cardiomyopathy (drDCM) using the BaseSpace sequencing hub and Ingenuity Pathway Analysis. We used RNA-Seq case-control datasets (n = 6 cases, n = 4 controls), exome sequence familial DCM datasets (n = 3 Italians, n = 5 Italians, n = 5 Chinese), and controls from the HapMap project (n = 5 Caucasians, and n = 5 Asians) for disease modeling and putative mutation discovery. Variant replication datasets: n = 128 cases and n = 15 controls. Source of datasets: NCBI Sequence Read Archive. Statistics: Pairwise differential expression analyses to determine differentially expressed genes and t-tests to calculate p-values. We adjusted for false discovery rates and reported q-values. We used chi-square tests to assess independence among variables, the Fisher’s Exact Tests and overlap p-values for the pathways and p-scores to rank network. Results Data revealed that ECHS1(enoyl-CoA hydratase, short chain 1(log2(foldchange) = 1.63329) hosts a mirtron, MIR3944 expressed in drDCM (FPKM = 5.2857) and not in controls (FPKM = 0). Has-miR3944-3p is a putative target of BAG1 (BCL2 associated athanogene 1(log2(foldchange) = 1.31978) and has-miR3944-5p of ITGAV (integrin subunit alpha V(log2(foldchange) = 1.46107) and RHOD (ras homolog family member D(log2(foldchange) = 1.28851). There is an association between ECHS1:11 V/A(rs10466126) and drDCM (p = 0.02496). The interaction (p = 2.82E-07) between ECHS1:75 T/I(rs1049951) and ECHS1:rs10466126 is associated with drDCM (p < 2.2e-16). ECHS1:rs10466126 and ECHS1:rs1049951 are in linkage disequilibrium (D’ = 1). The interaction (p = 7.84E-08) between ECHS1:rs1049951 and the novel ECHS1:c.41insT variant is associated with drDCM (p < 2.2e-16). The interaction (p = 0.001096) between DBT (Dihydrolipoamide branched chain transacylase E2):384G/S(rs12021720) and ECHS1:rs10466126 is associated with drDCM (p < 2.2e-16). At the mRNA level, there is an association between ECHS1 (log2(foldchange) = 1.63329; q = 0.013927) and DBT (log2(foldchange) = 0.955072; q = 0.0368792) with drDCM. ECHS1 is involved in valine (−log (p = 3.39E00)), isoleucine degradation (p = 0.00457), fatty acid β-oxidation (−log(p) = 2.83E00), and drug metabolism:cytochrome P450 (z-score = 2.07985196) pathways. The mitochondria (−log(p) = 8.73E00), oxidative phosphorylation (−log(p) = 5.35E00) and TCA-cycle II (−log(p) = 2.70E00) are dysfunctional. Conclusions We introduce an integrative data strategy that considers the interplay between the DNA, mRNA, and associated pathways, which represents a possible diagnostic, prognostic, biomarker, and personalized treatment discovery approach in genomically heterogeneous diseases. Electronic supplementary material The online version of this article (10.1186/s12920-018-0439-6) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Begay RL, Graw SL, Sinagra G, Asimaki A, Rowland TJ, Slavov DB, Gowan K, Jones KL, Brun F, Merlo M, Miani D, Sweet M, Devaraj K, Wartchow EP, Gigli M, Puggia I, Salcedo EE, Garrity DM, Ambardekar AV, Buttrick P, Reece TB, Bristow MR, Saffitz JE, Mestroni L, Taylor MRG. Filamin C Truncation Mutations Are Associated With Arrhythmogenic Dilated Cardiomyopathy and Changes in the Cell-Cell Adhesion Structures. JACC Clin Electrophysiol 2018; 4:504-514. [PMID: 30067491 PMCID: PMC6074050 DOI: 10.1016/j.jacep.2017.12.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The purpose of this study was to assess the phenotype of Filamin C (FLNC) truncating variants in dilated cardiomyopathy (DCM) and understand the mechanism leading to an arrhythmogenic phenotype. BACKGROUND Mutations in FLNC are known to lead to skeletal myopathies, which may have an associated cardiac component. Recently, the clinical spectrum of FLNC mutations has been recognized to include a cardiac-restricted presentation in the absence of skeletal muscle involvement. METHODS A population of 319 U.S. and European DCM cardiomyopathy families was evaluated using whole-exome and targeted next-generation sequencing. FLNC truncation probands were identified and evaluated by clinical examination, histology, transmission electron microscopy, and immunohistochemistry. RESULTS A total of 13 individuals in 7 families (2.2%) were found to harbor 6 different FLNC truncation variants (2 stopgain, 1 frameshift, and 3 splicing). Of the 13 FLNC truncation carriers, 11 (85%) had either ventricular arrhythmias or sudden cardiac death, and 5 (38%) presented with evidence of right ventricular dilation. Pathology analysis of 2 explanted hearts from affected FLNC truncation carriers showed interstitial fibrosis in the right ventricle and epicardial fibrofatty infiltration in the left ventricle. Ultrastructural findings included occasional disarray of Z-discs within the sarcomere. Immunohistochemistry showed normal plakoglobin signal at cell-cell junctions, but decreased signals for desmoplakin and synapse-associated protein 97 in the myocardium and buccal mucosa. CONCLUSIONS We found FLNC truncating variants, present in 2.2% of DCM families, to be associated with a cardiac-restricted arrhythmogenic DCM phenotype characterized by a high risk of life-threatening ventricular arrhythmias and a pathological cellular phenotype partially overlapping with arrhythmogenic right ventricular cardiomyopathy.
Collapse
Affiliation(s)
- Rene L Begay
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Gianfranco Sinagra
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Angeliki Asimaki
- Department of Pathology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, Massachusetts
| | - Teisha J Rowland
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Dobromir B Slavov
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Katherine Gowan
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Denver, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Denver, Aurora, Colorado
| | - Francesca Brun
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Marco Merlo
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Daniela Miani
- Department of Cardiothoracic Science, University Hospital S. Maria della Misericordia, Udine, Italy
| | - Mary Sweet
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Kalpana Devaraj
- Department of Pathology, University of Colorado, University Hospital, Aurora, Colorado
| | - Eric P Wartchow
- Department of Pathology, Children's Hospital Colorado, Aurora, Colorado
| | - Marta Gigli
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Ilaria Puggia
- Department of Cardiology, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Ernesto E Salcedo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Deborah M Garrity
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Amrut V Ambardekar
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Peter Buttrick
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - T Brett Reece
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Michael R Bristow
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, Massachusetts
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|
13
|
Establishment and characterization of an oral tongue squamous cell carcinoma cell line from a never-smoking patient. Oral Oncol 2017; 69:1-10. [PMID: 28559012 DOI: 10.1016/j.oraloncology.2017.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/28/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The rising incidence of oral tongue squamous cell carcinoma (OTSCC) in patients who have never smoked and the paucity of knowledge of its biological behavior prompted us to develop a new cell line originating from a never-smoker. MATERIALS AND METHODS Fresh tumor tissue of keratinizing OTSCC was collected from a 44-year-old woman who had never smoked. Serum-free media with a low calcium concentration were used in cell culture, and a multifaceted approach was taken to verify and characterize the cell line, designated UCSF-OT-1109. RESULTS UCSF-OT-1109 was authenticated by STR DNA fingerprint analysis, presence of an epithelial marker EpCAM, absence of human papilloma virus (HPV) DNA, and SCC-specific microscopic appearance. Sphere-forming assays supported its tumorigenic potential. Spectral karyotype (SKY) analysis revealed numerical and structural chromosomal abnormalities. Whole-exome sequencing (WES) identified 46 non-synonymous and 13 synonymous somatic single-nucleotide polymorphisms (SNPs) and one frameshift deletion in the coding regions. Specifically, mutations of CDKN2A, TP53, SPTBN5, NOTCH2, and FAM136A were found in the databases. Copy number aberration (CNA) analysis revealed that the cell line loses chromosome 3p and 9p, but lacks amplification of 3q and 11q (as does HPV-negative, smoking-unrelated OTSCC). It also exhibits four distinctive focal amplifications in chromosome 19p, containing 131 genes without SNPs. Particularly, 52 genes showed >3- to 4-fold amplification and could be potential oncogenic drivers. CONCLUSION We have successfully established a novel OTSCC cell line from a never-smoking patient. UCSF-OT-1109 is potentially a robust experimental model of OTSCC in never-smokers.
Collapse
|
14
|
Sefa Okten M, Tuluce K, Yakar Tuluce S, Kilic S, Soner Kemal H, Sayin A, Vuran O, Yagmur B, Mutlu I, Simsek E, Soydas Cinar C, Gurgun C. Screening first-degree relatives of patients with idiopathic dilated cardiomyopathy. Herz 2016; 42:669-676. [DOI: 10.1007/s00059-016-4498-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 11/30/2022]
|
15
|
Wang L, Zhu L, Luan R, Wang L, Fu J, Wang X, Sui L. Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods. ACTA ACUST UNITED AC 2016; 49:e4897. [PMID: 27737314 PMCID: PMC5064772 DOI: 10.1590/1414-431x20164897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022]
Abstract
Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a
common cause of heart failure and cardiac transplantation. This study aimed to
explore potential DCM-related genes and their underlying regulatory mechanism using
methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded
from Gene Expression Omnibus database, including 15 normal samples and 13 DCM
samples. The differentially expressed genes (DEGs) were identified between normal and
DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs
was then performed. Meanwhile, the potential transcription factors (TFs) and
microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In
addition, DEGs were mapped to the cMap database to find the potential small molecule
drugs. A total of 4777 genes were identified as DEGs by comparing gene expression
profiles between DCM and control samples. DEGs were significantly enriched in 26
pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway.
Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as
potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small
molecules like isoflupredone and trihexyphenidyl were found to be potential
therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as
well as potential miRNAs, might be involved in DCM.
Collapse
Affiliation(s)
- Liming Wang
- Emergency Department, The Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - L Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - R Luan
- Medical Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - L Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - J Fu
- Emergency Department, The Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - X Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - L Sui
- Department of Emergency Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Begay RL, Tharp CA, Martin A, Graw SL, Sinagra G, Miani D, Sweet ME, Slavov DB, Stafford N, Zeller MJ, Alnefaie R, Rowland TJ, Brun F, Jones KL, Gowan K, Mestroni L, Garrity DM, Taylor MRG. FLNC Gene Splice Mutations Cause Dilated Cardiomyopathy. JACC Basic Transl Sci 2016; 1:344-359. [PMID: 28008423 PMCID: PMC5166708 DOI: 10.1016/j.jacbts.2016.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A genetic etiology has been identified in 30% to 40% of dilated cardiomyopathy (DCM) patients, yet only 50% of these cases are associated with a known causative gene variant. Thus, in order to understand the pathophysiology of DCM, it is necessary to identify and characterize additional genes. In this study, whole exome sequencing in combination with segregation analysis was used to identify mutations in a novel gene, filamin C (FLNC), resulting in a cardiac-restricted DCM pathology. Here we provide functional data via zebrafish studies and protein analysis to support a model implicating FLNC haploinsufficiency as a mechanism of DCM. Deoxyribonucleic acid obtained from 2 large DCM families was studied using whole-exome sequencing and cosegregation analysis resulting in the identification of a novel disease gene, FLNC. The 2 families, from the same Italian region, harbored the same FLNC splice-site mutation (FLNC c.7251+1G>A). A third U.S. family was then identified with a novel FLNC splice-site mutation (FLNC c.5669-1delG) that leads to haploinsufficiency as shown by the FLNC Western blot analysis of the heart muscle. The FLNC ortholog flncb morpholino was injected into zebrafish embryos, and when flncb was knocked down caused a cardiac dysfunction phenotype. On electron microscopy, the flncb morpholino knockdown zebrafish heart showed defects within the Z-discs and sarcomere disorganization.
Collapse
Affiliation(s)
- Rene L Begay
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Charles A Tharp
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - August Martin
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Gianfranco Sinagra
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Daniela Miani
- Department of Cardiothoracic Science, University Hospital S. Maria della Misericordia, Udine, Italy
| | - Mary E Sweet
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Dobromir B Slavov
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Neil Stafford
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO; Cardiovascular and Biofluid Mechanics Laboratory, Colorado State University, Fort Collins, CO
| | - Molly J Zeller
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO
| | - Rasha Alnefaie
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO
| | - Teisha J Rowland
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Francesca Brun
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Deborah M Garrity
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| |
Collapse
|
17
|
Broughton KM, Li J, Sarmah E, Warren CM, Lin YH, Henze MP, Sanchez-Freire V, Solaro RJ, Russell B. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol 2016; 311:H107-17. [PMID: 27199119 DOI: 10.1152/ajpheart.00162.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 11/22/2022]
Abstract
We have investigated cardiac myocytes derived from human-induced pluripotent stem cells (iPSC-CMs) from two normal control and two family members expressing a mutant cardiac troponin T (cTnT-R173W) linked to dilated cardiomyopathy (DCM). cTnT is a regulatory protein of the sarcomeric thin filament. The loss of this basic charge, which is strategically located to control tension, has consequences leading to progressive DCM. iPSC-CMs serve as a valuable platform for understanding clinically relevant mutations in sarcomeric proteins; however, there are important questions to be addressed with regard to myocyte adaptation that we model here by plating iPSC-CMs on softer substrates (100 kPa) to create a more physiologic environment during recovery and maturation of iPSC-CMs after thawing from cryopreservation. During the first week of culture of the iPSC-CMs, we have determined structural and functional characteristics as well as actin assembly dynamics. Shortening, actin content, and actin assembly dynamics were depressed in CMs from the severely affected mutant at 1 wk of culture, but by 2 wk differences were less apparent. Sarcomeric troponin and myosin isoform composition were fetal/neonatal. Furthermore, the troponin complex, reconstituted with wild-type cTnT or recombinant cTnT-R173W, depressed the entry of cross-bridges into the force-generating state, which can be reversed by the myosin activator omecamtiv mecarbil. Therapeutic doses of this drug increased both contractility and the content of F-actin in the mutant iPSC-CMs. Collectively, our data suggest the use of a myosin activation reagent to restore function within patient-specific iPSC-CMs may aid in understanding and treating this familial DCM.
Collapse
Affiliation(s)
- K M Broughton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - J Li
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - E Sarmah
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - C M Warren
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - Y-H Lin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - M P Henze
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - V Sanchez-Freire
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - R J Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - B Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
18
|
Long PA, Larsen BT, Evans JM, Olson TM. Exome Sequencing Identifies Pathogenic and Modifier Mutations in a Child With Sporadic Dilated Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.115.002443. [PMID: 26656454 PMCID: PMC4845292 DOI: 10.1161/jaha.115.002443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Idiopathic dilated cardiomyopathy (DCM) is typically diagnosed in adulthood, yet familial cases exhibit variable age‐dependent penetrance and a subset of patients develop sporadic DCM in childhood. We sought to discover the molecular basis of sporadic DCM in an 11‐year‐old female with severe heart failure necessitating cardiac transplantation. Methods and Results Parental echocardiograms excluded asymptomatic DCM. Whole exome sequencing was performed on the family trio and filtered for rare, deleterious, recessive, and de novo variants. Of the 8 candidate genes identified, only 2 had a role in cardiac physiology. A de novo missense mutation in TNNT2 was identified, previously reported and functionally validated in familial DCM with markedly variable penetrance. Additionally, recessive compound heterozygous truncating mutations were identified in XIRP2, a member of the ancient Xin gene family, which governs intercalated disc (ICD) maturation. Histomorphological analysis of explanted heart tissue revealed misregistration, mislocalization, and shortening of ICDs, findings similar to Xirp2−/− mice. Conclusions The synergistic effects of TNNT2 and XIRP2 mutations, resulting in perturbed sarcomeric force generation and transmission, respectively, would account for an early‐onset heart failure phenotype. Whereas the importance of Xin proteins in cardiac development has been well established in animal models, this study implicates XIRP2 as a novel modifier gene in the pathogenesis of DCM.
Collapse
Affiliation(s)
- Pamela A Long
- Mayo Graduate School, Molecular Pharmacology and Experimental Therapeutics Track, Mayo Clinic, Rochester, MN (P.A.L.) Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN (P.A.L., T.M.O.)
| | - Brandon T Larsen
- Department of Pathology, University of Arizona Medical Center, Tucson, AZ (B.T.L.)
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN (J.M.E.)
| | - Timothy M Olson
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN (P.A.L., T.M.O.) Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN (T.M.O.) Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN (T.M.O.)
| |
Collapse
|
19
|
Next generation sequencing in cardiomyopathy: towards personalized genomics and medicine. Mol Biol Rep 2015; 41:4881-8. [PMID: 24908287 DOI: 10.1007/s11033-014-3418-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Next generation sequencing (NGS) is perhaps one of the most exciting advances in the field of life sciences and biomedical research in the last decade. With the availability of massive parallel sequencing, human DNA blueprint can be decoded to explore the hidden information with reduced time and cost. This technology has been used to understand the genetic aspects of various diseases including cardiomyopathies. Mutations for different cardiomyopathies have been identified and cataloging mutations on phenotypic basis are underway and are expected to lead to new discoveries that may translate to novel diagnostic, prognostic and therapeutic targets. With ease in handling NGS, cost effectiveness and fast data output, NGS is now considered as a diagnostic tool for cardiomyopathy by providing targeted gene sequencing. In addition to the number of genetic variants that are identified in cardiomyopathies, there is a need of quicker and easy way to screen multiple genes associated with the disease. In this review, an attempt has been made to explain the NGS technology, methods and applications in cardiomyopathies and their perspective in clinical practice and challenges which are to be addressed.
Collapse
|
20
|
Nomura A, Tada H, Teramoto R, Konno T, Hodatsu A, Won HH, Kathiresan S, Ino H, Fujino N, Yamagishi M, Hayashi K. Whole exome sequencing combined with integrated variant annotation prediction identifies a causative myosin essential light chain variant in hypertrophic cardiomyopathy. J Cardiol 2015; 67:133-9. [PMID: 26443374 DOI: 10.1016/j.jjcc.2015.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/19/2015] [Accepted: 09/04/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The development of candidate gene approaches to enable molecular diagnosis of hypertrophic cardiomyopathy (HCM) has required extensive and prolonged efforts. Whole exome sequencing (WES) technologies have already accelerated genetic studies of Mendelian disorders, yielding approximately 30% diagnostic success. As a result, there is great interest in extending the use of WES to any of Mendelian diseases. This study investigated the potential of WES for molecular diagnosis of HCM. METHODS WES was performed on seven relatives from a large HCM family with a clear HCM phenotype (five clinically affected and two unaffected) in the Kanazawa University Hypertrophic Cardiomyopathy Registry. Serial bioinformatics filtering methods as well as using combined annotation dependent depletion (CADD) score and high heart expression (HHE) gene data were applied to detect the causative variant. Moreover, additional carriers of the variant were investigated in the HCM registry, and clinical characteristics harboring the variant were collected and evaluated. RESULTS WES detected 60020 rare variants in the large HCM family. Of those, 3439 were missense, nonsense, splice-site, or frameshift variants. After genotype-phenotype matching, 13 putative variants remained. Using CADD score and HHE gene data, the number of candidates was reduced to one, a variant in the myosin essential light chain (MYL3, NM_000258.2:c.281G>A, p.Arg94His) that was shared by the five affected subjects. Additional screening of the HCM registry (n=600) identified two more subjects with this variant. Serial assessments of the variant carriers revealed the following phenotypic characteristics: (1) disease-penetrance of 88%; (2) all clinically affected carriers exhibited asymmetric septal hypertrophy with a substantial maximum left ventricular wall thickness of 18±3mm without any obstruction. CONCLUSIONS WES combined with CADD score and HHE gene data may be useful even in HCM. Furthermore, the MYL3 Arg94His variant was associated with high disease penetrance and substantial interventricular septal hypertrophy.
Collapse
Affiliation(s)
- Akihiro Nomura
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan; Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hayato Tada
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ryota Teramoto
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuo Konno
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan; Research and Education Center for Innovative and Preventive Medicine, Kanazawa University, Kanazawa, Japan.
| | - Akihiko Hodatsu
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hong-Hee Won
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Sekar Kathiresan
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Hidekazu Ino
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Noboru Fujino
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masakazu Yamagishi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kenshi Hayashi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
21
|
Banerjee A, Ghoshal PK, Sengupta K. Novel linkage of LMNA Single Nucleotide Polymorphism with Dilated Cardiomyopathy in an Indian case study. IJC HEART & VASCULATURE 2015; 7:99-105. [PMID: 28785654 PMCID: PMC5497236 DOI: 10.1016/j.ijcha.2015.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dilated Cardiomyopathy (DCM) is one of the most commonly encountered heart diseases reported globally. It is characterized by enlarged ventricles with impaired systolic and diastolic functions. Mutations in LMNA gene are one of the causative factors to precipitate the disease. However, association of SNPs of LMNA with DCM in particular has not been well documented. METHOD Here we present a limited and restricted case study of patients from south eastern part of India afflicted with idiopathic DCM and conduction defects. By using next generation sequencing we have sequenced the exons of LMNA gene from genomic DNA isolated from patients. RESULT We have identified the linkage of 8 different LMNA SNPs with idiopathic DCM viz. rs121117552, rs538089, rs505058, rs4641, rs646840, rs534807, rs80356803 and rs7339. These SNPs are scattered throughout the gene with prevalence for the region encoding the central rod domain of lamin A/C. CONCLUSION Most of these SNPs in LMNA were previously reported to be involved in various disorders other than DCM. We conclude that, variation in LMNA is one of the major underlying genetic causes for the pathogenesis of DCM, as observed in few Indian populations.
Collapse
Affiliation(s)
- Avinanda Banerjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Pradip K. Ghoshal
- Department of Cardiology & Medicine, N.R.S. Medical College & Hospital, 138 A. J. C Bose Road, Kolkata 700014, India
| | - Kaushik Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
22
|
Nonsense Mutations in BAG3 are Associated With Early-Onset Dilated Cardiomyopathy in French Canadians. Can J Cardiol 2014; 30:1655-61. [DOI: 10.1016/j.cjca.2014.09.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/10/2014] [Accepted: 09/25/2014] [Indexed: 01/04/2023] Open
|
23
|
Brænne I, Reiz B, Medack A, Kleinecke M, Fischer M, Tuna S, Hengstenberg C, Deloukas P, Erdmann J, Schunkert H. Whole-exome sequencing in an extended family with myocardial infarction unmasks familial hypercholesterolemia. BMC Cardiovasc Disord 2014; 14:108. [PMID: 25154303 PMCID: PMC4243586 DOI: 10.1186/1471-2261-14-108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal-dominant disease leading to markedly elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature myocardial infarction (MI). Mutation carriers display variable LDL cholesterol levels, which may obscure the diagnosis. We examined by whole-exome sequencing a family in which multiple myocardial infarctions occurred at a young age with unclear etiology. METHODS Whole-exome sequencing of three affected family members, validation of the identified variant with Sanger-sequencing, and subsequent co-segregation analysis in the family. RESULTS The index patient (LDL cholesterol 188 mg/dL) was referred for molecular-genetic investigations. He had coronary artery bypass graft (CABG) at the age of 59 years; 12 out of 15 1st, 2nd and 3rd degree relatives were affected with coronary artery disease (CAD) and/or premature myocardial infarction (MI). We sequenced the whole-exome of the patient and two cousins with premature MI. After filtering, we were left with a potentially disease causing variant in the LDL receptor (LDLR) gene, which we validated by Sanger-sequencing (nucleotide substitution in the acceptor splice-site of exon 10, c.1359-1G > A). Sequencing of all family members available for genetic analysis revealed co-segregation of the variant with CAD (LOD 3.0) and increased LDLC (>190 mg/dL), following correction for statin treatment (LOD 4.3). Interestingly, mutation carriers presented with highly variable corrected (183-354 mg/dL) and on-treatment LDL levels (116-274 mg/dL) such that the diagnosis of FH in this family was made only after the molecular-genetic analysis. CONCLUSION Even in families with unusual clustering of CAD FH remains to be underdiagnosed, which underscores the need for implementation of systematic screening programs. Whole-exome sequencing may facilitate identification of disease-causing variants in families with unclear etiology of MI and enable preventive treatment of mutation carriers in a more timely fashion.
Collapse
Affiliation(s)
- Ingrid Brænne
- />Institute for Integrative and Experimental Genomics, University of Lübeck, 23562 Lübeck, Germany
- />DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Benedikt Reiz
- />Institute for Integrative and Experimental Genomics, University of Lübeck, 23562 Lübeck, Germany
- />DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Anja Medack
- />Institute for Integrative and Experimental Genomics, University of Lübeck, 23562 Lübeck, Germany
| | - Mariana Kleinecke
- />Institute for Integrative and Experimental Genomics, University of Lübeck, 23562 Lübeck, Germany
- />DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Marcus Fischer
- />Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| | - Salih Tuna
- />Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA UK
| | - Christian Hengstenberg
- />Deutsches Herzzentrum München and Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 80636 München, Germany
- />DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80636 Munich, Germany
| | - Panos Deloukas
- />Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA UK
- />William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- />Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Jeanette Erdmann
- />Institute for Integrative and Experimental Genomics, University of Lübeck, 23562 Lübeck, Germany
- />DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Heribert Schunkert
- />Deutsches Herzzentrum München and Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 80636 München, Germany
- />DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80636 Munich, Germany
| |
Collapse
|
24
|
Puckelwartz MJ, McNally EM. Genetic profiling for risk reduction in human cardiovascular disease. Genes (Basel) 2014; 5:214-34. [PMID: 24705294 PMCID: PMC3978520 DOI: 10.3390/genes5010214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease is a major health concern affecting over 80,000,000 people in the U.S. alone. Heart failure, cardiomyopathy, heart rhythm disorders, atherosclerosis and aneurysm formation have significant heritable contribution. Supported by familial aggregation and twin studies, these cardiovascular diseases are influenced by genetic variation. Family-based linkage studies and population-based genome-wide association studies (GWAS) have each identified genes and variants important for the pathogenesis of cardiovascular disease. The advent of next generation sequencing has ushered in a new era in the genetic diagnosis of cardiovascular disease, and this is especially evident when considering cardiomyopathy, a leading cause of heart failure. Cardiomyopathy is a genetically heterogeneous disorder characterized by morphologically abnormal heart with abnormal function. Genetic testing for cardiomyopathy employs gene panels, and these panels assess more than 50 genes simultaneously. Despite the large size of these panels, the sensitivity for detecting the primary genetic defect is still only approximately 50%. Recently, there has been a shift towards applying broader exome and/or genome sequencing to interrogate more of the genome to provide a genetic diagnosis for cardiomyopathy. Genetic mutations in cardiomyopathy offer the capacity to predict clinical outcome, including arrhythmia risk, and genetic diagnosis often provides an early window in which to institute therapy. This discussion is an overview as to how genomic data is shaping the current understanding and treatment of cardiovascular disease.
Collapse
|