1
|
Neves NODS, De Dea Lindner J, Stockhausen L, Delziovo FR, Bender M, Serzedello L, Cipriani LA, Ha N, Skoronski E, Gisbert E, Sanahuja I, Perez Fabregat TEH. Fermentation of Plant-Based Feeds with Lactobacillus acidophilus Improves the Survival and Intestinal Health of Juvenile Nile Tilapia ( Oreochromis niloticus) Reared in a Biofloc System. Animals (Basel) 2024; 14:332. [PMID: 38275792 PMCID: PMC10812702 DOI: 10.3390/ani14020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
This study evaluated the effect of fermentation with Lactobacillus acidophilus on the biochemical and nutritional compositions of a plant-based diet and its effects on the productive performance and intestinal health of juvenile Nile tilapia (Oreochromis niloticus) reared in a biofloc technology (BFT) system. The in vitro kinetics of feed fermentation were studied to determine the L. acidophilus growth and acidification curve through counting the colony-forming units (CFUs) mL-1 and measuring the pH. Physicochemical and bromatological analyses of the feed were also performed. Based on the microbial growth kinetics results, vegetable-based Nile tilapia feeds fermented for 6 (FPB6) and 18 (FPB18) h were evaluated for 60 days. Fermented diets were compared with a positive control diet containing fishmeal (CFM) and a negative control diet without animal protein (CPB). Fermentation with L. acidophilus increased lactic acid bacteria (LAB) count and the soluble protein concentration of the plant-based feed, as well as decreasing the pH (p < 0.05). FPB treatments improved fish survival compared with CPB (p < 0.05). Fermentation increased feed intake but worsened feed efficiency (p < 0.05). The use of fermented feeds increased the LAB count and reduced pathogenic bacteria both in the BFT system's water and in the animals' intestines (p < 0.05). Fermented plant-based feeds showed greater villi (FPB6; FPB18) and higher goblet cell (FPB6) counts relative to the non-fermented plant-based feed, which may indicate improved intestinal health. The results obtained in this study are promising and show the sustainable potential of using fermented plant-based feeds in fish feeding rather than animal protein and, in particular, fishmeal.
Collapse
Affiliation(s)
- Nataly Oliveira Dos Santos Neves
- Department of Animal Science (Pisciculture), Universidade do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, Lages 88520-000, SC, Brazil; (N.O.D.S.N.); (L.S.); (F.R.D.); (M.B.); (L.S.); (L.A.C.); (N.H.); (E.S.)
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Universidade Federal de Santa Catarina (UFSC), Rod. Admar Gonzaga, 1346, Bairro Itacorubi, Florianópolis 88034-000, SC, Brazil;
| | - Larissa Stockhausen
- Department of Animal Science (Pisciculture), Universidade do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, Lages 88520-000, SC, Brazil; (N.O.D.S.N.); (L.S.); (F.R.D.); (M.B.); (L.S.); (L.A.C.); (N.H.); (E.S.)
| | - Fernanda Regina Delziovo
- Department of Animal Science (Pisciculture), Universidade do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, Lages 88520-000, SC, Brazil; (N.O.D.S.N.); (L.S.); (F.R.D.); (M.B.); (L.S.); (L.A.C.); (N.H.); (E.S.)
| | - Mariana Bender
- Department of Animal Science (Pisciculture), Universidade do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, Lages 88520-000, SC, Brazil; (N.O.D.S.N.); (L.S.); (F.R.D.); (M.B.); (L.S.); (L.A.C.); (N.H.); (E.S.)
| | - Letícia Serzedello
- Department of Animal Science (Pisciculture), Universidade do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, Lages 88520-000, SC, Brazil; (N.O.D.S.N.); (L.S.); (F.R.D.); (M.B.); (L.S.); (L.A.C.); (N.H.); (E.S.)
| | - Luiz Augusto Cipriani
- Department of Animal Science (Pisciculture), Universidade do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, Lages 88520-000, SC, Brazil; (N.O.D.S.N.); (L.S.); (F.R.D.); (M.B.); (L.S.); (L.A.C.); (N.H.); (E.S.)
| | - Natalia Ha
- Department of Animal Science (Pisciculture), Universidade do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, Lages 88520-000, SC, Brazil; (N.O.D.S.N.); (L.S.); (F.R.D.); (M.B.); (L.S.); (L.A.C.); (N.H.); (E.S.)
| | - Everton Skoronski
- Department of Animal Science (Pisciculture), Universidade do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, Lages 88520-000, SC, Brazil; (N.O.D.S.N.); (L.S.); (F.R.D.); (M.B.); (L.S.); (L.A.C.); (N.H.); (E.S.)
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA-La Ràpita), Ctra. Poble Nou. Km 5.5, 43540 La Ràpita, Spain;
| | - Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA-La Ràpita), Ctra. Poble Nou. Km 5.5, 43540 La Ràpita, Spain;
| | - Thiago El Hadi Perez Fabregat
- Department of Animal Science (Pisciculture), Universidade do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, Lages 88520-000, SC, Brazil; (N.O.D.S.N.); (L.S.); (F.R.D.); (M.B.); (L.S.); (L.A.C.); (N.H.); (E.S.)
| |
Collapse
|
2
|
de Oliveira NS, Ha N, da Cunha L, Cipriani LA, Neto AT, Skoronski E, Gisbert E, Perez Fabregat TEH. Fermentation of Soybean Meal with Lactobacillus acidophilus Allows Greater Inclusion of Vegetable Protein in the Diet and Can Reduce Vibrionacea in the Intestine of the South American Catfish (Rhamdia quelen). Animals (Basel) 2022; 12:ani12060690. [PMID: 35327087 PMCID: PMC8944494 DOI: 10.3390/ani12060690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/24/2023] Open
Abstract
Simple Summary There is a demand to replace fishmeal with protein sources of plant origin in fish feeds. Biotechnology strategies, such as fermentation, can improve the bioavailability of plant proteins and decrease the presence of antinutrients, optimizing the results obtained. Fermented soybean meal has already been evaluated for different fish species as a replacement for fishmeal, and there is evidence that it can improve the intestinal health of animals. Lactobacillus acidophilus is a strain used as a probiotic in fish feeding but it remains to be evaluated as a potential fermentation bacterium for feed ingredients. This study aimed to evaluate the effect of diets containing different inclusion levels (0%, 7%, 14%, 21% and 28%) of soybean meal fermented by L. acidophilus (SMFL) on the zootechnical performance and intestinal health of South American catfish juveniles (Rhamdia quelen). The inclusion of SMFL up to 21% in replacement of fish meal did not affect the zootechnical performance of fish and also decreased the concentration of Vibrionaceae bacteria present in the intestine compared to the control group. The results demonstrate that fermentation with L. acidophilus enables greater inclusion of soybean protein in South American catfish diets and promotes the control of intestinal pathogenic bacteria. Abstract The objective of this study was to evaluate the effect of diets containing different inclusion levels (0%, 7%, 14%, 21% and 28%) of soybean meal fermented by Lactobacillus acidophilus (SMFL) on the zootechnical performance and intestinal health of South American catfish juveniles (Rhamdia quelen). The experimental design was completely randomized with five treatments and four replications and lasted 56 days. Five isoproteic (39% crude protein) and isoenergetic (4300 kcal of gross energy kg−1) diets were formulated where SMFL was included in replacement of fish meal. Two hundred forty South American catfish juveniles (3.0 ± 0.5 g) were distributed in 20 tanks (70 L) connected in a recirculation aquaculture system. At the end of the experiment, the inclusion of SMFL up to 21% in replacement of fish meal did not affect the zootechnical performance and also decreased the concentration of Vibrionaceae bacteria present in the intestine compared to the control group. The amount of total lactic and heterotrophic bacteria, the enzymatic activity and the intestinal morphometry did not differ between dietary treatments. The results demonstrate that fermentation with Lactobacillus acidophilus enables greater inclusion of soybean protein in South American catfish diets and promotes the control of intestinal pathogenic bacteria.
Collapse
Affiliation(s)
- Nandara Soares de Oliveira
- Departamento de Produção Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina-UDESC, Avenue Luiz de Camões, 2090, Lages 88520-000, SC, Brazil; (N.S.d.O.); (N.H.); (L.d.C.); (L.A.C.); (A.T.N.); (E.S.)
| | - Natalia Ha
- Departamento de Produção Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina-UDESC, Avenue Luiz de Camões, 2090, Lages 88520-000, SC, Brazil; (N.S.d.O.); (N.H.); (L.d.C.); (L.A.C.); (A.T.N.); (E.S.)
| | - Larissa da Cunha
- Departamento de Produção Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina-UDESC, Avenue Luiz de Camões, 2090, Lages 88520-000, SC, Brazil; (N.S.d.O.); (N.H.); (L.d.C.); (L.A.C.); (A.T.N.); (E.S.)
| | - Luiz Augusto Cipriani
- Departamento de Produção Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina-UDESC, Avenue Luiz de Camões, 2090, Lages 88520-000, SC, Brazil; (N.S.d.O.); (N.H.); (L.d.C.); (L.A.C.); (A.T.N.); (E.S.)
| | - André Thaler Neto
- Departamento de Produção Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina-UDESC, Avenue Luiz de Camões, 2090, Lages 88520-000, SC, Brazil; (N.S.d.O.); (N.H.); (L.d.C.); (L.A.C.); (A.T.N.); (E.S.)
| | - Everton Skoronski
- Departamento de Produção Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina-UDESC, Avenue Luiz de Camões, 2090, Lages 88520-000, SC, Brazil; (N.S.d.O.); (N.H.); (L.d.C.); (L.A.C.); (A.T.N.); (E.S.)
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita, Aquaculture Program, Carretera Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Thiago El Hadi Perez Fabregat
- Departamento de Produção Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina-UDESC, Avenue Luiz de Camões, 2090, Lages 88520-000, SC, Brazil; (N.S.d.O.); (N.H.); (L.d.C.); (L.A.C.); (A.T.N.); (E.S.)
- Correspondence:
| |
Collapse
|
3
|
Araiza-Villanueva MG, Olicón-Hernández DR, Pardo JP, Vázquez-Meza H, Guerra-Sánchez G. Monitoring of the enzymatic activity of intracellular lipases of Ustilago maydis expressed during the growth under nitrogen limitation and its correlation in lipolytic reactions. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.1049182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Under nitrogen starvation, Ustilago maydis forms lipid droplets (LDs). Although the dynamics of these organelles are known in the literature, the identity of the lipases implicated in their degradation is unknown. We determined lipase activity and identified the intracellular lipases expressed during growth under nitrogen starvation and YPD media by zymograms. The results showed that cytosolic extracts exhibited higher lipase activity when cells were grown in YPD. Under nitrogen starvation, lipase activity was not detected after 24 h of culture, resulting in lipid accumulation in LDs. This suggests that these lipases could be implicated in LD degradation. In the zymogram, two bands, one of 25 and the other of 37 kDa, presented lipase activity. The YPD extracts showed lipase activity in olive and almond oils, which contain triacylglycerols with mono and polyunsaturated fatty acids. This is the first report about U. maydis cytosolic lipases involved in LD degradation.
Collapse
|
4
|
Tupec M, Buček A, Valterová I, Pichová I. Biotechnological potential of insect fatty acid-modifying enzymes. ACTA ACUST UNITED AC 2018; 72:387-403. [PMID: 28742527 DOI: 10.1515/znc-2017-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
There are more than one million described insect species. This species richness is reflected in the diversity of insect metabolic processes. In particular, biosynthesis of secondary metabolites, such as defensive compounds and chemical signals, encompasses an extraordinarily wide range of chemicals that are generally unparalleled among natural products from other organisms. Insect genomes, transcriptomes and proteomes thus offer a valuable resource for discovery of novel enzymes with potential for biotechnological applications. Here, we focus on fatty acid (FA) metabolism-related enzymes, notably the fatty acyl desaturases and fatty acyl reductases involved in the biosynthesis of FA-derived pheromones. Research on insect pheromone-biosynthetic enzymes, which exhibit diverse enzymatic properties, has the potential to broaden the understanding of enzyme specificity determinants and contribute to engineering of enzymes with desired properties for biotechnological production of FA derivatives. Additionally, the application of such pheromone-biosynthetic enzymes represents an environmentally friendly and economic alternative to the chemical synthesis of pheromones that are used in insect pest management strategies.
Collapse
|
5
|
Santana CC, Barbosa LA, Júnior IDB, Nascimento TGD, Dornelas CB, Grillo LAM. Lipase Activity in the Larval Midgut of Rhynchophorus palmarum: Biochemical Characterization and the Effects of Reducing Agents. INSECTS 2017; 8:E100. [PMID: 28902170 PMCID: PMC5620720 DOI: 10.3390/insects8030100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022]
Abstract
Lipases have key roles in insect lipid acquisition, storage, and mobilization and are also fundamental to many physiological processes in insects. Lipids are an important component of insect diets, where they are hydrolyzed in the midgut lumen, absorbed, and used for the synthesis of complex lipids. The South American palm weevil Rhynchophorus palmarum is one of the most important pests on commercial palm plantations. However, there are few studies about lipid digestion for this insect. In this work, we have described the biochemical characterization of the lipase activity in the posterior midgut of the R. palmarum palm weevil. Lipase activity was highest between the temperatures of 37 °C and 45 °C and at pH 6.5. Lipase activity was also sensitive to variations in salt and calcium concentrations. Lipases have been described structurally as enzymes with the Ser-His-Asp Catalytic Triad, containing an active serine. The serine protease inhibitor PMSF (phenylmethane sulfonyl fluoride) inhibited the lipases from R. palmarum, demonstrating the importance of a serine residue for this activity. The ability of the lipases to hydrolyze p-Nitrophenyl esters with different chain lengths has revealed the activities of a broad range of substrates. The lipase activities of R. palmarum increased in the presence of reduced glutathione (GSH) and dithiothreitol (DTT), while in the presence of oxidized glutathione (GSSG), activities were drastically reduced. To our knowledge, this study has provided the first information about lipase activity in the R. palmarum palm weevil.
Collapse
Affiliation(s)
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis 35501-296, Brazil.
| | | | | | - Camila Braga Dornelas
- Escola de Enfermagem e Farmácia, Universidade Federal de Alagoas, Maceió, AL 57072-900, Brazil.
| | - Luciano A M Grillo
- Escola de Enfermagem e Farmácia, Universidade Federal de Alagoas, Maceió, AL 57072-900, Brazil.
- Av. Lourival de Mello Mota s/n-CSAU/ESENFAR, Cidade Universitária, Maceió, AL 57072-900, Brazil.
| |
Collapse
|
6
|
Wang L, Li J, Zhao X, Qian C, Wei G, Zhu B, Liu C. Expression and characterization of a lipase-related protein in the malpighian tubules of the Chinese oak silkworm, Antheraea pernyi. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:615-623. [PMID: 27297450 DOI: 10.1017/s0007485316000365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipases are ubiquitous enzymes in nature, which play a crucial role in fat metabolism by catalyzing the hydrolysis of triacylglycerol to free fatty acids and glycerol. However, reports concerning insect lipase are rare. In this study, we studied the expression and activity of a lipase-related protein from Antheraea pernyi (ApLRP). Recombinant ApLRP was expressed in Escherichia coli cells and used to raise rabbit anti-ApLRP polyclonal antibodies. ApLRP mRNA and protein expression were abundant in the midgut and malpighian tubules, respectively. After challenge with four different microorganisms (E. coli, Beauveria bassiana, Micrococcus luteus and nuclear polyhedrosis virus), the expression levels of ApLRP mRNA in midgut were inducted significantly compared with the control. The different pathogens induced different ApLRP gene expression patterns. The optimum temperature and pH for the enzyme's activity were 35°C and 7.0, respectively. ApLRP activity was stimulated in the presence of Mg2+, Na+, Ca2+ and b-mercaptoethanol; while Zn2+, Cu2+ and Fe3+ inhibited its activity. Detergents such as SDS, glycerol and Tween-20 increased the lipase activity by 20-30%. Our results indicated that ApLRP might play an important role in the innate immunity of insects.
Collapse
Affiliation(s)
- L Wang
- College of Life Science, Anhui Agricultural University,Hefei 230036,China
| | - J Li
- College of Life Science, Anhui Agricultural University,Hefei 230036,China
| | - X Zhao
- College of Life Science, Anhui Agricultural University,Hefei 230036,China
| | - C Qian
- College of Life Science, Anhui Agricultural University,Hefei 230036,China
| | - G Wei
- College of Life Science, Anhui Agricultural University,Hefei 230036,China
| | - B Zhu
- College of Life Science, Anhui Agricultural University,Hefei 230036,China
| | - C Liu
- College of Life Science, Anhui Agricultural University,Hefei 230036,China
| |
Collapse
|
7
|
Optimization and characterization of covalent immobilization of glucose oxidase for bioelectronic devices. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Buček A, Brabcová J, Vogel H, Prchalová D, Kindl J, Valterová I, Pichová I. Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing. INSECT MOLECULAR BIOLOGY 2016; 25:295-314. [PMID: 26945888 DOI: 10.1111/imb.12221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Male marking pheromones (MPs) are used by the majority of bumblebee species (Hymenoptera: Apidae), including a commercially important greenhouse pollinator, the buff-tailed bumblebee (Bombus terrestris), to attract conspecific females. MP biosynthetic processes in the cephalic part of the bumblebee male labial gland (LG) are of extraordinary complexity, involving enzymes of fatty acid and isoprenoid biosynthesis, which jointly produce more than 50 compounds. We employed a differential transcriptomic approach to identify candidate genes involved in MP biosynthesis by sequencing Bombus terrestris LG and fat body (FB) transcriptomes. We identified 12 454 abundantly expressed gene products (reads per kilobase of exon model per million mapped reads value > 1) that had significant hits in the GenBank nonredundant database. Of these, 876 were upregulated in the LG (> 4-fold difference). We identified more than 140 candidate genes potentially involved in MP biosynthesis, including esterases, fatty acid reductases, lipases, enzymes involved in limited fatty acid chain shortening, neuropeptide receptors and enzymes involved in biosynthesis of triacylglycerols, isoprenoids and fatty acids. For selected candidates, we confirmed their abundant expression in LG using quantitative real-time reverse transcription-PCR (qRT-PCR). Our study shows that the Bombus terrestris LG transcriptome reflects both fatty acid and isoprenoid MP biosynthetic processes and identifies rational gene targets for future studies to disentangle the molecular basis of MP biosynthesis. Additionally, LG and FB transcriptomes enrich the available transcriptomic resources for Bombus terrestris.
Collapse
Affiliation(s)
- A Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Brabcová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - H Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - D Prchalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Kindl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
9
|
Žáček P, Kindl J, Frišonsová K, Průchová M, Votavová A, Hovorka O, Kovalczuk T, Valterová I. Biosynthetic Studies of the Male Marking Pheromone in Bumblebees by Using Labelled Fatty Acids and Two-Dimensional Gas Chromatography with Mass Detection. Chempluschem 2015; 80:839-850. [PMID: 31973346 DOI: 10.1002/cplu.201402420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Indexed: 11/09/2022]
Abstract
Two-dimensional comprehensive gas chromatography (GC×GC) coupled with mass detection was used as a tool for biosynthetic studies of bumblebee pheromones. Prior to biosynthetic experiments, the chromatographic behaviour of isotopically modified esters in the GC×GC system as well as their behaviour in mass detection was studied. The male marking pheromones of Bombus lucorum, Bombus lapidarius and Bombus terrestris were investigated. Main pheromonal components are ethyl tetradec-9-enoate (53 %) and ethyl dodecanoate (6 %) in B. lucorum, hexadec-9-en-1-ol (52 %) and hexadecan-1-ol (31 %) in B. lapidarius, and 2,3-dihydrofarnesol (58 %) and ethyl dodecanoate (15 %) in B. terrestris. The research strategy was based on 1) in vivo incubation of isotopically (2 H, 13 C) modified fatty acids (FAs) and analysis of their metabolites and 2) feeding experiments with 2 H- and 13 C-labelled FAs mixed with food. It was observed that labelled FAs were modified into the most abundant aliphatic compounds present in labial gland secretions. In feeding experiments, the labelled FAs were transformed into pheromone components. Transport of the FA precursors from the fat body through haemolymph was confirmed. The results show that FAs, stored in the form of triacylglycerols in the fat body, are likely to participate in the biosynthesis of some aliphatic pheromone components.
Collapse
Affiliation(s)
- Petr Žáček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic).,Faculty of Science, Charles University, Albertov 8, 128 40 Prague 2 (Czech Republic)
| | - Jiří Kindl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| | - Kateřina Frišonsová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| | - Markéta Průchová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| | - Alena Votavová
- Agricultural Research, Zahradní 1, 66441 Troubsko (Czech Republic)
| | - Oldřich Hovorka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| | - Tomáš Kovalczuk
- LECO Corp., Applicat. Lab. Prague, Sokolovská 219, 190 00 Prague 9 (Czech Republic)
| | - Irena Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)
| |
Collapse
|
10
|
Brabcová J, Demianová Z, Kindl J, Pichová I, Valterová I, Zarevúcka M. Characterisation of Acetyl-CoA Thiolase: The First Enzyme in the Biosynthesis of Terpenic Sex Pheromone Components in the Labial Gland ofBombus terrestris. Chembiochem 2015; 16:1047-51. [DOI: 10.1002/cbic.201402591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/10/2022]
|