1
|
Tatulian SA. Analysis of protein-protein and protein-membrane interactions by isotope-edited infrared spectroscopy. Phys Chem Chem Phys 2024; 26:21930-21953. [PMID: 39108200 DOI: 10.1039/d4cp01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The objective of this work is to highlight the power of isotope-edited Fourier transform infrared (FTIR) spectroscopy in resolving important problems encountered in biochemistry, biophysics, and biomedical research, focusing on protein-protein and protein membrane interactions that play key roles in practically all life processes. An overview of the effects of isotope substitutions in (bio)molecules on spectral frequencies and intensities is given. Data are presented demonstrating how isotope-labeled proteins and/or lipids can be used to elucidate enzymatic mechanisms, the mode of membrane binding of peripheral proteins, regulation of membrane protein function, protein aggregation, and local and global structural changes in proteins during functional transitions. The use of polarized attenuated total reflection FTIR spectroscopy to identify the spatial orientation and the secondary structure of a membrane-bound interfacial enzyme and the mode of lipid hydrolysis is described. Methods of production of site-directed, segmental, and domain-specific labeling of proteins by the synthetic, semisynthetic, and recombinant strategies, including advanced protein engineering technologies such as nonsense suppression and frameshift quadruplet codons are overviewed.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
2
|
Dwivedi V, Gupta RK, Gupta A, Chaudhary VK, Gupta S, Gupta V. Repurposing Novel Antagonists to p7 Viroporin of HCV Using in silico Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220124112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Background: P7 viroporin in HCV is a cation-selective ion channel-forming protein, functional in the oligomeric form. It is considered to be a potential target for anti-HCV compounds due to its crucial role in viral entry, assembly and release.
Method:
Conserved crucial residues present in HCV p7 protein were delineated with a specific focus on the genotypes 3a &1b prevalent in India from the available literature. Using the Flex-X docking tool, a library of FDA-approved drugs was docked on the receptor sites prepared around crucial residues. In the present study, we propose drug repurposing to target viroporin p7, which may help in the rapid development of effective anti-HCV therapies.
Results:
With our approach of poly-pharmacology, a variety of drugs currently identified classified as antibiotics, anti-parasitic, antiemetic, anti-retroviral, and anti-neoplastic were found to dock successfully with the p7 viroporin. Noteworthy among these are general-purpose cephalosporin antibiotics, leucal, phthalylsulfathiazole, and granisetron, which may be useful in acute HCV infection and anti-neoplastic sorafenib and nilotinib, which may be valuable in advanced HCV-HCC cases.
Conclusion:
This study could pave the way for quick repurposing of these compounds as anti-HCV therapeutics.
Collapse
Affiliation(s)
- Varsha Dwivedi
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| | - Amita Gupta
- Department of Biochemistry and Centre for Innovation in Infectious Disease Research, Education and Training, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Vijay K Chaudhary
- Department of Biochemistry and Centre for Innovation in Infectious Disease Research, Education and Training, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Sanjay Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| |
Collapse
|
3
|
Tan CLJ, Torres J. Positive cooperativity in the activation of E. coli aquaporin Z by cardiolipin: Potential for lipid-based aquaporin modulators. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158899. [PMID: 33581256 DOI: 10.1016/j.bbalip.2021.158899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Cephas Li-Jie Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
4
|
An aromatic cluster in Lysinibacillus sphaericus BinB involved in toxicity and proper in-membrane folding. Arch Biochem Biophys 2018; 660:29-35. [PMID: 30321498 DOI: 10.1016/j.abb.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/29/2022]
Abstract
The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. Based on structural alignments with other toxins, an aromatic cluster in the C-terminal domain of BinB (termed here BC) has been proposed to be important for toxicity. We tested this experimentally using BinB mutants bearing single mutations in this aromatic cluster. Consistent with the hypothesis, two of these mutations, F311A and F315A, were not toxic to Culex quinquefasciatus larvae and were unable to permeabilize liposomes or elicit ion channel activity, in contrast to wild-type BinB. Despite these effects, none of these mutations altered significantly the interaction between the activated forms of the two subunits in solution. These results indicate that these aromatic residues on the C-terminal domain of BinB are critical for toxin insertion in membranes. The latter can be by direct contact of these residues with the membrane surface, or by facilitating the formation a membrane-inserting oligomer.
Collapse
|
5
|
Cao Y, Dong Y, Chou JJ. Structural and Functional Properties of Viral Membrane Proteins. ADVANCES IN MEMBRANE PROTEINS 2018. [PMCID: PMC7122571 DOI: 10.1007/978-981-13-0532-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viruses have developed a large variety of transmembrane proteins to carry out their infectious cycles. Some of these proteins are simply anchored to membrane via transmembrane helices. Others, however, adopt more interesting structures to perform tasks such as mediating membrane fusion and forming ion-permeating channels. Due to the dynamic or plastic nature shown by many of the viral membrane proteins, structural and mechanistic understanding of these proteins has lagged behind their counterparts in prokaryotes and eukaryotes. This chapter provides an overview of the use of NMR spectroscopy to unveil the transmembrane and membrane-proximal regions of viral membrane proteins, as well as their interactions with potential therapeutics.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Precision Medicine, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
6
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
7
|
Lee GY, You DG, Lee HR, Hwang SW, Lee CJ, Yoo YD. Romo1 is a mitochondrial nonselective cation channel with viroporin-like characteristics. J Cell Biol 2018; 217:2059-2071. [PMID: 29545371 PMCID: PMC5987721 DOI: 10.1083/jcb.201709001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Romo1 regulates mitochondrial reactive oxygen species production and acts as an essential redox sensor in mitochondrial dynamics. Lee et al. demonstrate that Romo1 is a unique mitochondrial ion channel with viroporin-like characteristics that distinguish Romo1 from other known eukaryotic ion channels. Reactive oxygen species (ROS) modulator 1 (Romo1) is a nuclear-encoded mitochondrial inner membrane protein known to regulate mitochondrial ROS production and to act as an essential redox sensor in mitochondrial dynamics. Although its physiological roles have been studied for a decade, the biophysical mechanisms that explain these activities of Romo1 are unclear. In this study, we report that Romo1 is a unique mitochondrial ion channel that differs from currently identified eukaryotic ion channels. Romo1 is a highly conserved protein with structural features of class II viroporins, which are virus-encoded nonselective cation channels. Indeed, Romo1 forms a nonselective cation channel with its amphipathic helical transmembrane domain necessary for pore-forming activity. Notably, channel activity was specifically inhibited by Fe2+ ions, an essential transition metal ion in ROS metabolism. Using structural bioinformatics, we designed an experimental data–guided structural model of Romo1 with a rational hexameric structure. We propose that Romo1 establishes a new category of viroporin-like nonselective cation channel in eukaryotes.
Collapse
Affiliation(s)
- Gi Young Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Deok-Gyun You
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hye-Ra Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea.,Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Korea University-Korea Institute of Science and Technology Graduate School of Convergence Technology, Korea University, Seoul, Republic of Korea
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Li JB, Tang S, Zheng JS, Tian CL, Liu L. Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins. Acc Chem Res 2017; 50:1143-1153. [PMID: 28374993 DOI: 10.1021/acs.accounts.7b00001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical synthesis can produce water-soluble globular proteins bearing specifically designed modifications. These synthetic molecules have been used to study the biological functions of proteins and to improve the pharmacological properties of protein drugs. However, the above advances notwithstanding, membrane proteins (MPs), which comprise 20-30% of all proteins in the proteomes of most eukaryotic cells, remain elusive with regard to chemical synthesis. This difficulty stems from the strong hydrophobic character of MPs, which can cause considerable handling issues during ligation, purification, and characterization steps. Considerable efforts have been made to improve the solubility of transmembrane peptides for chemical ligation. These methods can be classified into two main categories: the manipulation of external factors and chemical modification of the peptide. This Account summarizes our research advances in the development of chemical modification especially the two generations of removable backbone modification (RBM) strategy for the chemical synthesis of MPs. In the first RBM generation, we install a removable modification group at the backbone amide of Gly within the transmembrane peptides. In the second RBM generation, the RBM group can be installed into all primary amino acid residues. The second RBM strategy combines the activated intramolecular O-to-N acyl transfer reaction, in which a phenyl group remains unprotected during the coupling process, which can play a catalytic role to generate the activated phenyl ester to assist in the formation of amide. The key feature of the RBM group is its switchable stability in trifluoroacetic acid. The stability of these backbone amide N-modifications toward TFA can be modified by regulating the electronic effects of phenol groups. The free phenol group is acylated to survive the TFA deprotection step, while the acyl phenyl ester will be quantitatively hydrolyzed in a neutral aqueous solution, and the free phenol group increases the electron density of the benzene ring to make the RBM labile to TFA. The transmembrane peptide segment bearing RBM groups behaves like a water-soluble peptide during fluorenylmethyloxycarbonyl based solid-phase peptide synthesis (Fmoc SPPS), ligation, purification, and characterization. The quantitative removal of the RBM group can be performed to obtain full-length MPs. The RBM strategy was used to prepare the core transmembrane domain Kir5.1[64-179] not readily accessible by recombinant protein expression, the influenza A virus M2 proton channel with phosphorylation, the cation-specific ion channel p7 from the hepatitis C virus with site-specific NMR isotope labels, and so on. The RBM method enables the practical engineering of small- to medium-sized MPs or membrane protein domains to address fundamental questions in the biochemical, biophysical, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jia-Bin Li
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Chang-Lin Tian
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
9
|
Zheng JS, He Y, Zuo C, Cai XY, Tang S, Wang ZA, Zhang LH, Tian CL, Liu L. Robust Chemical Synthesis of Membrane Proteins through a General Method of Removable Backbone Modification. J Am Chem Soc 2016; 138:3553-61. [PMID: 26943264 DOI: 10.1021/jacs.6b00515] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical protein synthesis can provide access to proteins with post-translational modifications or site-specific labelings. Although this technology is finding increasing applications in the studies of water-soluble globular proteins, chemical synthesis of membrane proteins remains elusive. In this report, a general and robust removable backbone modification (RBM) method is developed for the chemical synthesis of membrane proteins. This method uses an activated O-to-N acyl transfer auxiliary to install in the Fmoc solid-phase peptide synthesis process a RBM group with switchable reactivity toward trifluoroacetic acid. The method can be applied to versatile membrane proteins because the RBM group can be placed at any primary amino acid. With RBM, the membrane proteins and their segments behave almost as if they were water-soluble peptides and can be easily handled in the process of ligation, purification, and mass characterizations. After the full-length protein is assembled, the RBM group can be readily removed by trifluoroacetic acid. The efficiency and usefulness of the new method has been demonstrated by the successful synthesis of a two-transmembrane-domain protein (HCV p7 ion channel) with site-specific isotopic labeling and a four-transmembrane-domain protein (multidrug resistance transporter EmrE). This method enables practical synthesis of small- to medium-sized membrane proteins or membrane protein domains for biochemical and biophysical studies.
Collapse
Affiliation(s)
- Ji-Shen Zheng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Yao He
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chao Zuo
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiao-Ying Cai
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Zhipeng A Wang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Long-Hua Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chang-Lin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
10
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
11
|
Soranzo T, Cortès S, Gilde F, Kreir M, Picart C, Lenormand JL. Functional characterization of p7 viroporin from hepatitis C virus produced in a cell-free expression system. Protein Expr Purif 2015; 118:83-91. [PMID: 26477501 DOI: 10.1016/j.pep.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
Abstract
Using a cell-free expression system we produced the p7 viroporin embedded into a lipid bilayer in a single-step manner. The protein quality was assessed using different methods. We examined the channel forming activity of p7 and verified its inhibition by 5-(N,N-Hexamethylene) amiloride (HMA). Fourier transformed infrared spectroscopy (FTIR) experiments further showed that when p7 was inserted into synthetic liposomes, the protein displayed a native-like conformation similar to p7 obtained from other sources. Photoactivable amino acid analogs used for p7 protein synthesis enabled oligomerization state analysis in liposomes by cross-linking. Therefore, these findings emphasize the quality of the cell-free produced p7 proteoliposomes which can benefit the field of the hepatitis C virus (HCV) protein production and characterization and also provide tools for the development of new inhibitors to reinforce our therapeutic arsenal against HCV.
Collapse
Affiliation(s)
- Thomas Soranzo
- Synthelis SAS, 5 avenue du Grand Sablon, 38700, La Tronche, France; TheREx Laboratory, TIMC-IMAG, UMR 5525, CNRS /UJF, University Joseph Fourier, UFR de Médecine, 38706, La Tronche, France
| | - Sandra Cortès
- Synthelis SAS, 5 avenue du Grand Sablon, 38700, La Tronche, France
| | - Flora Gilde
- CNRS, UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; University of Grenoble Alpes, Grenoble Institute of Technology, 38016, Grenoble, France
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstraβe 9, 80636, Munich, Germany
| | - Catherine Picart
- CNRS, UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; University of Grenoble Alpes, Grenoble Institute of Technology, 38016, Grenoble, France
| | - Jean-Luc Lenormand
- TheREx Laboratory, TIMC-IMAG, UMR 5525, CNRS /UJF, University Joseph Fourier, UFR de Médecine, 38706, La Tronche, France.
| |
Collapse
|
12
|
Emerging Roles of Viroporins Encoded by DNA Viruses: Novel Targets for Antivirals? Viruses 2015; 7:5375-87. [PMID: 26501313 PMCID: PMC4632388 DOI: 10.3390/v7102880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Studies have highlighted the essential nature of a group of small, highly hydrophobic, membrane embedded, channel-forming proteins in the life cycles of a growing number of RNA viruses. These viroporins mediate the flow of ions and a range of solutes across cellular membranes and are necessary for manipulating a myriad of host processes. As such they contribute to all stages of the virus life cycle. Recent discoveries have identified proteins encoded by the small DNA tumor viruses that display a number of viroporin like properties. This review article summarizes the recent developments in our understanding of these novel viroporins; describes their roles in the virus life cycles and in pathogenesis and speculates on their potential as targets for anti-viral therapeutic intervention.
Collapse
|
13
|
Largo E, Verdiá-Báguena C, Aguilella VM, Nieva JL, Alcaraz A. Ion channel activity of the CSFV p7 viroporin in surrogates of the ER lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:30-7. [PMID: 26464198 PMCID: PMC7094309 DOI: 10.1016/j.bbamem.2015.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Eneko Largo
- Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Carmina Verdiá-Báguena
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - José L Nieva
- Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
14
|
"Too little, too late?" Will inhibitors of the hepatitis C virus p7 ion channel ever be used in the clinic? Future Med Chem 2015; 6:1893-907. [PMID: 25495983 DOI: 10.4155/fmc.14.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) p7 is a virus-coded ion channel, or 'viroporin'. p7 is an essential HCV protein, promoting infectious virion production, and this process can be blocked by prototypic p7 inhibitors. However, prototype potency is weak and effects in clinical trials are unsatisfactory. Nevertheless, recent structural studies render p7 amenable to modern drug discovery, with studies supporting that effective drug-like molecules should be achievable. However, burgeoning HCV therapies clear infection in the majority of treated patients. This perspective summarizes current understanding of p7 channel function and structure, pertaining to the development of improved p7 inhibitors. We ask, 'is this too little, too late', or could p7 inhibitors play a role in the long-term management of HCV disease?
Collapse
|
15
|
Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses 2015; 7:4461-81. [PMID: 26258788 PMCID: PMC4576187 DOI: 10.3390/v7082826] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of hepatitis C virus (HCV) infection in the human population has triggered intensive research efforts that have led to the development of curative antiviral therapy. Moreover, HCV has become a role model to study fundamental principles that govern the replication cycle of a positive strand RNA virus. In fact, for most HCV proteins high-resolution X-ray and NMR (Nuclear Magnetic Resonance)-based structures have been established and profound insights into their biochemical and biological properties have been gained. One example is p7, a small hydrophobic protein that is dispensable for RNA replication, but crucial for the production and release of infectious HCV particles from infected cells. Owing to its ability to insert into membranes and assemble into homo-oligomeric complexes that function as minimalistic ion channels, HCV p7 is a member of the viroporin family. This review compiles the most recent findings related to the structure and dual pore/ion channel activity of p7 of different HCV genotypes. The alternative conformations and topologies proposed for HCV p7 in its monomeric and oligomeric state are described and discussed in detail. We also summarize the different roles p7 might play in the HCV replication cycle and highlight both the ion channel/pore-like function and the additional roles of p7 unrelated to its channel activity. Finally, we discuss possibilities to utilize viroporin inhibitors for antagonizing p7 ion channel/pore-like activity.
Collapse
|
16
|
Opella SJ. Relating structure and function of viral membrane-spanning miniproteins. Curr Opin Virol 2015; 12:121-5. [PMID: 26057606 DOI: 10.1016/j.coviro.2015.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
Abstract
Many viruses express small hydrophobic membrane proteins. These proteins are often referred to as viroporins because they exhibit ion channel activity. However, the channel activity has not been definitively associated with a biological function in all cases. More generally, protein-protein and protein-phospholipid interactions have been associated with specific biological activities of these proteins. As research has progressed there is a decreased emphasis on potential roles of the channel activity, and increased research on multiple other biological functions. This being the case, it may be more appropriate to refer to them as 'viral membrane-spanning miniproteins'. Structural studies are illustrated with Vpu from HIV-1 and p7 from HCV.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0307, USA.
| |
Collapse
|
17
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
18
|
Dev J, Brüschweiler S, Ouyang B, Chou JJ. Transverse relaxation dispersion of the p7 membrane channel from hepatitis C virus reveals conformational breathing. JOURNAL OF BIOMOLECULAR NMR 2015; 61:369-78. [PMID: 25724842 PMCID: PMC4398636 DOI: 10.1007/s10858-015-9912-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/20/2015] [Indexed: 05/22/2023]
Abstract
The p7 membrane protein encoded by hepatitis C virus (HCV) assembles into a homo-hexamer that selectively conducts cations. An earlier solution NMR structure of the hexameric complex revealed a funnel-like architecture and suggests that a ring of conserved asparagines near the narrow end of the funnel are important for cation interaction. NMR based drug-binding experiments also suggest that rimantadine can allosterically inhibit ion conduction via a molecular wedge mechanism. These results suggest the presence of dilation and contraction of the funnel tip that are important for channel activity and that the action of the drug is attenuating this motion. Here, we determined the conformational dynamics and solvent accessibility of the p7 channel. The proton exchange measurements show that the cavity-lining residues are largely water accessible, consistent with the overall funnel shape of the channel. Our relaxation dispersion data show that residues Val7 and Leu8 near the asparagine ring are subject to large chemical exchange, suggesting significant intrinsic channel breathing at the tip of the funnel. Moreover, the hinge regions connecting the narrow and wide regions of the funnel show strong relaxation dispersion and these regions are the binding sites for rimantadine. Presence of rimantadine decreases the conformational dynamics near the asparagine ring and the hinge area. Our data provide direct observation of μs-ms dynamics of the p7 channel and support the molecular wedge mechanism of rimantadine inhibition of the HCV p7 channel.
Collapse
Affiliation(s)
- Jyoti Dev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|