1
|
Sánchez-García L, Pérez-Torres A, Gudiño-Zayas ME, Zamora-Chimal J, Meneses C, Kamhawi S, Valenzuela JG, Becker I. Leishmania major-Infected Phlebotomus duboscqi Sand Fly Bites Enhance Mast Cell Degranulation. Pathogens 2023; 12:207. [PMID: 36839479 PMCID: PMC9960273 DOI: 10.3390/pathogens12020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Leishmania parasites infect mammalian hosts through the bites of sand fly vectors. The response by mast cells (MC) to the parasite and vector-derived factors, delivered by sand fly bites, has not been characterized. We analyzed MC numbers and their mediators in BALB/c mice naturally infected in the ear with Leishmania major through the bite of the sand fly vector Phlebotomus duboscqi and compared them to non-infected sand fly bites. MC were found at the bite sites of infective and non-infected sand flies throughout 48 h, showing the release of granules with intense TNF-α, histamine, and tryptase staining. At 30 min and 48 h, the MC numbers were significantly higher (p < 0.001) in infected as compared to non-infected bites or controls. Neutrophil recruitment was intense during the first 6 h in the skin of infected and non-infected sand fly bites and decreased thereafter. An influx of neutrophils also occurred in lymph nodes, where a strong TNF-α stain was observed in mononuclear cells. Our data show that MC orchestrate an early inflammatory response after infected and non-infected sand fly bites, leading to neutrophilic recruitment, which potentially provides a safe passage for the parasite within the mammalian host.
Collapse
Affiliation(s)
- Laura Sánchez-García
- División Ciencias de la Salud, Universidad Autónoma del Estado de Quintana Roo, Chetumal C.P. 77039, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Laboratorio de Inmunología Comparada de Piel y Mucosas, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| | - Marco E. Gudiño-Zayas
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
2
|
Akin C, Al-Hosni M, Khokar DS. Mast Cells and Mast Cell Disorders. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E. Mannan activates tissue native and IgE-sensitized mast cells to proinflammatory response and chemotaxis in TLR4-dependent manner. J Leukoc Biol 2021; 109:931-942. [PMID: 33047839 DOI: 10.1002/jlb.4a0720-452r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Mast cells take part in host defense against microorganisms as they are numerous at the portal of infection, exert several essential mechanisms of pathogen destruction, and they express pattern recognition receptors. Accumulating evidence indicates that these cells are involved in the control and clearance of bacterial, viral, or parasitic infections, but much less is known about their contribution in defense against fungi. The study was aimed to establish whether mannan, which comprises an outermost layer and major structural constituent of the fungal cell wall, may directly stimulate tissue mast cells to the antifungal response. Our findings indicate that mannan activates mast cells isolated from the rat peritoneal cavity to initiate the proinflammatory response. We found that mannan stimulates mast cells to release histamine and to generate cysteinyl leukotrienes, cytokines (IFN-γ, GM-CSF, TNF), and chemokines (CCL2, CCL3). It also increased the mRNA expression of various cytokines/chemokines. We also documented that mannan strongly activates mast cells to generate reactive oxygen species and serves as a potent chemoattractant for these cells. Furthermore, we established that mannan-induced activity of mast cells is mediated via TLR4 with the involvement of the spleen tyrosine kinase molecule. Taking together, our results clearly support the idea that mast cells act as sentinel cells and crucially determine the course of the immune response during fungal infection. Additionally, presented data on IgE-coated mast cells suggest that exposure to fungal mannan could influence the severity of IgE-dependent diseases, including allergic ones.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E. Native and IgE-primed rat peritoneal mast cells exert pro-inflammatory activity and migrate in response to yeast zymosan upon Dectin-1 engagement. Immunol Res 2021; 69:176-188. [PMID: 33704666 PMCID: PMC8106611 DOI: 10.1007/s12026-021-09183-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 01/12/2023]
Abstract
Mast cells (MCs) play an essential role in host defense, primarily because of their location, their ability to pathogen destruction via several mechanisms, and the pattern recognition receptors they express. Even though most data is available regarding MC activation by various bacteria- or virus-derived molecules, those cells' activity in response to constituents associated with fungi is not recognized enough. Our research aimed to address whether Saccharomyces cerevisiae-derived zymosan, i.e., β-(1,3)-glucan containing mannan particles, impacts MC activity aspects. Overall, the obtained results indicate that zymosan has the potential to elicit a pro-inflammatory response of rat peritoneal MCs. For the first time ever, we provided evidence that zymosan induces fully mature MC migration, even in the absence of extracellular matrix (ECM) proteins. Moreover, the zymosan-induced migratory response of MCs is almost entirely a result of directional migration, i.e., chemotaxis. We found that zymosan stimulates MCs to degranulate and generate lipid mediators (cysLTs), cytokines (IFN-α, IFN-β, IFN-γ, GM-CSF, TNF), and chemokine (CCL2). Zymosan also upregulated mRNA transcripts for several cytokines/chemokines with pro-inflammatory/immunoregulatory activity. Moreover, we documented that zymosan activates MCs to produce reactive oxygen species (ROS). Lastly, we established that the zymosan-induced MC response is mediated through activation of the Dectin-1 receptor. In general, our results strongly support the notion that MCs contribute to innate antifungal immunity and bring us closer to elucidate their role in host-pathogenic fungi interactions. Besides, provided findings on IgE-sensitized MCs appear to indicate that exposure to fungal zymosan could affect the severity of IgE-dependent disorders, including allergic ones.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
5
|
Leptin stimulates tissue rat mast cell pro-inflammatory activity and migratory response. Inflamm Res 2018; 67:789-799. [PMID: 30019195 PMCID: PMC6096628 DOI: 10.1007/s00011-018-1171-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to determine whether leptin, a member of the adipocytokines involved in immune and inflammatory response regulation, may influence some aspects of mast cell biology. Materials and methods Experiments were done in vitro on fully mature tissue rat mast cells isolated from the peritoneal cavity, and leptin was used at concentrations 0.001–100 ng/ml. The effect of leptin on mast cell degranulation (histamine release assay), intracellular Ca2+ level (fluorimetry), pro-inflammatory mediator release (ELISA technique), surface receptor expression (flow cytometry and confocal microscopy), and migration (Boyden microchamber assay) was estimated. Results Leptin was found to stimulate mast cells to degranulation and histamine release. It induced the intracellular Ca2+ increase, as well. In response to leptin stimulation, mast cells generated and released cysLTs and chemokine CCL3. Leptin-induced upregulation of CYSLTR1 and CYSLTR2 surface expression was observed. Moreover, this adipocytokine stimulated mast cells to migratory response, even in the absence of extracellular matrix (ECM) proteins. Conclusions Our observations clearly documented that leptin promotes the pro-inflammatory activity of mast cells, and it thereby engages these cells in the inflammatory processes.
Collapse
|
6
|
Żelechowska P, Agier J, Kozłowska E, Brzezińska-Błaszczyk E. Mast cells participate in chronic low-grade inflammation within adipose tissue. Obes Rev 2018; 19:686-697. [PMID: 29334696 DOI: 10.1111/obr.12670] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022]
Abstract
Obesity is reckoned as one of the civilization diseases, posing a considerable global health issue. Evidence points towards a contribution of multitude immune cell populations in obesity pathomechanism and the development of chronic low-grade inflammation in the expanded adipose tissue. Notably, adipose tissue is a reservoir of mast cells which number in individuals with obesity particularly increased. Some of them tend to degranulation what generate secretion of strong pro-inflammatory and regulatory mediators, as well as cytokines/chemokines. Several lines of evidence suggest that mast cells are strictly associated with pro-inflammatory status in adipose tissue by their indirect impact on immune cell attraction and activation. Furthermore, mast cells affect adipose tissue remodelling and fibrosis by adipocyte differentiation, fibroblast proliferation and enhancing extracellular matrix proteins expression. This review will summarize current knowledge on mast cell features and their role in the development of chronic low-grade inflammation within adipose tissue.
Collapse
Affiliation(s)
- P Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - J Agier
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - E Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
7
|
Lee BH, Kim HK, Jang M, Kim HJ, Choi SH, Hwang SH, Kim HC, Rhim H, Cho IH, Nah SY. Effects of Gintonin-Enriched Fraction in an Atopic Dermatitis Animal Model: Involvement of Autotaxin Regulation. Biol Pharm Bull 2017; 40:1063-1070. [DOI: 10.1248/bpb.b17-00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| | - Ho-Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| |
Collapse
|
8
|
Bąbolewska E, Brzezińska-Błaszczyk E. Human-derived cathelicidin LL-37 directly activates mast cells to proinflammatory mediator synthesis and migratory response. Cell Immunol 2015; 293:67-73. [PMID: 25577339 DOI: 10.1016/j.cellimm.2014.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 12/22/2022]
Abstract
Cathelicidins, a family of antimicrobial peptides, are well known for their role in host defense, particularly against bacteria. Apart from direct killing of microbes through the membrane disruption, cathelicidins can also exert immunomodulatory effects on cells involved in inflammatory processes. Considering the important role of mast cells in inflammation, the aim of this study was to determine whether LL-37, human-derived cathelicidin, can induce mast cell activation. We have observed that LL-37 directly stimulates mast cell to degranulation and production of some proinflammatory cytokines, but fails to induce cysteinyl leukotriene generation and release. We have also documented that LL-37 acts as a strong mast cell chemoattractant. In intracellular signaling in mast cells activated by LL-37 participates PLC/A2 and, in part, MAPKs, and PI3K. In conclusion, our results indicate that cathelicidins may enhance antibacterial inflammatory response via attracting mast cell to pathogen entry site and via induction of mast cell-derived mediator release.
Collapse
Affiliation(s)
- Edyta Bąbolewska
- Department of Experimental Immunology, Medical University of Łódź, Pomorska 251, 92-213 Łódź, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Medical University of Łódź, Pomorska 251, 92-213 Łódź, Poland.
| |
Collapse
|