1
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
2
|
Hastings LE, Frye EV, Carlson ER, Chuong V, Matthews AN, Koob GF, Vendruscolo LF, Marchette RCN. Cold nociception as a measure of hyperalgesia during spontaneous heroin withdrawal in mice. Pharmacol Biochem Behav 2024; 235:173694. [PMID: 38128767 PMCID: PMC10842911 DOI: 10.1016/j.pbb.2023.173694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Opioids are powerful analgesic drugs that are used clinically to treat pain. However, chronic opioid use causes compensatory neuroadaptations that result in greater pain sensitivity during withdrawal, known as opioid withdrawal-induced hyperalgesia (OWIH). Cold nociception tests are commonly used in humans, but preclinical studies often use mechanical and heat stimuli to measure OWIH. Thus, further characterization of cold nociception stimuli is needed in preclinical models. We assessed three cold nociception tests-thermal gradient ring (5-30 °C, 5-50 °C, 15-40 °C, and 25-50 °C), dynamic cold plate (4 °C to -1 °C at -1 °C/min, -1 °C to 4 °C at +1 °C/min), and stable cold plate (10 °C, 6 °C, and 2 °C)-to measure hyperalgesia in a mouse protocol of heroin dependence. On the thermal gradient ring, mice in the heroin withdrawal group preferred warmer temperatures, and the results depended on the ring's temperature range. On the dynamic cold plate, heroin withdrawal increased the number of nociceptive responses, with a temperature ramp from 4 °C to -1 °C yielding the largest response. On the stable cold plate, heroin withdrawal increased the number of nociceptive responses, and a plate temperature of 2 °C yielded the most significant increase in responses. Among the three tests, the stable cold plate elicited the most robust change in behavior between heroin-dependent and nondependent mice and had the highest throughput. To pharmacologically characterize the stable cold plate test, we used μ-opioid and non-opioid receptor-targeting drugs that have been previously shown to reverse OWIH in mechanical and heat nociception assays. The full μ-opioid receptor agonist methadone and μ-opioid receptor partial agonist buprenorphine decreased OWIH, whereas the preferential μ-opioid receptor antagonist naltrexone increased OWIH. Two N-methyl-d-aspartate receptor antagonists (ketamine, MK-801), a corticotropin-releasing factor 1 receptor antagonist (R121919), a β2-adrenergic receptor antagonist (butoxamine), an α2-adrenergic receptor agonist (lofexidine), and a 5-hydroxytryptamine-3 receptor antagonist (ondansetron) had no effect on OWIH. These data demonstrate that the stable cold plate at 2 °C yields a robust, reliable, and concise measure of OWIH that is sensitive to opioid agonists.
Collapse
Affiliation(s)
- Lyndsay E Hastings
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Emma V Frye
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Erika R Carlson
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Vicky Chuong
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA; Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Intitute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, Baltimore, MD, USA
| | - Aniah N Matthews
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, Baltimore, MD, USA
| | - Renata C N Marchette
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|
3
|
Ommati MM, Mobasheri A, Niknahad H, Rezaei M, Alidaee S, Arjmand A, Mazloomi S, Abdoli N, Sadeghian I, Sabouri S, Saeed M, Mousavi K, Najibi A, Heidari R. Low-dose ketamine improves animals' locomotor activity and decreases brain oxidative stress and inflammation in ammonia-induced neurotoxicity. J Biochem Mol Toxicol 2023; 37:e23468. [PMID: 37491939 DOI: 10.1002/jbt.23468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 06/10/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Ammonium ion (NH4 + ) is the major suspected molecule responsible for neurological complications of hepatic encephalopathy (HE). No specific pharmacological action for NH4 + -induced brain injury exists so far. Excitotoxicity is a well-known phenomenon in the brain of hyperammonemic cases. The hyperactivation of the N-Methyl- d-aspartate (NMDA) receptors by agents such as glutamate, an NH4 + metabolite, could cause excitotoxicity. Excitotoxicity is connected with events such as oxidative stress and neuroinflammation. Hence, utilizing NMDA receptor antagonists could prevent neurological complications of NH4 + neurotoxicity. In the current study, C57BL6/J mice received acetaminophen (APAP; 800 mg/kg, i.p) to induce HE. Hyperammonemic animals were treated with ketamine (0.25, 0.5, and 1 mg/kg, s.c) as an NMDA receptor antagonist. Animals' brain and plasma levels of NH4 + were dramatically high, and animals' locomotor activities were disturbed. Moreover, several markers of oxidative stress were significantly increased in the brain. A significant increase in brain tissue levels of TNF-α, IL-6, and IL-1β was also detected in hyperammonemic animals. It was found that ketamine significantly normalized animals' locomotor activity, improved biomarkers of oxidative stress, and decreased proinflammatory cytokines. The effects of ketamine on oxidative stress biomarkers and inflammation seem to play a key role in its neuroprotective mechanisms in the current study.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alidaee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Arjmand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mohsen Saeed
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Zhou X, Li Q, Luo Q, Wang L, Chen J, Xiong Y, Wu G, Chang L, Liu P, Shu H. A single dose of ketamine relieves fentanyl-induced-hyperalgesia by reducing inflammation initiated by the TLR4/NF-κB pathway in rat spinal cord neurons. Drug Discov Ther 2023; 17:279-288. [PMID: 37558466 DOI: 10.5582/ddt.2023.01029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A large amount of clinical evidence has revealed that ketamine can relieve fentanyl-induced hyperalgesia. However, the underlying mechanism is still unclear. In the current study, a single dose of ketamine (5 mg/kg or 10 mg/kg), TAK-242 (3 mg/kg), or saline was intraperitoneally injected into rats 15 min before four subcutaneous injections of fentanyl. Results revealed that pre-administration of ketamine alleviated fentanyl-induced hyperalgesia according to hind paw-pressure and paw-withdrawal tests. High-dose ketamine can reverse the expression of toll-like receptor-dimer (d-TLR4), phospho- nuclear factor kappa-B (p-NF-κB, p-p65), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) 1 d after fentanyl injection in the spinal cord. Moreover, fentany-linduced-hyperalgesia and changes in the expression of the aforementioned proteins can be attenuated by TAK-242, an inhibitor of TLR4, as well as ketamine. Importantly, TLR4, p-p65, COX-2, and IL-1β were expressed in neurons but not in glial cells in the spinal cord 1 d after fentanyl injection. In conclusion, results suggested that a single dose of ketamine can relieve fentanyl-induced-hyperalgesia via the TLR4/NF-κB pathway in spinal cord neurons.
Collapse
Affiliation(s)
- Xin Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Qianyi Li
- Guangzhou Kingmylab Pharmaceutical Research Co., Ltd., Guangzhou, Guangdong, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, Guangdong, China
| | - Quehua Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Le Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Chen
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine South China University of Technology, Guangzhou, Guangdong, China
| | - Ying Xiong
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guiyun Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lu Chang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Pingping Liu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haihua Shu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Froomkin J, Knoebel RW, Dickerson D, Soni H, Szwak J. Impact of Ketamine in the Management of Painful Sickle Cell Disease Vaso-Occlusive Crisis. Hosp Pharm 2022; 57:176-181. [PMID: 35521018 PMCID: PMC9065532 DOI: 10.1177/0018578721999806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of the study is to determine if ketamine infusions in combination with opioid therapy for the management of sickle cell disease (SCD) presenting with vaso-occlusive crisis (VOC) resulted in a length-of-stay difference compared to when ketamine was not utilized. This single center, retrospective, observational study performed at an academic medical center evaluated 12 adult patients with SCD-VOC who received a ketamine infusion with standard opioid therapy between 2014 and 2017. Patients were excluded if the primary diagnosis was not VOC or they did not survive to discharge. Additionally, safety and oral morphine equivalents at various time points were compared. Patients were used as their own control using the previous SCD-VOC hospitalization to evaluate the relative impact of ketamine. Wilcoxon signed-rank and rank sum were used in statistical analysis. When comparing opioid doses during the ketamine infusion, a P-value <.005 was considered statistically significant to account for multiple comparisons. The median length-of stay when ketamine was employed was similar to the previous admission with only opioid therapy (12 vs 12 days, P = .317). The median opioid dose 24 hours prior to starting ketamine was greater than during the first 24 hours of ketamine use (1278 vs 1020 mg, P = .022) and 24 hours after stopping ketamine (1278 vs 1035 mg, P = .014); however, this was not statistically significant. During 5 ketamine infusions, patients experienced side effects; however, only 1 necessitated transfer to the intensive care unit. Compared to standard opioid therapy, ketamine infusions were generally well tolerated and may be effective at reducing opioid use during SCD-VOC but did not decrease hospital length-of-stay.
Collapse
Affiliation(s)
- Jennifer Froomkin
- Beumont Health, Dearborn, MI, USA,Jennifer Froomkin, Beumont Health, 18101 Oakwood Blvd., Dearborn, MI 48124, USA.
| | | | - David Dickerson
- University of Chicago Medicine, Chicago, IL, USA,NorthShore University HealthSystem, IL, USA
| | - Hailey Soni
- University of Chicago Medicine, Chicago, IL, USA
| | | |
Collapse
|
6
|
Dominguini D, Steckert AV, Michels M, Spies MB, Ritter C, Barichello T, Thompson J, Dal-Pizzol F. The effects of anaesthetics and sedatives on brain inflammation. Neurosci Biobehav Rev 2021; 127:504-513. [PMID: 33992694 DOI: 10.1016/j.neubiorev.2021.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Microglia are involved in many dynamic processes in the central nervous system (CNS) including the development of inflammatory processes and neuromodulation. Several sedative, analgesic or anaesthetic drugs, such as opioids, ∝2-adrenergic agonists, ketamine, benzodiazepines and propofol can cause both neuroprotective and harmful effects on the brain. The purpose of this review is to present the main findings on the use of these drugs and the mechanisms involved in microglial activation. Alpha 2-adrenergic agonists, propofol and benzodiazepines have several pro- or anti-inflammatory effects on microglia. Long-term use of benzodiazepines and propofol causes neuroapoptotic effects and α2-adrenergic agonists may attenuate these effects. Conversely, morphine and fentanyl may have proinflammatory effects, causing behavioural changes in patients and changes in cell viability in vitro. Conversely, chronic administration of morphine induces CCL5 chemokine expression in microglial cells that promotes their survival.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda V Steckert
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mariana B Spies
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jonathan Thompson
- Department of Cardiovascular Sciences, Anaesthesia Critical Care and Pain Management Group, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
7
|
De Aquino JP, Flores JM, Avila-Quintero VJ, Compton P, Sofuoglu M. Pharmacological treatment of pain among persons with opioid addiction: A systematic review and meta-analysis with implications for drug development. Addict Biol 2021; 26:e12964. [PMID: 32974993 DOI: 10.1111/adb.12964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 01/17/2023]
Abstract
The clinical features and neurobiology of pain and opioid use disorder (OUD) are inextricably linked. Despite emerging evidence supporting the negative impact of ongoing pain in the treatment of OUD, the pharmacological management of pain in the presence of OUD has received limited attention. We sought to systematically review the studies investigating pharmacotherapies for pain among persons with OUD. Eligible studies had participants with OUD and outcomes including evoked or spontaneous pain. We searched Scopus, Cochrane Database of Systematic Reviews, Medline, and Embase. Out of 1,097 studies that met the search criteria, 12 studies provided data relevant to the research question-five laboratory studies and seven clinical trials. Random effects pooled estimates suggested no significant difference between groups at baseline but a response favoring the active treatment group over placebo, with nonsignificant heterogeneity between studies. Findings from these studies provide preliminary evidence for analgesic and antihyperalgesic effects of gabapentin, GABA agonists, and NMDA antagonists among persons with OUD. To establish the tradeoffs between the analgesic effects and abuse liability of these compounds, further well-controlled clinical trials are required among persons with OUD. This review also underscores the need for methodological enhancement in drug development for pain in OUD. Future research should address the clinical and neurobiological overlap between pain- and addiction-related phenomena. Transdisciplinary approaches may identify biomarkers of these shared phenomena and their neural substrates. The development of novel therapeutics for pain in OUD may be accelerated by such integration of pain and addiction research.
Collapse
Affiliation(s)
- Joao P De Aquino
- VA Connecticut Healthcare System, West Haven, Connecticut, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - José M Flores
- VA Connecticut Healthcare System, West Haven, Connecticut, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Peggy Compton
- Department of Family and Community Health, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mehmet Sofuoglu
- VA Connecticut Healthcare System, West Haven, Connecticut, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
2 Hz EA Reduces Heroin Withdrawal-Induced Hyperalgesia and Heroin Relapse by Downregulating P2X3 Receptors in DRG Neurons. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1873859. [PMID: 31950033 PMCID: PMC6944962 DOI: 10.1155/2019/1873859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
Electroacupuncture (EA) has effective analgesic effects. Our previous study demonstrated that the upregulation of P2X3 receptors in the dorsal root ganglia (DRG) might participate in heroin withdrawal-induced hyperalgesia. The aim of this study is to further explore whether 2 Hz EA reduces heroin relapse associated with its analgesic effect and whether P2X3 receptors in the DRG are involved in this process. 2 Hz EA was adopted to treat the heroin SA rats in the present study. Heroin-seeking and pain sensitivity were evaluated. The expression of P2X3 receptors in the DRG was detected. Our results showed that compared with the control group, the reinstatement, thermal hyperalgesia, and mechanical allodynia of the heroin-addicted group were increased significantly. The expression of P2X3 receptors in the DRG was increased markedly. After being treated using 2 Hz EA, reinstatement was reduced, hyperalgesia was decreased, and the upregulated expression of P2X3 receptors in the DRG had decreased significantly compared to that in the heroin-addicted group. Consequently, our results indicated that 2 Hz EA was an effective method for treating heroin-induced hyperalgesia and helping prevent relapse, and the potential mechanism might be related to the downregulation of P2X3 receptor expression in the DRG.
Collapse
|
9
|
Willeford A, Atayee RS, Winters KD, Mesarwi P. The Enigma of Low-Dose Ketamine for Treatment of Opioid-Induced Hyperalgesia in the Setting of Psychosocial Suffering and Cancer-Associated Pain. J Pain Palliat Care Pharmacother 2019; 32:248-255. [DOI: 10.1080/15360288.2019.1615028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Li L, Vlisides PE. Ketamine: 50 Years of Modulating the Mind. Front Hum Neurosci 2016; 10:612. [PMID: 27965560 PMCID: PMC5126726 DOI: 10.3389/fnhum.2016.00612] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/15/2016] [Indexed: 01/14/2023] Open
Abstract
Ketamine was introduced into clinical practice in the 1960s and continues to be both clinically useful and scientifically fascinating. With considerably diverse molecular targets and neurophysiological properties, ketamine’s effects on the central nervous system remain incompletely understood. Investigators have leveraged the unique characteristics of ketamine to explore the invariant, fundamental mechanisms of anesthetic action. Emerging evidence indicates that ketamine-mediated anesthesia may occur via disruption of corticocortical information transfer in a frontal-to-parietal (“top down”) distribution. This proposed mechanism of general anesthesia has since been demonstrated with anesthetics in other pharmacological classes as well. Ketamine remains invaluable to the fields of anesthesiology and critical care medicine, in large part due to its ability to maintain cardiorespiratory stability while providing effective sedation and analgesia. Furthermore, there may be an emerging role for ketamine in treatment of refractory depression and Post-Traumatic Stress Disorder. In this article, we review the history of ketamine, its pharmacology, putative mechanisms of action and current clinical applications.
Collapse
Affiliation(s)
- Linda Li
- Department of Internal Medicine, St. Joseph Mercy Hospital Ann Arbor, MI, USA
| | - Phillip E Vlisides
- Department of Anesthesiology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
11
|
Ohnesorge H, Alpes A, Baron R, Gierthmühlen J. Influence of intraoperative remifentanil and sufentanil on sensory perception: a randomized trial. Curr Med Res Opin 2016; 32:1797-1805. [PMID: 27388980 DOI: 10.1080/03007995.2016.1211517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The clinical relevance of pro- and hyperalgesic effects of opioids is still a matter of debate. Particularly for remifentanil, an increased postoperative need for analgesics has been demonstrated suggesting opioid-induced hyperalgesia as a possible cause. The aim of the study was therefore to investigate the effect of intraoperatively applied remifentanil compared to sufentanil on somatosensory thresholds investigated with the quantitative sensory testing (QST) battery of the German Research Network on Neuropathic Pain (DFNS). RESEARCH DESIGN AND METHODS Twenty-three patients undergoing surgery of the female breast were randomly assigned to intraoperative remifentanil (0.4 μg × kg-1 × min-1) or sufentanil (0.25 μg × kg-1 bolus, 0.15 μg × kg-1, repetition after 60 min) application. Anesthesia was maintained BIS-guided (Bispectral indexTM) with propofol and postoperative analgesia was ensured with paracetamol (max. 3 g/24 h). Quantitative sensory testing was performed in the region of dermatome Th 5 in the mid-axillary line preoperatively and 20 h postoperatively. CLINICAL TRIAL REGISTRATION The study was registered at the German registry for clinical studies (DRKS00009002). MAIN OUTCOME MEASURES Comparison of somatosensory thresholds before versus after surgery and application of intraoperative remifentanil or sufentanil. RESULTS Sixteen patients could be finally included in the analysis. No differences of mechanical or thermal detection or pain thresholds were observed between pre- and postoperative testing or between remifentanil and sufentanil. CONCLUSION A change of somatosensory thresholds or a clinically relevant opioid-induced hyperalgesia in the selected small patient sample (segmental resections or mastectomy with or without sentinel lymph node biopsy, surgery length <90 minutes, sufficient postoperative pain medication with paracetamol due to rather low postoperative pain intensities) with remifentanil or sufentanil was not detected 20 h after surgery.
Collapse
Affiliation(s)
- H Ohnesorge
- a Department of Anaesthesiology and Intensive Care Medicine , University Hospital Schleswig-Holstein , Campus Kiel , Kiel , Germany
| | - A Alpes
- b Division of Neurological Pain Research and Therapy, Department of Neurology , University Hospital Schleswig-Holstein , Campus Kiel , Kiel , Germany
| | - R Baron
- b Division of Neurological Pain Research and Therapy, Department of Neurology , University Hospital Schleswig-Holstein , Campus Kiel , Kiel , Germany
| | - J Gierthmühlen
- b Division of Neurological Pain Research and Therapy, Department of Neurology , University Hospital Schleswig-Holstein , Campus Kiel , Kiel , Germany
| |
Collapse
|
12
|
Involvement of CCL3/CCR5 Signaling in Dorsal Root Ganglion in Remifentanil-induced Hyperalgesia in Rats. Clin J Pain 2016; 32:702-10. [DOI: 10.1097/ajp.0000000000000319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016; 338:160-182. [PMID: 27346146 DOI: 10.1016/j.neuroscience.2016.06.029] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. Mu opioid receptor (MOR) variants and interactions of MOR with different proteins were shown important. Furthermore, at the cellular level, both neurons and glia play a major role in OIH development. Several neuronal processes contribute to OIH, like activation of neuroexcitatory mechanisms, long-term potentiation (LTP) and descending pain facilitation. Increased nociception is also mediated by neuroinflammation induced by the activation of microglia and astrocytes. Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Glenn-Marie Le Coz
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
14
|
Wang W, Wang Y, Zhang W, Jin X, Liu Y, Xu S, Lei L, Shen X, Guo X, Xia X, Wang F. Opioid-induced redistribution of 6TM and 7TM μ opioid receptors: A hypothesized mechanistic facilitator model of opioid-induced hyperalgesia. Pharmacol Rep 2016; 68:686-91. [PMID: 27116700 DOI: 10.1016/j.pharep.2016.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/30/2016] [Accepted: 03/02/2016] [Indexed: 01/21/2023]
Abstract
Opioids are still the most popular form of pain treatment, but many unavoidable side effects make opioids a big challenge in effective pain management. Opioid-induced hyperalgesia (OIH), a paradoxical phenomenon, portrays an increased sensitivity to harmful stimuli caused by opioid exposure. Changes in the neural modulation are considered a major contributor to the development of OIH. Activation of opioid receptors (ORs) and corresponding downstream molecules are the vital composition of functional performance of opioids. Increasing interests were proposed of the interaction between ORs and other neural transmitter systems such as glutamatergic, GABAergic and adrenergic ones to the genesis of OIH. G protein coupled μ-opioid receptor (MOR) was studied comprehensively on its role in the development of OIH. In addition to the relationship between MOR and other neurotransmitter receptors, a new intracellular MOR that has six transmembrane (6TM) domains was identified, and found to perform a pro-nociceptive task in contrast to the counterpart 7TM isoform. A mechanistic model of OIH in which both 6TM and 7TM MORs undergoing membrane redistribution upon opioid exposure is proposed which eventually facilitates the neurons more sensitive to nociceptive stimulation than that of the preceding opioid exposure.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Chaohu, Anhui, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing T.C.M. Hospital, Nanjing, China
| | - Xiaoju Jin
- The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yusheng Liu
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiqin Xu
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Liming Lei
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaofeng Shen
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Pediatric Institute, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaoqiong Xia
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Chaohu, Anhui, China.
| | - Fuzhou Wang
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China; Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
McIntyre MK, Clifford JL, Maani CV, Burmeister DM. Progress of clinical practice on the management of burn-associated pain: Lessons from animal models. Burns 2016; 42:1161-72. [PMID: 26906668 DOI: 10.1016/j.burns.2016.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/05/2016] [Accepted: 01/21/2016] [Indexed: 02/08/2023]
Abstract
Opioid-based analgesics provide the mainstay for attenuating burn pain, but they have a myriad of side effects including respiratory depression, nausea, impaired gastrointestinal motility, sedation, dependence, physiologic tolerance, and opioid-induced hyperalgesia. To test and develop novel analgesics, validated burn-relevant animal models of pain are indispensable. Herein we review such animal models, which are mostly limited to rodent models of burn-induced, inflammatory, and neuropathic pain. The latter two are pain syndromes that provide insight into the pain caused by systemic pro-inflammatory cytokines and direct injury to nerves (e.g., after severe burn), respectively. To date, no single animal model optimally mimics the complex pathophysiology and pain that a human burn patient experiences. No currently available burn-pain model examines effects of pharmacological intervention on wound healing. As cornerstones of pain and wound healing, pro-inflammatory mediators may be utilized for insight into both processes. Moreover, common clinical concerns such as systemic inflammatory response syndrome and multiple organ dysfunction remain unaddressed. For development of analgesics, these aberrations can significantly alter the potential efficacy and/or adverse effects of a prescribed analgesic following burn trauma. We therefore suggest that a multi-model strategy would be the most clinically relevant when evaluating novel analgesics for use in burn patients.
Collapse
Affiliation(s)
- Matthew K McIntyre
- United States Army Institute of Surgical Research, 3650 Chambers Pass, BHT1:Bldg 3610, JBSA Fort Sam Houston, TX 78234-6315, United States.
| | - John L Clifford
- United States Army Institute of Surgical Research, 3650 Chambers Pass, BHT1:Bldg 3610, JBSA Fort Sam Houston, TX 78234-6315, United States.
| | - Christopher V Maani
- Brooke Army Medical Center, Department of Anesthesia and Operative Services, San Antonio Uniformed Services Health Education Consortium (SAUSHEC) Anesthesia Residency Program, 3551 Roger Brooke Drive, JBSA Fort Sam Houston, TX 78234-6315, United States.
| | - David M Burmeister
- United States Army Institute of Surgical Research, 3650 Chambers Pass, BHT1:Bldg 3610, JBSA Fort Sam Houston, TX 78234-6315, United States.
| |
Collapse
|
16
|
Bates M, Emery M, Wellman P, Eitan S. Social environment alters opioid-induced hyperalgesia and antinociceptive tolerance in adolescent mice. Eur J Pain 2016; 20:998-1009. [DOI: 10.1002/ejp.825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Affiliation(s)
- M.L.S. Bates
- Behavioral and Cellular Neuroscience, Department of Psychology, and the Interdisciplinary Program in Neuroscience; Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University; College Station TX 77843 USA
| | - M.A. Emery
- Behavioral and Cellular Neuroscience, Department of Psychology, and the Interdisciplinary Program in Neuroscience; Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University; College Station TX 77843 USA
| | - P.J. Wellman
- Behavioral and Cellular Neuroscience, Department of Psychology, and the Interdisciplinary Program in Neuroscience; Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University; College Station TX 77843 USA
| | - S. Eitan
- Behavioral and Cellular Neuroscience, Department of Psychology, and the Interdisciplinary Program in Neuroscience; Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University; College Station TX 77843 USA
| |
Collapse
|
17
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
18
|
Choi E, Lee H, Park HS, Lee GY, Kim YJ, Baik HJ. Effect of intraoperative infusion of ketamine on remifentanil-induced hyperalgesia. Korean J Anesthesiol 2015; 68:476-80. [PMID: 26495058 PMCID: PMC4610927 DOI: 10.4097/kjae.2015.68.5.476] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 11/15/2022] Open
Abstract
Background Opioid induced hyperalgesia (OIH) is related with high opioid dosage, a long duration of opioid administration, and abrupt discontinuation of infused opioids in anesthetic settings. Ketamine is known to attenuate OIH efficiently, but methods of administration and methods to quantify and assess a decrease in OIH vary. We demonstrated the existence of remifentanil-induced hyperalgesia and investigated the ability of ketamine to attenuate OIH. Methods Seventy-five patients undergoing laparoscopic gynecologic surgery under remifentanil-based anesthesia were assigned to one of the following groups: (1) group RL (remifentanil 0.05 µg/kg/min), (2) group RH (remifentanil 0.3 µg/kg/min), or (3) group KRH (remifentanil 0.3 µg/kg/min + ketamine 0.5 mg/kg bolus with 5 µg/kg/min infusion intraoperatively). Desflurane was administered for maintenance of anesthesia to target bispectral index scores (40-60) and hemodynamic parameters (heart rate and blood pressure < ± 20% of baseline values). All parameters related to OIH and its attenuation induced by ketamine were investigated. Results There was no significant difference among the three groups related to demographic and anesthetic parameters except the end-tidal concentration of desflurane. Additional analgesic consumption, numerical rating scale scores at 6 and 24 h, and cumulative fentanyl dose were significantly higher in group RH than in the other two groups. The value difference of the Touch-Test sensory evaluation was significantly higher negative in group RH than in the other two groups. Conclusions Remifentanil-induced hyperalgesia is significantly attenuated by intraoperative bolus and infusion of ketamine. Ketamine also decreased tactile sensitization, as measured by Touch-Test sensory evaluation.
Collapse
Affiliation(s)
- Eunji Choi
- Department of Anesthesiology and Pain Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Heeseung Lee
- Department of Anesthesiology and Pain Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hahck Soo Park
- Department of Anesthesiology and Pain Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Guie Yong Lee
- Department of Anesthesiology and Pain Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Youn Jin Kim
- Department of Anesthesiology and Pain Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hee-Jung Baik
- Department of Anesthesiology and Pain Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Lee HJ, Yeomans DC. Opioid induced hyperalgesia in anesthetic settings. Korean J Anesthesiol 2014; 67:299-304. [PMID: 25473457 PMCID: PMC4252340 DOI: 10.4097/kjae.2014.67.5.299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/04/2014] [Accepted: 10/10/2014] [Indexed: 11/10/2022] Open
Abstract
Pain is difficult to investigate and difficult to treat, in part, because of problems in quantification and assessment. The use of opioids, combined with classic anesthetics to maintain hemodynamic stability by controlling responses to intraoperative painful events has gained significant popularity in the anesthetic field. However, several side effects profiles concerning perioperative use of opioid have been published. Over the past two decades, many concerns have arisen with respect to opioid-induced hyperalgesia (OIH), which is the paradoxical effect wherein opioid usage may decrease pain thresholds and increase atypical pain unrelated to the original, preexisting pain. This brief review focuses on the evidence, mechanisms, and modulatory and pharmacologic management of OIH in order to elaborate on the clinical implication of OIH.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA. ; Department of Anesthesia, Pusan National University School of Medicine, Busan, Korea
| | - David C Yeomans
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
20
|
Hydrogen-rich saline prevents remifentanil-induced hyperalgesia and inhibits MnSOD nitration via regulation of NR2B-containing NMDA receptor in rats. Neuroscience 2014; 280:171-80. [DOI: 10.1016/j.neuroscience.2014.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/31/2014] [Accepted: 09/10/2014] [Indexed: 11/22/2022]
|
21
|
Zhang L, Shu R, Wang C, Wang H, Li N, Wang G. Hydrogen-rich saline controls remifentanil-induced hypernociception and NMDA receptor NR1 subunit membrane trafficking through GSK-3β in the DRG in rats. Brain Res Bull 2014; 106:47-55. [PMID: 24951883 DOI: 10.1016/j.brainresbull.2014.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although NMDAR trafficking mediated by GSK-3β involvement in transmission of pronociceptive messages in the spinal cord has been confirmed by our previous studies, whether NMDAR trafficking is implicated in peripheral sensitization remains equivocal. It is demonstrated that inflammation is associated with spinal NMDAR-containing nociceptive neurons activation and the maintenance of opioid induced pain hypersensitivity. However, whether and how hydrogen-rich saline, as an effective anti-inflammatory drug, could prevent hyperalgesia through affecting peripheral sensitization caused by NMDAR activation remains to be explored. METHODS To test these effects, hydrogen-rich saline (2.5, 5 or 10 ml/kg) was administrated intraperitoneally after remifentanil infusion, NMDAR antagonist MK-801 or GSK-3β inhibitor TDZD-8 was administrated intravenously before remifentanil infusion in rats. We examined time course of hydrogen concentration in blood after hydrogen-rich saline administration. Mechanical and thermal hyperalgesia were evaluated by measuring PWT and PWL for 48 post-infusion hours, respectively. Western blotting and real-time qPCR assay were applied to analyze the NR1 membrane trafficking, GSK-3β expression and activity in DRG. Inflammatory mediators (TNF-α, IL-1β, and IL-6) expressions in DRG were also analyzed. RESULTS We found that NR1 membrane trafficking in DRG increased, possibly due to GSK-3β activation after remifentanil infusion. We also discovered that hydrogen-rich saline not 2.5 ml/kg but 5 and 10 ml/kg could dose-dependently attenuate mechanical and thermal hyperalgesia without affecting baseline nociceptive threshold, reduce expressions of inflammatory mediators (TNF-α, IL-1β, and IL-6) and decrease NR1 trafficking mediated by GSK-3β, and minimal effective concentration was observed to be higher than 10 μmol/L, namely peak concentration in arterial blood after administration of HRS 2.5 ml/kg without any influence on hyperalgesia. CONCLUSION Our results indicated that antihyperalgesic effect of hydrogen-rich saline might depend predominantly on its ability to reverse NR1 trafficking via inhibition of GSK-3β activity in DRG in a dose-dependent manner.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Ruichen Shu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Nan Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, PR China.
| |
Collapse
|
22
|
Sleigh J, Harvey M, Voss L, Denny B. Ketamine – More mechanisms of action than just NMDA blockade. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2014. [DOI: 10.1016/j.tacc.2014.03.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|