1
|
Kawakami K, Fukuda T, Toyoda M, Nakao Y, Hayashi C, Watanabe Y, Aoki T, Shinjo T, Iwashita M, Yamashita A, Shida M, Sanui T, Uchiumi T, Nishimura F. Luteolin Is a Potential Immunomodulating Natural Compound against Pulpal Inflammation. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8864513. [PMID: 38304347 PMCID: PMC10834097 DOI: 10.1155/2024/8864513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Aim The present study evaluated the therapeutic effects of luteolin in alleviating pulpitis of dental pulp- (DP-) derived microvesicles (MVs) via the inhibition of protein kinase R- (PKR-) mediated inflammation. Methodology. Proteomic analysis of immortalized human dental pulp (DP-1) cell-derived MVs was performed to identify PKR-associated molecules. The effect of luteolin on PKR phosphorylation in DP-1 cells and the expression of tumor necrosis factor-α (TNF-α) in THP-1 macrophage-like cells were validated. The effect of luteolin on cell proliferation was compared with that of chemical PKR inhibitors (C16 and 2-AP) and the unique commercially available sedative guaiacol-parachlorophenol. In the dog experimental pulpitis model, the pulps were treated with (1) saline, (2) guaiacol-parachlorophenol, and (3) luteolin. Sixteen teeth from four dogs were extracted, and the pulp tissues were analyzed using hematoxylin and eosin staining. Immunohistochemical staining was performed to analyze the expression of phosphorylated PKR (pPKR), myeloperoxidase (MPO), and CD68. Experimental endodontic-periodontal complex lesions were established in mouse molar through a silk ligature and simultaneous MV injection. MVs were prepared from DP-1 cells with or without pretreatment with 2-AP or luteolin. A three-dimensional microcomputed tomography analysis was performed on day 7 (n = 6). Periodontal bone resorption volumes were calculated for each group (nonligated-ligated), and the ratio of bone volume to tissue volume was measured. Results Proteomic analysis identified an endogenous PKR activator, and a protein activator of interferon-induced PKR, also known as PACT, was included in MVs. Luteolin inhibited the expressions of pPKR in DP-1 cells and TNF-α in THP-1 cells with the lowest suppression of cell proliferation. In the dog model of experimental pulpitis, luteolin treatment suppressed the expression of pPKR-, MPO-, and CD68-positive cells in pulp tissues, whereas guaiacol-parachlorophenol treatment caused coagulative necrosis and disruption. In a mouse model of endodontic-periodontal complex lesions, luteolin treatment significantly decreased MV-induced alveolar bone resorption. Conclusion Luteolin is an effective and safe compound that inhibits PKR activation in DP-derived MVs, enabling pulp preservation.
Collapse
Affiliation(s)
- Kentaro Kawakami
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masaaki Toyoda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nakao
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tsukasa Aoki
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Misaki Iwashita
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akiko Yamashita
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miyu Shida
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Hayashi C, Fukuda T, Kawakami K, Toyoda M, Nakao Y, Watanabe Y, Shinjo T, Sano T, Iwashita M, Yotsumoto K, Shida M, Taketomi T, Sanui T, Uchiumi T, Kanematsu T, Nishimura F. miR-1260b inhibits periodontal bone loss by targeting ATF6β mediated regulation of ER stress. Front Cell Dev Biol 2022; 10:1061216. [PMID: 36531939 PMCID: PMC9748617 DOI: 10.3389/fcell.2022.1061216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 01/26/2024] Open
Abstract
The expression profiles of exosomal microRNAs (miRNAs) are regulated by the microenvironment, and appropriate priming with mesenchymal stem cells (MSCs) is one of the strategies to enhance the paracrine potency of MSCs. Our previous work demonstrated that exosomes from tumor necrosis factor (TNF)-α-primed human gingiva-derived MSCs (GMSCs) could be a therapeutic tool against periodontitis, and that TNFα-inducible exosomal miR-1260b is essential for the inhibition of alveolar bone loss. However, the precise molecular mechanism underlying miR-1260b-mediated inhibition of osteoclastogenesis is not yet fully understood. Here, we found that the activating transcription factor (ATF)-6β, a novel miR-1260b-targeting gene, is critical for the regulation of osteoclastogenesis under endoplasmic reticulum (ER) stress. An experimental periodontal mouse model demonstrated that induction of ER stress was accompanied by enhanced ATF6β expression, and local administration of miR-1260b and ATF6β siRNA using polyethylenimine nanoparticles (PEI-NPs) significantly suppressed the periodontal bone resorption. In periodontal ligament (PDL) cells, the ER stress inducer, tunicamycin, enhanced the expression of the receptor activator of NF-κB ligand (RANKL), while miR-1260b-mediated downregulation of ATF6β caused RANKL inhibition. Furthermore, the secretome from miR-1260b/ATF6β-axis-activated PDL cells inhibited osteoclastogenesis in human CD14+ peripheral blood-derived monocytes. These results indicate that the miR-1260b/ATF6β axis mediates the regulation of ER stress, which may be used as a novel therapeutic strategy to treat periodontal disease.
Collapse
Affiliation(s)
- Chikako Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kentaro Kawakami
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masaaki Toyoda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nakao
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomomi Sano
- Department of Cell Biology, Aging Science, and Pharmacology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Misaki Iwashita
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Karen Yotsumoto
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miyu Shida
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Fukuoka, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Cell Biology, Aging Science, and Pharmacology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Amelogenin-Derived Peptides in Bone Regeneration: A Systematic Review. Int J Mol Sci 2021; 22:ijms22179224. [PMID: 34502132 PMCID: PMC8431254 DOI: 10.3390/ijms22179224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Amelogenins are enamel matrix proteins currently used to treat bone defects in periodontal surgery. Recent studies have highlighted the relevance of amelogenin-derived peptides, named LRAP, TRAP, SP, and C11, in bone tissue engineering. Interestingly, these peptides seem to maintain or even improve the biological activity of the full-length protein, which has received attention in the field of bone regeneration. In this article, the authors combined a systematic and a narrative review. The former is focused on the existing scientific evidence on LRAP, TRAP, SP, and C11's ability to induce the production of mineralized extracellular matrix, while the latter is concentrated on the structure and function of amelogenin and amelogenin-derived peptides. Overall, the collected data suggest that LRAP and SP are able to induce stromal stem cell differentiation towards osteoblastic phenotypes; specifically, SP seems to be more reliable in bone regenerative approaches due to its osteoinduction and the absence of immunogenicity. However, even if some evidence is convincing, the limited number of studies and the scarcity of in vivo studies force us to wait for further investigations before drawing a solid final statement on the real potential of amelogenin-derived peptides in bone tissue engineering.
Collapse
|
4
|
Johnson RM, Olivares-Strank N, Peng G. A Class II-Restricted CD8γ13 T-Cell Clone Protects During Chlamydia muridarum Genital Tract Infection. J Infect Dis 2021; 221:1895-1906. [PMID: 31899500 DOI: 10.1093/infdis/jiz685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The T-cell response to chlamydia genital tract infections in humans and mice is unusual because the majority of antigen-specific CD8 T cells are not class I restricted (referred to here as "unrestricted" or "atypical"). We previously reported that a subset of unrestricted murine chlamydia-specific CD8 T cells had a cytokine polarization pattern that included interferon (IFN)-γ and interleukin (IL)-13. METHODS In this study, we investigated the transcriptome of CD8γ13 T cells, comparing them to Tc1 clones using microarray analysis. That study revealed that CD8γ13 polarization included IL-5 in addition to IFN-γ and IL-13. Adoptive transfer studies were performed with Tc1 clones and a CD8γ13 T-cell clone to determine whether either influenced bacterial clearance or immunopathology during Chlamydia muridarum genital tract infections. RESULTS To our surprise, an adoptively transferred CD8γ13 T-cell clone was remarkably proficient at preventing chlamydia immunopathology, whereas the multifunctional Tc1 clone did not enhance clearance or significantly alter immunopathology. Mapping studies with major histocompatibility complex (MHC) class I- and class II-deficient splenocytes showed our previously published chlamydia-specific CD8 T-cell clones are MHC class II restricted. CONCLUSIONS The MHC class II-restricted CD8 T cells may play an important role in protection from intracellular pathogens that limit class I antigen presentation or diminish CD4 T-cell numbers or impair their function.
Collapse
Affiliation(s)
- Raymond M Johnson
- Section of Infectious Diseases, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Norma Olivares-Strank
- Section of Infectious Diseases, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gang Peng
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Yamato H, Sanui T, Yotsumoto K, Nakao Y, Watanabe Y, Hayashi C, Aihara R, Iwashita M, Tanaka U, Taketomi T, Fukuda T, Nishimura F. Combined application of geranylgeranylacetone and amelogenin promotes angiogenesis and wound healing in human periodontal ligament cells. J Cell Biochem 2021; 122:716-730. [PMID: 33529434 DOI: 10.1002/jcb.29903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Amelogenin directly binds to glucose-regulated protein 78 (Grp78). Cell migration activity is expected to increase when human periodontal ligament cells (hPDLCs) overexpressing Grp78 are treated with amelogenin. Geranylgeranylacetone (GGA) is a drug that induces the expression of heat shock protein and is routinely used to treat gastric ulcers. Here, we investigated the changes in the properties and behavior of hPDLCs in response to treatment with GGA and the synergistic effects of amelogenin stimulation in hPDLCs pretreated with GGA for the establishment of a novel periodontal tissue regenerative therapy. We observed that GGA treatment increased Grp78 protein expression in hPDLCs and enhanced cell migration. Microarray analysis demonstrated that increased Grp78 expression triggered the production of angiopoietin-like 4 and amphiregulin, which are involved in the enhancement of angiogenesis and subsequent wound healing via the activation of hypoxia-inducible factor 1α and peroxisome proliferator-activated receptors as well as the phosphorylation of cAMP response element-binding protein and protein kinase A. Moreover, the addition of recombinant murine amelogenin (rM180) further accelerated hPDLC migration and tube formation of human umbilical vein endothelial cells due to the upregulation of interleukin-8 (IL-8), monocyte chemotactic protein 1, and IL-6, which are also known as angiogenesis-inducing factors. These findings suggest that the application of GGA to gingival tissue and alveolar bone damaged by periodontal disease would facilitate the wound healing process by inducing periodontal ligament cells to migrate to the root surface and release cytokines involved in tissue repair. Additionally, supplementation with amelogenin synergistically enhanced the migratory capacity of these cells while actively promoting angiogenesis. Therefore, the combined application of GGA and amelogenin may establish a suitable environment for periodontal wound healing and further drive the development of novel therapeutics for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Hiroaki Yamato
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Karen Yotsumoto
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nakao
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Watanabe
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryosuke Aihara
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Misaki Iwashita
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Urara Tanaka
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takao Fukuda
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Yotsumoto K, Sanui T, Tanaka U, Yamato H, Alshargabi R, Shinjo T, Nakao Y, Watanabe Y, Hayashi C, Taketomi T, Fukuda T, Nishimura F. Amelogenin Downregulates Interferon Gamma-Induced Major Histocompatibility Complex Class II Expression Through Suppression of Euchromatin Formation in the Class II Transactivator Promoter IV Region in Macrophages. Front Immunol 2020; 11:709. [PMID: 32373130 PMCID: PMC7186442 DOI: 10.3389/fimmu.2020.00709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
Enamel matrix derivatives (EMDs)-based periodontal tissue regenerative therapy is known to promote healing with minimal inflammatory response after periodontal surgery, i. e., it promotes wound healing with reduced pain and swelling. It has also been reported that macrophages stimulated with amelogenin, a major component of EMD, produce various anti-inflammatory cytokines and growth factors. We previously found that stimulation of monocytes with murine recombinant M180 (rM180) amelogenin suppresses major histocompatibility complex class II (MHC II) gene expression using microarray analysis. However, the detailed molecular mechanisms for this process remain unclear. In the present study, we demonstrated that rM180 amelogenin selectively downmodulates the interferon gamma (IFNγ)-induced cell surface expression of MHC II molecules in macrophages and this mechanism mediated by rM180 appeared to be widely conserved across species. Furthermore, rM180 accumulated in the nucleus of macrophages at 15 min after stimulation and inhibited the protein expression of class II transactivator (CIITA) which controls the transcription of MHC II by IFNγ. In addition, reduced MHC II expression on macrophages pretreated with rM180 impaired the expression of T cell activation markers CD25 and CD69, T cell proliferation ability, and IL-2 production by allogenic CD4+ T lymphocytes in mixed lymphocyte reaction assay. The chromatin immunoprecipitation assay showed that IFNγ stimulation increased the acetylation of histone H3 lysine 27, which is important for conversion to euchromatin, as well as the trimethylation of histone H3 lysine 4 levels in the CIITA promoter IV (p-IV) region, but both were suppressed in the group stimulated with IFNγ after rM180 treatment. In conclusion, the present study shows that amelogenin suppresses MHC II expression by altering chromatin structure and inhibiting CIITA p-IV transcription activity, and attenuates subsequent T cell activation. Clinically observed acceleration of wound healing after periodontal surgery by amelogenin may be partially mediated by the mechanism elucidated in this study. In addition, the use of recombinant amelogenin is safe because it is biologically derived protein. Therefore, amelogenin may also be used in future as an immunosuppressant with minimal side effects for organ transplantation or MHC II-linked autoimmune diseases such as type I diabetes, multiple sclerosis, and rheumatoid arthritis, among others.
Collapse
Affiliation(s)
- Karen Yotsumoto
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Urara Tanaka
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroaki Yamato
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Rehab Alshargabi
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nakao
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Watanabe
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takao Fukuda
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Martins L, Amorim BR, Salmon CR, Leme AFP, Kantovitz KR, Nociti FH. Novel LRAP-binding partner revealing the plasminogen activation system as a regulator of cementoblast differentiation and mineral nodule formation in vitro. J Cell Physiol 2019; 235:4545-4558. [PMID: 31621902 DOI: 10.1002/jcp.29331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
Abstract
Amelogenin isoforms, including full-length amelogenin (AMEL) and leucine-rich amelogenin peptide (LRAP), are major components of the enamel matrix, and are considered as signaling molecules in epithelial-mesenchymal interactions regulating tooth development and periodontal regeneration. Nevertheless, the molecular mechanisms involved are still poorly understood. The aim of the present study was to identify novel binding partners for amelogenin isoforms in the cementoblast (OCCM-30), using an affinity purification assay (GST pull-down) followed by mass spectrometry and immunoblotting. Protein-protein interaction analysis for AMEL and LRAP evidenced the plasminogen activation system (PAS) as a potential player regulating OCCM-30 response to amelogenin isoforms. For functional assays, PAS was either activated (plasmin) or inhibited (ε-aminocaproic acid [aminocaproic]) in OCCM-30 cells and the cell morphology, mineral nodule formation, and gene expression were assessed. PAS inhibition (EACA 100 mM) dramatically decreased mineral nodule formation and expression of OCCM-30 differentiation markers, including osteocalcin (Bglap), bone sialoprotein (Ibsp), osteopontin (Spp1), tissue-nonspecific alkaline phosphatase (Alpl) and collagen type I (Col1a1), and had no effect on runt-related transcription factor 2 (Runx2) and Osterix (Osx) mRNA levels. PAS activation (plasmin 5 µg/µl) significantly increased Col1a1 and decreased Bglap mRNA levels (p < .05). Together, our findings shed new light on the potential role of plasminogen signaling pathway in the control of the amelogenin isoform-mediated response in cementoblasts and provide new insights into the development of targeted therapies.
Collapse
Affiliation(s)
- Luciane Martins
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Bruna Rabelo Amorim
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Cristiane Ribeiro Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.,UNIP, Dental Research Division, School of Dentistry, Paulista University, Sao Paulo, SP, Brazil
| | - Adriana Franco Paes Leme
- LNBio, Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory, Campinas, SP, Brazil
| | - Kamila Rosamilia Kantovitz
- Department of Pediatric Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.,Department of Dental Materials, São Leopoldo Mandic School of Dentistry and Research Center, São Leopoldo Mandic College, Campinas, SP, Brazil
| | - Francisco Humberto Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Ambrożewicz E, Tokajuk G, Muszyńska M, Zaręba I, Skrzydlewska E. Cross talk between redox signalling and metabolic activity of osteoblasts and fibroblasts in the presence of hydroxyapatite-based biomaterials influences bone regeneration. J Appl Biomed 2019; 17:125-135. [DOI: 10.32725/jab.2019.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/23/2019] [Indexed: 01/27/2023] Open
|
9
|
Capolupo A, Cassiano C, Casapullo A, Andreotti G, Cubellis MV, Riccio A, Riccio R, Monti MC. Identification of Trombospondin-1 as a Novel Amelogenin Interactor by Functional Proteomics. Front Chem 2017; 5:74. [PMID: 29057222 PMCID: PMC5635807 DOI: 10.3389/fchem.2017.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/25/2017] [Indexed: 11/15/2022] Open
Abstract
Amelogenins are a set of low molecular-weight enamel proteins belonging to a group of extracellular matrix (ECM) proteins with a key role in tooth enamel development and in other regeneration processes, such as wound healing and angiogenesis. Since only few data are actually available to unravel amelogenin mechanism of action in chronic skin healing restoration, we moved to the full characterization of the human amelogenin isoform 2 interactome in the secretome and lysate of Human Umbilical Vein Endothelial cells (HUVEC), using a functional proteomic approach. Trombospondin-1 has been identified as a novel and interesting partner of human amelogenin isoform 2 and their direct binding has been validated thought biophysical orthogonal approaches.
Collapse
Affiliation(s)
- Angela Capolupo
- Department of Pharmacy, University of Salerno, Salerno, Italy.,PhD Program in Drug Discovery and Development, University of Salerno, Salerno, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | | | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| | - Maria V Cubellis
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Raffaele Riccio
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Maria C Monti
- Department of Pharmacy, University of Salerno, Salerno, Italy
| |
Collapse
|
10
|
Sanui T, Fukuda T, Yamamichi K, Toyoda K, Tanaka U, Yotsumoto K, Taketomi T, Nishimura F. Microarray Analysis of the Effects of Amelogenin on U937 Monocytic Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajmb.2017.72009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Martins L, Leme AFP, Kantovitz KR, de Luciane Martins EN, Sallum EA, Casati MZ, Nociti FH. Leucine-Rich Amelogenin Peptide (LRAP) Uptake by Cementoblast Requires Flotillin-1 Mediated Endocytosis. J Cell Physiol 2016; 232:556-565. [DOI: 10.1002/jcp.25453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Luciane Martins
- Division of Periodontics, Department of Prosthodontics and Periodontics; Piracicaba Dental School, University of Campinas-UNICAMP; Piracicaba, Sao Paulo Brazil
| | | | - Kamila Rosamilia Kantovitz
- Department of Pediatric Dentistry, Piracicaba Dental School; University of Campinas-UNICAMP; Piracicaba, Sao Paulo Brazil
| | | | - Enilson Antonio Sallum
- Division of Periodontics, Department of Prosthodontics and Periodontics; Piracicaba Dental School, University of Campinas-UNICAMP; Piracicaba, Sao Paulo Brazil
| | - Márcio Zaffalon Casati
- Division of Periodontics, Department of Prosthodontics and Periodontics; Piracicaba Dental School, University of Campinas-UNICAMP; Piracicaba, Sao Paulo Brazil
| | - Francisco Humberto Nociti
- Division of Periodontics, Department of Prosthodontics and Periodontics; Piracicaba Dental School, University of Campinas-UNICAMP; Piracicaba, Sao Paulo Brazil
| |
Collapse
|
12
|
Stähli A, Miron RJ, Bosshardt DD, Sculean A, Gruber R. Collagen Membranes Adsorb the Transforming Growth Factor-β Receptor I Kinase-Dependent Activity of Enamel Matrix Derivative. J Periodontol 2016; 87:583-90. [PMID: 26777762 DOI: 10.1902/jop.2016.150538] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Enamel matrix derivative (EMD) and collagen membranes (CMs) are simultaneously applied in regenerative periodontal surgery. The aim of this study is to evaluate the ability of two CMs and a collagen matrix to adsorb the activity intrinsic to EMD that provokes transforming growth factor (TGF)-β signaling in oral fibroblasts. METHODS Three commercially available collagen products were exposed to EMD or recombinant TGF-β1, followed by vigorous washing. Oral fibroblasts were either seeded directly onto collagen products or were incubated with the respective supernatant. Expression of TGF-β target genes interleukin (IL)-11 and proteoglycan 4 (PRG4) was evaluated by real time polymerase chain reaction. Proteomic analysis was used to study the fraction of EMD proteins binding to collagen. RESULTS EMD or TGF-β1 provoked a significant increase of IL-11 and PRG4 expression of oral fibroblasts when seeded onto collagen products and when incubated with the respective supernatant. Gene expression was blocked by the TGF-β receptor I kinase inhibitor SB431542. Amelogenin bound most abundantly to gelatin-coated culture dishes. However, incubation of palatal fibroblasts with recombinant amelogenin did not alter expression of IL-11 and PRG4. CONCLUSION These in vitro findings suggest that collagen products adsorb a TGF-β receptor I kinase-dependent activity of EMD and make it available for potential target cells.
Collapse
Affiliation(s)
- Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern.,Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Toyoda K, Fukuda T, Sanui T, Tanaka U, Yamamichi K, Atomura R, Maeda H, Tomokiyo A, Taketomi T, Uchiumi T, Nishimura F. Grp78 Is Critical for Amelogenin-Induced Cell Migration in a Multipotent Clonal Human Periodontal Ligament Cell Line. J Cell Physiol 2015; 231:414-27. [PMID: 26147472 DOI: 10.1002/jcp.25087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/30/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Kyosuke Toyoda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Urara Tanaka
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Kensuke Yamamichi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Ryo Atomura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Hidefumi Maeda
- Department of Endodontology; Kyushu University Hospital; Fukuoka Japan
| | - Atsushi Tomokiyo
- Department of Endodontology; Kyushu University Hospital; Fukuoka Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center; Kurume University School of Medicine; Kurume, Fukuoka Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science; Kyushu University; Fukuoka Japan
| |
Collapse
|