1
|
Ji X, Cheng J, Su J, Wen R, Zhang Q, Liu G, Peng Y, Mao J. PTPN7 mediates macrophage-polarization and determines immunotherapy in gliomas: A single-cell sequencing analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4562-4580. [PMID: 38581214 DOI: 10.1002/tox.24259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Protein tyrosine phosphatase non-receptor type 7 (PTPN7) is a signaling molecule that regulates a multitude of cellular processes, spanning cell proliferation, cellular differentiation, the mitotic cycle, and oncogenic metamorphosis. However, the characteristic of PTPN7 in the glioma microenvironment has yet to be elucidated. METHODS The prognostic value, genomic features, immune characteristics, chemotherapy prediction, and immunotherapy prediction of PTPN7 were systematically explored at the bulk sequencing level. The cell evolution trajectory, cell communication pattern, and cell metabolic activity related to PTPN7 were systematically explored at the single-cell sequencing level. HMC3 and M0 cells were cocultured with U251 and T98G cells, and flow cytometry was carried out to investigate the polarization of HMC3 and M0. Transwell assay and CCK-8 assay were performed to explore the migration and proliferation activity of U251 and T98G. RESULTS The expression level of PTPN7 is significantly elevated in glioma and indicates malignant features. PTPN7 expression predicts worse prognosis of glioma patients. PTPN7 is associated with genome alteration and immune infiltration. Besides, PTPN7 plays a crucial role in modulating metabolic and immunogenic processes, particularly by influencing the activity of microglia and macrophages through multiple signaling pathways involved in cellular communication. Specifically, PTPN7 actively mediates inflammation-resolving-polarization of macrophages and microglia and protects glioma from immune attack. PTPN7 could also predict the response of immunotherapy. CONCLUSIONS PTPN7 is critically involved in inflammation-resolving-polarization mediated by macrophage and microglia and promotes the immune escape of glioma cells.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jingsong Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Su
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rong Wen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qi Zhang
- Department of Neurosurgery, Tongnan Hospital of TCM, Chongqing, China
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinning Mao
- Health Management Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Balasundaram A, C Doss GP. Deciphering the Impact of Rare Missense Variants in EGFR-TKI-Resistant Non-Small-Cell Lung Cancer through Whole Exome Sequencing: A Computational Approach. ACS OMEGA 2024; 9:16288-16302. [PMID: 38617633 PMCID: PMC11007825 DOI: 10.1021/acsomega.3c10229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Targeted therapy revolutionizes the treatment of non-small-cell lung cancer (NSCLC), harboring molecular change. Epidermal growth factor receptor(EGFR) mutations play a crucial role in the development of NSCLC, serving as a pivotal factor in its pathogenesis. We elucidated the mechanisms of resistance and potential therapeutic strategies in NSCLC resistant to the EGFR-tyrosine kinase inhibitor (EGFR-TKI). This is achieved by identifying rare missense variants through whole exome sequencing (WES). The goal is to enhance our understanding, identify biomarkers, and lay the groundwork for targeted interventions, thereby offering hope for an improved NSCLC treatment landscape. We conducted WES analysis on 16 NSCLC samples with EGFR-TKI-resistant NSCLC obtained from SRA-NCBI (PRJEB50602) to reveal genomic profiles within the EGFR-TKI. Our findings showed that 48% of the variants were missense, and after filtering with the Ensembl variant effect predictor, 53 rare missense variants in 23 genes were identified as highly deleterious. Further examination using pathogenic tools like PredictSNP revealed 12 deleterious rare missense variants in 7 genes: ZNF717, PSPH, ESRRA, SEMA3G, PTPN7, CAVIN4, and MYBBP1A. Molecular dynamics simulation (MDS) suggested that the L385P variant alters the structural flexibility of ESRRA, potentially leading to unfolding of ERRα proteins. This could impact their function and alter ERRα expression. These insights from MDS enhance our understanding of the structural and dynamic consequences of the L385P ESRRA variant and provide valuable implications for subsequent therapeutic considerations and targeted interventions.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative
Genomics, Department of Integrative Biology, School of BioSciences
and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - George Priya C Doss
- Laboratory of Integrative
Genomics, Department of Integrative Biology, School of BioSciences
and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
3
|
Edelmann S, Wiegand A, Hentrich T, Pasche S, Schulze-Hentrich JM, Munk MHJ, Fallgatter AJ, Kreifelts B, Nieratschker V. Blood transcriptome analysis suggests an indirect molecular association of early life adversities and adult social anxiety disorder by immune-related signal transduction. Front Psychiatry 2023; 14:1125553. [PMID: 37181876 PMCID: PMC10168183 DOI: 10.3389/fpsyt.2023.1125553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Social anxiety disorder (SAD) is a psychiatric disorder characterized by severe fear in social situations and avoidance of these. Multiple genetic as well as environmental factors contribute to the etiopathology of SAD. One of the main risk factors for SAD is stress, especially during early periods of life (early life adversity; ELA). ELA leads to structural and regulatory alterations contributing to disease vulnerability. This includes the dysregulation of the immune response. However, the molecular link between ELA and the risk for SAD in adulthood remains largely unclear. Evidence is emerging that long-lasting changes of gene expression patterns play an important role in the biological mechanisms linking ELA and SAD. Therefore, we conducted a transcriptome study of SAD and ELA performing RNA sequencing in peripheral blood samples. Analyzing differential gene expression between individuals suffering from SAD with high or low levels of ELA and healthy individuals with high or low levels of ELA, 13 significantly differentially expressed genes (DEGs) were identified with respect to SAD while no significant differences in expression were identified with respect to ELA. The most significantly expressed gene was MAPK3 (p = 0.003) being upregulated in the SAD group compared to control individuals. In contrary, weighted gene co-expression network analysis (WGCNA) identified only modules significantly associated with ELA (p ≤ 0.05), not with SAD. Furthermore, analyzing interaction networks of the genes from the ELA-associated modules and the SAD-related MAPK3 revealed complex interactions of those genes. Gene functional enrichment analyses indicate a role of signal transduction pathways as well as inflammatory responses supporting an involvement of the immune system in the association of ELA and SAD. In conclusion, we did not identify a direct molecular link between ELA and adult SAD by transcriptional changes. However, our data indicate an indirect association of ELA and SAD mediated by the interaction of genes involved in immune-related signal transduction.
Collapse
Affiliation(s)
- Susanne Edelmann
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Ariane Wiegand
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Hentrich
- Institute for Medical Genetics and Applied Genomics, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Department of Genetics and Epigenetics, Faculty NT, Saarland University, Saarbrücken, Germany
| | - Sarah Pasche
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Julia Maria Schulze-Hentrich
- Institute for Medical Genetics and Applied Genomics, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Department of Genetics and Epigenetics, Faculty NT, Saarland University, Saarbrücken, Germany
| | - Matthias H. J. Munk
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Benjamin Kreifelts
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
5
|
Temporal Quantitative Phosphoproteomics Profiling of Interleukin-33 Signaling Network Reveals Unique Modulators of Monocyte Activation. Cells 2022; 11:cells11010138. [PMID: 35011700 PMCID: PMC8749991 DOI: 10.3390/cells11010138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 superfamily cytokines, is an endogenous danger signal and a nuclear-associated cytokine. It is one of the essential mediators of both innate and adaptive immune responses. Aberrant IL-33 signaling has been demonstrated to play a defensive role against various infectious and inflammatory diseases. Although the signaling responses mediated by IL-33 have been previously reported, the temporal signaling dynamics are yet to be explored. To this end, we applied quantitative temporal phosphoproteomics analysis to elucidate pathways and proteins induced by IL-33 in THP-1 monocytes. Employing a TMT labeling-based quantitation and titanium dioxide (TiO2)-based phosphopeptide enrichment strategy followed by mass spectrometry analysis, we identified and quantified 9448 unique phosphopeptides corresponding to 3392 proteins that showed differential regulation. Of these, 171 protein kinases, 60 phosphatases and 178 transcription factors were regulated at different phases of IL-33 signaling. In addition to the confirmed activation of canonical signaling modules including MAPK, NFκB, PI3K/AKT modules, pathway analysis of the time-dependent phosphorylation dynamics revealed enrichment of several cellular processes, including leukocyte adhesion, response to reactive oxygen species, cell cycle checkpoints, DNA damage and repair pathways. The detailed quantitative phosphoproteomic map of IL-33 signaling will serve as a potentially useful resource to study its function in the context of inflammatory and pathological conditions.
Collapse
|
6
|
ElTanbouly MA, Schaafsma E, Smits NC, Shah P, Cheng C, Burns C, Blazar BR, Noelle RJ, Mabaera R. VISTA Re-programs Macrophage Biology Through the Combined Regulation of Tolerance and Anti-inflammatory Pathways. Front Immunol 2020; 11:580187. [PMID: 33178206 PMCID: PMC7593571 DOI: 10.3389/fimmu.2020.580187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
We present the novel finding that V-domain Ig suppressor of T cell activation (VISTA) negatively regulates innate inflammation through the transcriptional and epigenetic re-programming of macrophages. Representative of VISTA re-programming is the ability of VISTA agonistic antibodies to augment LPS tolerance and reduce septic shock lethality in mice. This anti-inflammatory effect of anti-VISTA was mimicked in vitro demonstrating that anti-VISTA treatment caused a significant reduction in LPS-induced IL-12p40, IL-6, CXCL2, and TNF; all hallmark pro-inflammatory mediators of endotoxin shock. Even under conditions that typically "break" LPS tolerance, VISTA agonists sustained a macrophage anti-inflammatory profile. Analysis of the proteomic and transcriptional changes imposed by anti-VISTA show that macrophage re-programming was mediated by a composite profile of mediators involved in both macrophage tolerance induction (IRG1, miR221, A20, IL-10) as well as transcription factors central to driving an anti-inflammatory profile (e.g., IRF5, IRF8, NFKB1). These findings underscore a novel and new activity of VISTA as a negative checkpoint regulator that induces both tolerance and anti-inflammatory programs in macrophages and controls the magnitude of innate inflammation in vivo.
Collapse
Affiliation(s)
- Mohamed A. ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Evelien Schaafsma
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Nicole C. Smits
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Parth Shah
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Christopher Burns
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Bruce R. Blazar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rodwell Mabaera
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
7
|
Zheng J, Mei Y, Zhai G, Zhao N, Jia D, Fan Y. Downregulation of RUNX3 has a poor prognosis and promotes tumor progress in kidney cancer. Urol Oncol 2020; 38:740.e11-740.e20. [PMID: 32600926 DOI: 10.1016/j.urolonc.2020.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Kidney cancer usually shows no symptoms until the tumor is relatively large, and current drugs fail to stop the tumor recurrence. The transcriptional factor Runt-related transcription factor 3 (RUNX3) has been reported to function as a tumor suppressor in many types of cancers. METHODS Kidney cancer and adjacent normal tissues were collected from 12 patients to test the expression of RUNX3 by real-time quantitative PCR, immunoblotting, and immunohistochemistry. Promoter methylation status of RUNX3 was determined using methylation analysis from 103 patient samples. Kidney cancer cell lines and xenograft mouse model were used to investigate the promoter methylation and cancer progression through inhibitor treatment and loss/gain-of-function experiments. RESULTS RUNX3 was significantly downregulated in kidney cancer tissues and cells, which could be elevated by higher methylation status at its promoter region. RUNX3 promoter methylation was positively correlated with poor prognosis of kidney cancer. RUNX3 loss-of-function promoted the cell proliferation, migration, and invasion of kidney cancer cells, in contrast, RUNX3 overexpression inhibited the cancer cell progression. This study provides the first instance of the effect of RUNX3 expression and its promoter methylation status on kidney cancer. CONCLUSION Targeting RUNX3 pathway and its promoter methylation are potential therapeutic strategies to treat kidney cancer.
Collapse
Affiliation(s)
- Jianbo Zheng
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Urology, Central Hospital of Zibo, Zibo, Shandong, China
| | - Yanhui Mei
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guangsheng Zhai
- Department of Radiotherapy, Central Hospital of Zibo, Zibo, Shandong, China
| | - Ning Zhao
- Department of Urology, Central Hospital of Zibo, Zibo, Shandong, China
| | - Dongsheng Jia
- Department of Urology, Central Hospital of Zibo, Zibo, Shandong, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Jahejo AR, Niu S, Zhang D, Ning GB, Khan A, Mangi RA, Qadir MF, Khan A, Li JH, Tian WX. Transcriptome analysis of MAPK signaling pathway and associated genes to angiogenesis in chicken erythrocytes on response to thiram-induced tibial lesions. Res Vet Sci 2019; 127:65-75. [PMID: 31678455 DOI: 10.1016/j.rvsc.2019.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/28/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
This study was planned to investigate TD (Tibial dyschondroplasia) on the potential MAPK signaling pathway and angiogenesis related genes. Forty-eight broilers were allotted into control (C) and treatment (T) groups of 2, 6 and 15 days as C1, C2, C3, T1, T2 and T3. The histopathology results revealed that tibiotarsus bone of chickens had more lesions on day 6 (T2 group). The chondrocytes were disordered, and the size, shape and proliferation were affected. Transcriptome results revealed that differentially expressed genes (DEGs) identified were 63, 1026, 623, 130, 141 and 146 in C1 (2 days control vs 6 days control); C2 (2 days control vs 15 days control); C3 (6 days control vs 15 days control); T1 (2 days treatment vs 6 days treatment); T2 (2 days treatment vs 15 days treatment) and T3 (6 days treatment vs 15 days treatment) groups respectively. Whereas, 10 angiogenesis related-genes RHOC, MEIS2, BAIAP2, TGFBI, KLF2, CYR61, PTPN11, PLXNC1, HSPH1 and NRP2 were downregulated on day 6 in the treatment group. The pathway which was found enriched in the control and treatment groups was MAPK signaling pathway. Therefore selected 10 MAPK signaling pathway-related genes RAC2, MAP3K1, PRKCB, FLNB, IL1R1, PTPN7, RPS6KA, MAP3K6, GNA12 and HSPA8 which were found significantly downregulated in the treatment group on day 6. It is concluded that angiogenesis and MAPK signaling pathway related genes has an essential role in TD, as those top screened genes found downregulated in the thiram fed chickens when TD observed severed on day 6.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Sheng Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Guan-Bao Ning
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Afrasyab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Raza Ali Mangi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Muhammad Farhan Qadir
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Jian-Hui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
9
|
Yu L, Wang C, Pan F, Liu Y, Ren X, Zeng H, Shi Y. HePTP promotes migration and invasion in triple-negative breast cancer cells via activation of Wnt/β-catenin signaling. Biomed Pharmacother 2019; 118:109361. [PMID: 31545274 DOI: 10.1016/j.biopha.2019.109361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
AIM Cancer metastasis remains a major challenge for the clinical management of breast cancer, especially triple-negative breast cancer (TNBC), and the underlying molecular mechanisms remain largely unknown. The aim of this study was to explore the mechanism of TNBC metastasis. MAIN METHODS The expression of protein tyrosine phosphatase, non-receptor type 7 (HePTP) was detected using real time-PCR, western blot. Wound healing assay and transwell matrix assay were used to evaluate the pro-migration and pro-invasion potential of HePTP in vitro. Luciferase activity assay and nuclear extract analysis were used to evaluate Wnt/β-catenin signaling activity. KEY FINDINGS We reported that HePTP was overexpressed in TNBC, where it acted to drive migration and invasion of tumor cells. We showed that knockdown of HePTP significantly suppressed metastatic capacity of TNBC cells. Moreover, HePTP promoted cells migration and invasion by dephosphorylating glycogen synthase kinase 3 beta (GSK3β), thereby activating Wnt/β-catenin signaling. Additionally, we demonstrated that overexpression of HePTP in HePTP lowly expressed cells could effectively promote the migration and invasion of breast cancer cells. SIGNIFICANCE Our results suggest that HePTP plays a key role in the metastasis of TNBC via activating Wnt/β-catenin signaling. Hence, we propose that HePTP may serve as a novel prognostic marker and a potential therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Liang Yu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China.
| | - Chunyang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P.R. China
| | - Fushun Pan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Yunqi Liu
- Department of Cardiac Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Xianyue Ren
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P.R. China
| | - Huijuan Zeng
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Yawei Shi
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China.
| |
Collapse
|
10
|
Laugier L, Frade AF, Ferreira FM, Baron MA, Teixeira PC, Cabantous S, Ferreira LRP, Louis L, Rigaud VOC, Gaiotto FA, Bacal F, Pomerantzeff P, Bocchi E, Kalil J, Santos RHB, Cunha-Neto E, Chevillard C. Whole-Genome Cardiac DNA Methylation Fingerprint and Gene Expression Analysis Provide New Insights in the Pathogenesis of Chronic Chagas Disease Cardiomyopathy. Clin Infect Dis 2019; 65:1103-1111. [PMID: 28575239 PMCID: PMC5849099 DOI: 10.1093/cid/cix506] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Background Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and affects 10 million people worldwide. Approximately 12000 deaths attributable to Chagas disease occur annually due to chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy presenting with heart failure and arrythmia; 30% of infected subjects develop CCC years after infection. Genetic mechanisms play a role in differential progression to CCC, but little is known about the role of epigenetic modifications in pathological gene expression patterns in CCC patients’ myocardium. DNA methylation is the most common modification in the mammalian genome. Methods We investigated the impact of genome-wide cardiac DNA methylation on global gene expression in myocardial samples from end-stage CCC patients, compared to control samples from organ donors. Results In total, 4720 genes were differentially methylated between CCC patients and controls, of which 399 were also differentially expressed. Several of them were related to heart function or to the immune response and had methylation sites in their promoter region. Reporter gene and in silico transcription factor binding analyses indicated promoter methylation modified expression of key genes. Among those, we found potassium channel genes KCNA4 and KCNIP4, involved in electrical conduction and arrythmia, SMOC2, involved in matrix remodeling, as well as enkephalin and RUNX3, potentially involved in the increased T-helper 1 cytokine-mediated inflammatory damage in heart. Conclusions Results support that DNA methylation plays a role in the regulation of expression of pathogenically relevant genes in CCC myocardium, and identify novel potential disease pathways and therapeutic targets in CCC.
Collapse
Affiliation(s)
- Laurie Laugier
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, INSERM U906, Marseille, France
| | - Amanda Farage Frade
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Department of Bioengineering, Brazil University, and
| | - Frederico Moraes Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Health Sciences, University of Santo Amaro, São Paulo, Brazil
| | - Monique Andrade Baron
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT
| | - Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT
| | - Sandrine Cabantous
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, INSERM U906, Marseille, France
| | - Ludmila Rodrigues Pinto Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Health Sciences, University of Santo Amaro, São Paulo, Brazil
| | - Laurence Louis
- Aix Marseille Université, Génétique médicale et génomique fonctionnelle (Plateforme Génomique et Transcriptomique), Unité Mixte de Recherche S910, INSERM U910, Marseille, France; Divisions of
| | - Vagner Oliveira Carvalho Rigaud
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT
| | | | | | | | - Edimar Bocchi
- Heart Failure Unit, Heart Institute, University of São Paulo School of Medicine, and
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, Brazil
| | | | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine.,Institute for Investigation in Immunology (iii), INCT.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, Brazil
| | - Christophe Chevillard
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Unité Mixte de Recherche S906, INSERM U906, Marseille, France
| |
Collapse
|
11
|
Seo H, Cho YC, Ju A, Lee S, Park BC, Park SG, Kim JH, Kim K, Cho S. Dual-specificity phosphatase 5 acts as an anti-inflammatory regulator by inhibiting the ERK and NF-κB signaling pathways. Sci Rep 2017; 7:17348. [PMID: 29229953 PMCID: PMC5725455 DOI: 10.1038/s41598-017-17591-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/29/2017] [Indexed: 01/01/2023] Open
Abstract
Although dual-specificity phosphatase 5 (DUSP5), which inactivates extracellular signal-regulated kinase (ERK), suppresses tumors in several types of cancer, its functional roles remain largely unknown. Here, we show that DUSP5 is induced during lipopolysaccharide (LPS)-mediated inflammation and inhibits nuclear factor-κB (NF-κB) activity. DUSP5 mRNA and protein expression increased transiently in LPS-stimulated RAW 264.7 cells and then returned to basal levels. DUSP5 overexpression in RAW 264.7 cells suppressed the production of pro-inflammatory tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), whereas knockdown of DUSP5 increased their expression. Investigation of two major inflammatory signaling pathways, mitogen-activated protein kinase (MAPK) and NF-κB, using activator protein-1 (AP-1) and NF-κB reporter plasmids, respectively, showed that NF-κB transcription activity was downregulated by DUSP5 in a phosphatase activity-independent manner whereas AP-1 activity was inhibited by DUSP5 phosphatase activity towards ERK,. Further investigation showed that DUSP5 directly interacts with transforming growth factor beta-activated kinase 1 (TAK1) and inhibitor of κB (IκB) kinases (IKKs) but not with IκBα. DUSP5 binding to IKKs interfered with the association of TAK1 with IKKs, suggesting that DUSP5 might act as a competitive inhibitor of TAK1-IKKs association. Therefore, we propose that DUSP5 negatively regulates ERK and NF-κB in a phosphatase activity-dependent and -independent manner, respectively.
Collapse
Affiliation(s)
- Huiyun Seo
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Anna Ju
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sewoong Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jeong-Hoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwang-ju, 61186, Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
12
|
Davis LS, Reimold AM. Transcriptional profiling of leukocytes from rheumatoid arthritis patients before and after anti-tumor necrosis factor therapy: A comparison of anti-nuclear antibody positive and negative subsets. Exp Ther Med 2017; 13:2183-2192. [PMID: 28565826 PMCID: PMC5443193 DOI: 10.3892/etm.2017.4265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Anti-nuclear antibodies (ANAs) may be induced in patients with rheumatoid arthritis (RA) receiving anti-tumor necrosis factor (TNF) therapy with TNF inhibitors (TNFi), etanercept, infliximab or adalimumab. In the present study, 11 patients who were TNFi drug naive were started on TNFi at a time of high disease activity. Of these, all cases were positive for rheumatoid factor and 9 cases tested were positive for anti-citrullinated peptide (anti-CCP) antibodies prior to TNFi treatment. Peripheral blood mononuclear cells (PBMCs) and serum were collected from all patients before and after TNFi therapy. Serum was assayed for ANAs over time. Total cellular RNA was extracted from PBMCs and assessed using Illumina arrays. Gene expression profiles were examined for alterations in key effector pathways. After 3 or more months on TNFi, 6 patients converted to ANA-positivity. Analysis of transcripts from patients with RA who converted to ANA-positivity after 3 months on TNFi identified complex gene expression profiles that reflected a reduction in cell adhesion, cell stress and lipid metabolism transcripts. In summary, unique transcriptional profiles in PBMCs from patients with RA were observed after TNFi therapy. This pilot study suggests that transcriptional profiling is a precise method of measuring the impact of TNFi therapies and reveals novel pathways that likely influence the immune response.
Collapse
Affiliation(s)
- Laurie S Davis
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | - Andreas M Reimold
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA.,Rheumatology Section, Dallas VA Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
13
|
Hendriks WJAJ, Böhmer FD. Non-transmembrane PTPs in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:47-113. [DOI: 10.1007/978-1-4939-3649-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|