1
|
Usami T, Ohsawa I, Suga Y, Mitsuishi T. Human papillomavirus type 94-associated flat warts and review of reported cases. J Dermatol 2024; 51:95-97. [PMID: 37698040 DOI: 10.1111/1346-8138.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
To date, 10 types of human papillomavirus have been identified that cause flat warts, including human papillomavirus type 3, which belongs to species group 2 of the genus alpha papillomavirus. Among these 10 types, human papillomavirus type 94 is most closely related to human papillomavirus type 10, sharing 86% homology. In this study, we conducted polymerase chain reaction analysis with sequencing on samples obtained from cutaneous lesions located on the face and lower legs of an individual, revealing the presence of human papillomavirus type 94. Dermatoscopic findings revealed numerous dotted vessels within one group of macular brown lesions located on the lower leg, which contributed to the diagnosis of flat warts. An online search revealed that human papillomavirus type 94 has previously been detected in various skin diseases, and we provide a review of prior reports.
Collapse
Affiliation(s)
- Tamae Usami
- Department of Dermatology, Juntendo University Urayasu, Hospital, Chiba, Japan
- Department of Dermatology, Japanese Red Cross Saitama Hospital, Saitama, Japan
| | - Ikuroh Ohsawa
- Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasushi Suga
- Department of Dermatology, Juntendo University Urayasu, Hospital, Chiba, Japan
| | - Tsuyoshi Mitsuishi
- Department of Dermatology, Japanese Red Cross Saitama Hospital, Saitama, Japan
| |
Collapse
|
2
|
Murahwa AT, Meiring TL, Mbulawa ZZA, Williamson AL. Discovery, characterisation and genomic variation of six novel Gammapapillomavirus types from penile swabs in South Africa. PAPILLOMAVIRUS RESEARCH 2019; 7:102-111. [PMID: 30844514 PMCID: PMC6416656 DOI: 10.1016/j.pvr.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
Abstract
Six novel human papillomaviruses from penile swabs were characterised. Multiple full genome clones for each novel type were generated, and complete genome sizes were: HPV211 (7253bp), HPV212 (7208bp), HPV213 (7096bp), HPV214 (7357), HPV215 (7186bp) and HPV216 (7233bp). Phylogenetically the novel papillomaviruses all clustered with Gammapapillomaviruses: HPV211 is most closely related to HPV168 (72% identity in the L1 nucleotide sequence) of the Gamma-8 species, HPV212 is most closely related to HPV144 (82.9%) of the Gamma-17 species, HPV213 is most closely related to HPV153 (71.8%) of the Gamma-13 species, HPV214 is most closely related to HPV103 (75.3%) of the Gamma-6 species, HPV215 and HPV216 are most closely related to HPV129 (76.8% and 79.2% respectively) of the Gamma-9 species. The novel HPV types demonstrated the classical genomic organisation of Gammapapillomavirusess, with seven open reading frames (ORFs) encoding five early (E1, E2, E4, E6 and E7) and two late (L1 and L2) proteins. Typical of Gammapapillomavirusess the novel types all lacked the E5 ORF and HPV214 also lacked the E6 ORF. HPV212 had nine unique variants, HPV213 had five and HPV215 had four variants. Conserved domains observed among the novel types are the Zinc finger Binding Domain and PDZ domains. A retinoblastoma binding domain (pRB) binding domain in E7 protein was additionally identified in HPV214. This study expands the knowledge of the rapidly growing Gammapapillomavirus genus.
Collapse
Affiliation(s)
- Alltalents T Murahwa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Tracy L Meiring
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Zizipho Z A Mbulawa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Center for HIV and STIs, National Institute for Communicable Disease, National Health Laboratory Service, Johannesburg, South Africa; SAMRC Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; SAMRC Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
3
|
Abstract
Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients. Several immunodeficiencies are associated with high susceptibility to persistent and progressive human papillomavirus (HPV) infection leading to a wide range of cutaneous and mucosal lesions. However, the HPV types most commonly associated with such clinical manifestations in these patients have not been systematically defined. Here, we used virion enrichment, rolling circle amplification, and deep sequencing to identify circular DNA viruses present in skin swabs and/or wart biopsy samples from 48 patients with rare genetic immunodeficiencies, including patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, or epidermodysplasia verruciformis (EV). Their profiles were compared with the profiles of swabs from 14 healthy adults and warts from 6 immunologically normal children. Individual patients were typically infected with multiple HPV types; up to 26 different types were isolated from a single patient (multiple anatomical sites, one time point). Among these, we identified the complete genomes of 83 previously unknown HPV types and 35 incomplete genomes representing possible additional new types. HPV types in the genus Gammapapillomavirus were common in WHIM patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus. Preliminary evidence based on three WHIM patients treated with plerixafor, a leukocyte mobilizing agent, suggest that longer-term therapy may correlate with decreased HPV diversity and increased predominance of HPV types associated with childhood skin warts. IMPORTANCE Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients.
Collapse
|
4
|
Hattori M, Shimizu A, Kaira K, Ishikawa O. Atypical flat warts in an immunocompromised patient. J Dermatol 2017; 44:473-474. [DOI: 10.1111/1346-8138.13480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mai Hattori
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Akira Shimizu
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Osamu Ishikawa
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| |
Collapse
|
5
|
Oštrbenk A, Kocjan BJ, Hošnjak L, Li J, Deng Q, Šterbenc A, Poljak M. Identification of a Novel Human Papillomavirus, Type HPV199, Isolated from a Nasopharynx and Anal Canal, and Complete Genomic Characterization of Papillomavirus Species Gamma-12. PLoS One 2015; 10:e0138628. [PMID: 26375679 PMCID: PMC4574437 DOI: 10.1371/journal.pone.0138628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/31/2015] [Indexed: 01/04/2023] Open
Abstract
The novel human papillomavirus type 199 (HPV199) was initially identified in a nasopharyngeal swab sample obtained from a 25 year-old immunocompetent male. The complete genome of HPV199 is 7,184 bp in length with a GC content of 36.5%. Comparative genomic characterization of HPV199 and its closest relatives showed the classical genomic organization of Gammapapillomaviruses (Gamma-PVs). HPV199 has seven major open reading frames (ORFs), encoding five early (E1, E2, E4, E6, and E7) and two late (L1 and L2) proteins, while lacking the E5 ORF. The long control region (LCR) of 513 bp is located between the L1 and E6 ORFs. Phylogenetic analysis additionally confirmed that HPV-199 clusters into the Gamma-PV genus, species Gamma-12, additionally containing HPV127, HV132, HPV148, HPV165, and three putative HPV types: KC5, CG2 and CG3. HPV199 is most closely related to HPV127 (nucleotide identity 77%). The complete viral genome sequence of additional HPV199 isolate was determined from anal canal swab sample. Two HPV199 complete viral sequences exhibit 99.4% nucleotide identity. To the best of our knowledge, this is the first member of Gamma-PV with complete nucleotide sequences determined from two independent clinical samples. To evaluate the tissue tropism of the novel HPV type, 916 clinical samples were tested using HPV199 type-specific real-time PCR: HPV199 was detected in 2/76 tissue samples of histologically confirmed common warts, 2/108 samples of eyebrow hair follicles, 2/137 anal canal swabs obtained from individuals with clinically evident anal pathology, 4/184 nasopharyngeal swabs and 3/411 cervical swabs obtained from women with normal cervical cytology. Although HPV199 was found in 1.4% of cutaneous and mucosal samples only, it exhibits dual tissue tropism. According to the results of our study and literature data, dual tropism of all Gamma-12 members is highly possible.
Collapse
Affiliation(s)
- Anja Oštrbenk
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan J. Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jingjing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qiuju Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Anja Šterbenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
6
|
Kocjan BJ, Bzhalava D, Forslund O, Dillner J, Poljak M. Molecular methods for identification and characterization of novel papillomaviruses. Clin Microbiol Infect 2015; 21:808-16. [PMID: 26003284 DOI: 10.1016/j.cmi.2015.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 02/02/2023]
Abstract
Papillomaviruses (PV) are a remarkably heterogeneous family of small DNA viruses that infect a wide variety of vertebrate species and are aetiologically linked with the development of various neoplastic changes of the skin and mucosal epithelia. Based on nucleotide similarity, PVs are hierarchically classified into genera, species and types. Novel human PV (HPV) types are given a unique number only after the whole genome has been cloned and deposited with the International HPV Reference Center. As of 9 March 2015, 200 different HPV types, belonging to 49 species, had been recognized by the International HPV Reference Center. In addition, 131 animal PV types identified from 66 different animal species exist. Recent advances in molecular techniques have resulted in an explosive increase in the identification of novel HPV types and novel subgenomic HPV sequences in the last few years. Among PV genera, the γ-PV genus has been growing most rapidly in recent years with 80 completely sequenced HPV types, followed by α-PV and β-PV genera that have 65 and 51 recognized HPV types, respectively. We reviewed in detail the contemporary molecular methods most often used for identification and characterization of novel PV types, including PCR, rolling circle amplification and next-generation sequencing. Furthermore, we present a short overview of 12 and 10 novel HPV types recently identified in Sweden and Slovenia, respectively. Finally, an update on the International Human Papillomavirus Reference Center is provided.
Collapse
Affiliation(s)
- B J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - D Bzhalava
- International Human Papillomavirus Reference Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - O Forslund
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | - J Dillner
- International Human Papillomavirus Reference Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|