1
|
Xiao Y, Sun G, Yu Q, Gao T, Zhu Q, Wang R, Huang S, Han Z, Cervone F, Yin H, Qi T, Wang Y, Chai J. A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity. Science 2024; 383:732-739. [PMID: 38359129 DOI: 10.1126/science.adj9529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) interact with pathogen-derived polygalacturonases to inhibit their virulence-associated plant cell wall-degrading activity but stimulate immunity-inducing oligogalacturonide production. Here we show that interaction between Phaseolus vulgaris PGIP2 (PvPGIP2) and Fusarium phyllophilum polygalacturonase (FpPG) enhances substrate binding, resulting in inhibition of the enzyme activity of FpPG. This interaction promotes FpPG-catalyzed production of long-chain immunoactive oligogalacturonides, while diminishing immunosuppressive short oligogalacturonides. PvPGIP2 binding creates a substrate binding site on PvPGIP2-FpPG, forming a new polygalacturonase with boosted substrate binding activity and altered substrate preference. Structure-based engineering converts a putative PGIP that initially lacks FpPG-binding activity into an effective FpPG-interacting protein. These findings unveil a mechanism for plants to transform pathogen virulence activity into a defense trigger and provide proof of principle for engineering PGIPs with broader specificity.
Collapse
Affiliation(s)
- Yu Xiao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiangsheng Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Gao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinsheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Huang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhifu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jijie Chai
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
2
|
Safran J, Tabi W, Ung V, Lemaire A, Habrylo O, Bouckaert J, Rouffle M, Voxeur A, Pongrac P, Bassard S, Molinié R, Fontaine JX, Pilard S, Pau-Roblot C, Bonnin E, Larsen DS, Morel-Rouhier M, Girardet JM, Lefebvre V, Sénéchal F, Mercadante D, Pelloux J. Plant polygalacturonase structures specify enzyme dynamics and processivities to fine-tune cell wall pectins. THE PLANT CELL 2023; 35:3073-3091. [PMID: 37202370 PMCID: PMC10396364 DOI: 10.1093/plcell/koad134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.
Collapse
Affiliation(s)
- Josip Safran
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Wafae Tabi
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Vanessa Ung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Adrien Lemaire
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Olivier Habrylo
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Julie Bouckaert
- UMR 8576 Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), 50 Avenue de Halley, Villeneuve d’Ascq 59658, France
| | - Maxime Rouffle
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| | - Paula Pongrac
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Roland Molinié
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Jean-Xavier Fontaine
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Serge Pilard
- Plateforme Analytique, Université de Picardie, 33, Rue St Leu, Amiens 80039, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Estelle Bonnin
- INRAE, UR 1268 Biopolymers, Interactions Assemblies, CS 71627, Nantes Cedex 3 44316, France
| | - Danaé Sonja Larsen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | - Valérie Lefebvre
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Fabien Sénéchal
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| |
Collapse
|
3
|
Chiu T, Poucet T, Li Y. The potential of plant proteins as antifungal agents for agricultural applications. Synth Syst Biotechnol 2022; 7:1075-1083. [PMID: 35891944 PMCID: PMC9305310 DOI: 10.1016/j.synbio.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Fungal pathogens induce a variety of diseases in both plants and post-harvest food crops, resulting in significant crop losses for the agricultural industry. Although the usage of chemical-based fungicides is the most common way to control these diseases, they damage the environment, have the potential to harm human and animal life, and may lead to resistant fungal strains. Accordingly, there is an urgent need for diverse and effective agricultural fungicides that are environmentally- and eco-friendly. Plants have evolved various mechanisms in their innate immune system to defend against fungal pathogens, including soluble proteins secreted from plants with antifungal activities. These proteins can inhibit fungal growth and infection through a variety of mechanisms while exhibiting diverse functionality in addition to antifungal activity. In this mini review, we summarize and discuss the potential of using plant antifungal proteins for future agricultural applications from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Tiffany Chiu
- Graduate Program in Genetics, Genomics, And Bioinformatics, 1140 Batchelor Hall, University of California Riverside, California, 92521, USA
| | - Theo Poucet
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
4
|
Wang Z, Wan L, Zhang X, Xin Q, Song Y, Hong D, Sun Y, Yang G. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection. PLANTA 2021; 253:34. [PMID: 33459878 DOI: 10.1007/s00425-020-03556-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
BnPGIPs interacted with Sclerotinia sclerotiorum PGs to improve rapeseed SSR resistance at different levels; the BnPGIP-overexpression lines did not affect plant morphology or seed quality traits. Plant polygalacturonase-inhibiting proteins (PGIPs) play a crucial role in plant defence against phytopathogenic fungi by inhibiting fungal polygalacturonase (PG) activity. We overexpressed BnPGIP2, BnPGIP5, and BnPGIP10 genes in an inbred line 7492 of rapeseed (Brassica napus). Compared with 7492WT, the overexpression of BnPGIP2 lines significantly increased Sclerotinia sclerotiorum resistance in both seedlings and adult plants. BnPGIP5 overexpression lines exhibited decreased S. sclerotiorum disease symptoms in seedlings only, whereas BnPGIP10 overexpression lines did not improve Sclerotinia resistance for seedlings or adult plants. Quantitative real-time PCR analysis of S. sclerotiorum PG1, SsPG3, SsPG5, and SsPG6 genes in overexpressing BnPGIP lines showed that these pathogenic genes in the Sclerotinia resistance transgenic lines exhibited low expression in stem tissues. Split-luciferase complementation experiments confirmed the following: BnPGIP2 interacts with SsPG1 and SsPG6 but not with SsPG3 or SsPG5; BnPGIP5 interacts with SsPG3 and SsPG6 but not with SsPG1 or SsPG5; and BnPGIP10 interacts with SsPG1 but not SsPG3, SsPG5, or SsPG6. Leaf crude protein extracts from BnPGIP2 and BnPGIP5 transgenic lines displayed high inhibitory activity against the SsPG crude protein. BnPGIP-overexpression lines with Sclerotinia resistance displayed a lower accumulation of H2O2 and higher expression of the H2O2-removing gene BnAPX (ascorbate peroxidase) than 7492WT, as well as elevated expression of defence response genes including jasmonic acid/ethylene and salicylic acid pathways after S. sclerotiorum infection. The plants overexpressing BnPGIP exhibited no difference in either agronomic traits or grain yield from 7492WT. This study provides potential target genes for developing S. sclerotiorum resistance in rapeseed.
Collapse
Affiliation(s)
- Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China.
| | - Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiang Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yixian Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuhong Sun
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
5
|
Karataş E, Tülek A, Çakar MM, Tamtürk F, Aktaş F, Binay B. From secretion in Pichia pastoris to application in apple juice processing: Exo-polygalacturonase from Sporothrix schenckii 1099-18. Protein Pept Lett 2021; 28:817-830. [PMID: 33413052 DOI: 10.2174/1871530321666210106110400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polygalacturonases are a group of enzymes under pectinolytic enzymes related to enzymes that hydrolyse pectic substances. Polygalacturonases have been used in various industrial applications such as fruit juice clarification, retting of plant fibers, wastewater treatment drinks fermentation, and oil extraction. OBJECTIVES The study was evaluated at the heterologous expression, purification, biochemical characterization, computational modeling, and performance in apple juice clarification of a new exo-polygalacturonase from Sporothrix schenckii 1099-18 (SsExo-PG) in Pichia pastoris. METHODS Recombinant DNA technology was used in this study. Two different pPIC9K plasmids were constructed with native signal sequence-ssexo-pg and alpha signal sequence-ssexo-pg separately. Protein expression and purification performed after plasmids transformed into the Pichia pastoris. Biochemical and structural analyses were performed by using pure SsExo-PG. RESULTS The purification of SsExo-PG was achieved using a Ni-NTA chromatography system. The enzyme was found to have a molecular mass of approximately 52 kDa. SsExo-PG presented as stable at a wide range of temperature and pH values, and to be more storage stable than other commercial pectinolytic enzyme mixtures. Structural analysis revealed that the catalytic residues of SsExo-PG are somewhat similar to other Exo-PGs. The KM and kcat values for the degradation of polygalacturonic acid (PGA) by the purified enzyme were found to be 0.5868 µM and 179 s-1, respectively. Cu2+ was found to enhance SsExo-PG activity while Ag2+ and Fe2+ almost completely inhibited enzyme activity. The enzyme reduced turbidity up to 80% thus enhanced the clarification of apple juice. SsExo-PG showed promising performance when compared with other commercial pectinolytic enzyme mixtures. CONCLUSION The clarification potential of SsExo-PG was revealed by comparing it with commercial pectinolytic enzymes. The following parameters of the process of apple juice clarification processes showed that SsExo-PG is highly stable and has a novel performance.
Collapse
Affiliation(s)
- Ersin Karataş
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Ahmet Tülek
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Faruk Tamtürk
- Döhler Food & Beverage Ingredients, 70100 Merkez, Karaman. Turkey
| | - Fatih Aktaş
- Department of Environment Engineering, Duzce University, Konuralp 81100, Düzce. Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| |
Collapse
|
6
|
Haeger W, Wielsch N, Shin NR, Gebauer-Jung S, Pauchet Y, Kirsch R. New Players in the Interaction Between Beetle Polygalacturonases and Plant Polygalacturonase-Inhibiting Proteins: Insights From Proteomics and Gene Expression Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:660430. [PMID: 34149758 PMCID: PMC8213348 DOI: 10.3389/fpls.2021.660430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 05/12/2023]
Abstract
Plants possess various defense strategies to counter attacks from microorganisms or herbivores. For example, plants reduce the cell-wall-macerating activity of pathogen- or insect-derived polygalacturonases (PGs) by expressing PG-inhibiting proteins (PGIPs). PGs and PGIPs belong to multi-gene families believed to have been shaped by an evolutionary arms race. The mustard leaf beetle Phaedon cochleariae expresses both active PGs and catalytically inactive PG pseudoenzymes. Previous studies demonstrated that (i) PGIPs target beetle PGs and (ii) the role of PG pseudoenzymes remains elusive, despite having been linked to the pectin degradation pathway. For further insight into the interaction between plant PGIPs and beetle PG family members, we combined affinity purification with proteomics and gene expression analyses, and identified novel inhibitors of beetle PGs from Chinese cabbage (Brassica rapa ssp. pekinensis). A beetle PG pseudoenzyme was not targeted by PGIPs, but instead interacted with PGIP-like proteins. Phylogenetic analysis revealed that PGIP-like proteins clustered apart from "classical" PGIPs but together with proteins, which have been involved in developmental processes. Our results indicate that PGIP-like proteins represent not only interesting novel PG inhibitor candidates in addition to "classical" PGIPs, but also fascinating new players in the arms race between herbivorous beetles and plant defenses.
Collapse
Affiliation(s)
- Wiebke Haeger
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Natalie Wielsch
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Na Ra Shin
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Steffi Gebauer-Jung
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Roy Kirsch,
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Yannick Pauchet,
| |
Collapse
|
7
|
Haeger W, Henning J, Heckel DG, Pauchet Y, Kirsch R. Direct evidence for a new mode of plant defense against insects via a novel polygalacturonase-inhibiting protein expression strategy. J Biol Chem 2020; 295:11833-11844. [PMID: 32611768 DOI: 10.1074/jbc.ra120.014027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Plant cell wall-associated polygalacturonase-inhibiting proteins (PGIPs) are widely distributed in the plant kingdom. They play a crucial role in plant defense against phytopathogens by inhibiting microbial polygalacturonases (PGs). PGs hydrolyze the cell wall polysaccharide pectin and are among the first enzymes to be secreted during plant infection. Recent studies demonstrated that herbivorous insects express their own PG multi-gene families, raising the question whether PGIPs also inhibit insect PGs and protect plants from herbivores. Preliminary evidence suggested that PGIPs may negatively influence larval growth of the leaf beetle Phaedon cochleariae (Coleoptera: Chrysomelidae) and identified BrPGIP3 from Chinese cabbage (Brassica rapa ssp. pekinensis) as a candidate. PGIPs are predominantly studied in planta because their heterologous expression in microbial systems is problematic and instability and aggregation of recombinant PGIPs has complicated in vitro inhibition assays. To minimize aggregate formation, we heterologously expressed BrPGIP3 fused to a glycosylphosphatidylinositol (GPI) membrane anchor, immobilizing it on the extracellular surface of insect cells. We demonstrated that BrPGIP3_GPI inhibited several P. cochleariae PGs in vitro, providing the first direct evidence of an interaction between a plant PGIP and an animal PG. Thus, plant PGIPs not only confer resistance against phytopathogens, but may also aid in defense against herbivorous beetles.
Collapse
Affiliation(s)
- Wiebke Haeger
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jana Henning
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
8
|
Novel biotechnological strategies to combat biotic stresses: polygalacturonase inhibitor (PGIP) proteins as a promising comprehensive option. Appl Microbiol Biotechnol 2020; 104:2333-2342. [DOI: 10.1007/s00253-020-10396-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 01/26/2023]
|
9
|
Wu T, Peng C, Li B, Wu W, Kong L, Li F, Chu Z, Liu F, Ding X. OsPGIP1-Mediated Resistance to Bacterial Leaf Streak in Rice is Beyond Responsive to the Polygalacturonase of Xanthomonas oryzae pv. oryzicola. RICE (NEW YORK, N.Y.) 2019; 12:90. [PMID: 31832906 PMCID: PMC6908543 DOI: 10.1186/s12284-019-0352-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/27/2019] [Indexed: 05/27/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) have been shown to recognize fungal polygalacturonases (PGs), which initiate innate immunity in various plant species. Notably, the connection between rice OsPGIPs and PGs in Xanthomonas oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak (BLS), remains unclear. Here, we show that OsPGIP1 was strongly induced after inoculating rice with the Xoc strain RS105. Furthermore, OsPGIP1-overexpressing (OV) and RNA interference (RNAi) rice lines increased and decreased, respectively, the resistance of rice to RS105, indicating that OsPGIP1 contributes to BLS resistance. Subsequently, we generated the unique PG mutant RS105Δpg, the virulence of which is attenuated compared to that of RS105. Surprisingly, the lesion lengths caused by RS105Δpg were similar to those caused by RS105 in the OV lines compared with wild-type ZH11 with reduced Xoc susceptibility. However, the lesion lengths caused by RS105Δpg were still significantly shorter in the OV lines than in ZH11, implying that OsPGIP1-mediated BLS resistance could respond to other virulence factors in addition to PGs. To explore the OsPGIP1-mediated resistance, RNA-seq analysis were performed and showed that many plant cell wall-associated genes and several MYB transcription factor genes were specifically expressed or more highly induced in the OV lines compared to ZH11 postinoculation with RS105. Consistent with the expression of the differentially expressed genes, the OV plants accumulated a higher content of jasmonic acid (JA) than ZH11 postinoculation with RS105, suggesting that the OsPGIP1-mediated resistance to BLS is mainly dependent on the plant cell wall-associated immunity and the JA signaling pathway.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chune Peng
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Beibei Li
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei Wu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fuchuan Li
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Oil Crops Research Institute, Wuhan, 430062, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
10
|
Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.
Collapse
|
11
|
Zhu G, Liang E, Lan X, Li Q, Qian J, Tao H, Zhang M, Xiao N, Zuo S, Chen J, Gao Y. ZmPGIP3 Gene Encodes a Polygalacturonase-Inhibiting Protein that Enhances Resistance to Sheath Blight in Rice. PHYTOPATHOLOGY 2019; 109:1732-1740. [PMID: 31479403 DOI: 10.1094/phyto-01-19-0008-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant polygalacturonase-inhibiting protein (PGIP) is a structural protein that can specifically recognize and bind to fungal polygalacturonase (PG). PGIP plays an important role in plant antifungal activity. In this study, a maize PGIP gene, namely ZmPGIP3, was cloned and characterized. Agarose diffusion assay suggested that ZmPGIP3 could inhibit the activity of PG. ZmPGIP3 expression was significantly induced by wounding, Rhizoctonia solani infection, jasmonate, and salicylic acid. ZmPGIP3 might be related to disease resistance. The gene encoding ZmPGIP3 was posed under the control of the ubiquitin promoter and constitutively expressed in transgenic rice. In an R. solani infection assay, ZmPGIP3 transgenic rice was more resistant to sheath blight than the wild-type rice regardless of the inoculated plant part (leaves or sheaths). Digital gene expression analysis indicated that the expression of some rice PGIP genes significantly increased in ZmPGIP3 transgenic rice, suggesting that ZmPGIP3 might activate the expression of some rice PGIP genes to resist sheath blight. Our investigation of the agronomic traits of ZmPGIP3 transgenic rice showed that ZmPGIP3 overexpression in rice did not show any detrimental phenotypic or agronomic effect. ZmPGIP3 is a promising candidate gene in the transgenic breeding for sheath blight resistance and crop improvement.
Collapse
Affiliation(s)
- Guang Zhu
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Enxing Liang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Xiang Lan
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qian Li
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jingjie Qian
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Haixia Tao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Zhang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Ning Xiao
- Lixiahe Region Agricultural Scientific Research Institute of Jiangsu, Yangzhou 225009, Jiangsu, China
| | - Shimin Zuo
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jianmin Chen
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yong Gao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Chen X, Chen Y, Zhang L, He Z, Huang B, Chen C, Zhang Q, Zuo S. Amino acid substitutions in a polygalacturonase inhibiting protein (OsPGIP2) increases sheath blight resistance in rice. RICE (NEW YORK, N.Y.) 2019; 12:56. [PMID: 31359264 PMCID: PMC6663954 DOI: 10.1186/s12284-019-0318-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/18/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND An economic strategy to control plant disease is to improve plant defense to pathogens by deploying resistance genes. Plant polygalacturonase inhibiting proteins (PGIPs) have a vital role in plant defense against phytopathogenic fungi by inhibiting fungal polygalacturonase (PG) activity. We previously reported that rice PGIP1 (OsPGIP1) inhibits PG activity in Rhizoctonia solani, the causal agent of rice sheath blight (SB), and is involved in regulating resistance to SB. RESULT Here, we report that OsPGIP2, the protein ortholog of OsPGIP1, does not possess PGIP activity; however, a few amino acid substitutions in a derivative of OsPGIP2, of which we provide support for L233F being the causative mutation, appear to impart OsPGIP2 with PG inhibition capability. Furthermore, the overexpression of mutated OsPGIP2L233F in rice significantly increased the resistance of transgenic lines and decreased SB disease rating scores. OsPGIP2L233F transgenic lines displayed an increased ability to reduce the tissue degradation caused by R. solani PGs as compared to control plants. Rice plants overexpressing OsPGIP2L233F showed no difference in agronomic traits and grain yield as compared to controls, thus demonstrating its potential use in rice breeding programs. CONCLUSIONS In summary, our results provide a new target gene for breeding SB resistance through genome-editing or natural allele mining.
Collapse
Affiliation(s)
- Xijun Chen
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| | - Yuwen Chen
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Lina Zhang
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Zhen He
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Benli Huang
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Chen Chen
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Qingxia Zhang
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Shimin Zuo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
13
|
Chen X, Chen Y, Zhang L, He Z, Huang B, Chen C, Zhang Q, Zuo S. Amino acid substitutions in a polygalacturonase inhibiting protein (OsPGIP2) increases sheath blight resistance in rice. RICE (NEW YORK, N.Y.) 2019; 12:56. [PMID: 31359264 DOI: 10.1186/s12284-019-0318-316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/18/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND An economic strategy to control plant disease is to improve plant defense to pathogens by deploying resistance genes. Plant polygalacturonase inhibiting proteins (PGIPs) have a vital role in plant defense against phytopathogenic fungi by inhibiting fungal polygalacturonase (PG) activity. We previously reported that rice PGIP1 (OsPGIP1) inhibits PG activity in Rhizoctonia solani, the causal agent of rice sheath blight (SB), and is involved in regulating resistance to SB. RESULT Here, we report that OsPGIP2, the protein ortholog of OsPGIP1, does not possess PGIP activity; however, a few amino acid substitutions in a derivative of OsPGIP2, of which we provide support for L233F being the causative mutation, appear to impart OsPGIP2 with PG inhibition capability. Furthermore, the overexpression of mutated OsPGIP2L233F in rice significantly increased the resistance of transgenic lines and decreased SB disease rating scores. OsPGIP2L233F transgenic lines displayed an increased ability to reduce the tissue degradation caused by R. solani PGs as compared to control plants. Rice plants overexpressing OsPGIP2L233F showed no difference in agronomic traits and grain yield as compared to controls, thus demonstrating its potential use in rice breeding programs. CONCLUSIONS In summary, our results provide a new target gene for breeding SB resistance through genome-editing or natural allele mining.
Collapse
Affiliation(s)
- Xijun Chen
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| | - Yuwen Chen
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Lina Zhang
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Zhen He
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Benli Huang
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Chen Chen
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Qingxia Zhang
- Horticulture and Plant Protection College, Yangzhou University, Yangzhou, 225009, China
| | - Shimin Zuo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
14
|
Locci F, Benedetti M, Pontiggia D, Citterico M, Caprari C, Mattei B, Cervone F, De Lorenzo G. An Arabidopsis berberine bridge enzyme-like protein specifically oxidizes cellulose oligomers and plays a role in immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:540-554. [PMID: 30664296 DOI: 10.1111/tpj.14237] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
The plant cell wall is the barrier that pathogens must overcome to cause a disease, and to this end they secrete enzymes that degrade the various cell wall components. Due to the complexity of these components, several types of oligosaccharide fragments may be released during pathogenesis and some of these can act as damage-associated molecular patterns (DAMPs). Well-known DAMPs are the oligogalacturonides (OGs) released upon degradation of homogalacturonan and the products of cellulose breakdown, i.e. the cellodextrins (CDs). We have previously reported that four Arabidopsis berberine bridge enzyme-like (BBE-like) proteins (OGOX1-4) oxidize OGs and impair their elicitor activity. We show here that another Arabidopsis BBE-like protein, which is expressed coordinately with OGOX1 during immunity, specifically oxidizes CDs with a preference for cellotriose (CD3) and longer fragments (CD4-CD6). Oxidized CDs show a negligible elicitor activity and are less easily utilized as a carbon source by the fungus Botrytis cinerea. The enzyme, named CELLOX (cellodextrin oxidase), is encoded by the gene At4 g20860. Plants overexpressing CELLOX display an enhanced resistance to B. cinerea, probably because oxidized CDs are a less valuable carbon source. Thus, the capacity to oxidize and impair the biological activity of cell wall-derived oligosaccharides seems to be a general trait of the family of BBE-like proteins, which may serve to homeostatically control the level of DAMPs to prevent their hyperaccumulation.
Collapse
Affiliation(s)
- Federica Locci
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Manuel Benedetti
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Daniela Pontiggia
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Matteo Citterico
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio Caprari
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, I-86090, Pesche (IS), Italy
| | - Benedetta Mattei
- Dipartimento MESVA, Università dell'Aquila, Piazzale Salvatore Tommasi 1, 67100, Coppito (AQ), Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
15
|
Liu N, Zhang X, Sun Y, Wang P, Li X, Pei Y, Li F, Hou Y. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton. Sci Rep 2017; 7:39840. [PMID: 28079053 PMCID: PMC5228132 DOI: 10.1038/srep39840] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/29/2016] [Indexed: 01/29/2023] Open
Abstract
Polygalacturonase-inhibiting protein (PGIP), belonging to a group of plant defence proteins, specifically inhibits endopolygalacturonases secreted by pathogens. Herein, we showed that purified GhPGIP1 is a functional inhibitor of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, the two fungal pathogens causing cotton wilt. Transcription of GhPGIP1 was increased in cotton upon infection, wounding, and treatment with defence hormone and H2O2. Resistance by GhPGIP1 was examined by its virus-induced gene silencing in cotton and overexpression in Arabidopsis. GhPGIP1-silenced cotton was highly susceptible to the infections. GhPGIP1 overexpression in transgenic Arabidopsis conferred resistance to the infection, accompanied by enhanced expression of pathogenesis-related proteins (PRs), isochorismate synthase 1 (ICS1), enhanced disease susceptibility 1 (EDS1), and phytoalexin-deficient 4 (PAD4) genes. Transmission electron microscopy revealed cell wall alteration and cell disintegration in plants inoculated with polygalacturonase (PGs), implying its role in damaging the cell wall. Docking studies showed that GhPGIP1 interacted strongly with C-terminal of V. dahliae PG1 (VdPG1) beyond the active site but weakly interacted with C-terminal of F. oxysporum f. sp. vasinfectum (FovPG1). These findings will contribute towards the understanding of the roles of PGIPs and in screening potential combat proteins with novel recognition specificities against evolving pathogenic factors for countering pathogen invasion.
Collapse
Affiliation(s)
- Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, People’s Republic of China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, People’s Republic of China
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People’s Republic of China
| |
Collapse
|
16
|
Chang HX, Yendrek CR, Caetano-Anolles G, Hartman GL. Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanases and polygalacturonases of Fusarium virguliforme. BMC Microbiol 2016; 16:147. [PMID: 27405320 PMCID: PMC4941037 DOI: 10.1186/s12866-016-0761-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/02/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Plant cell wall degrading enzymes (PCWDEs) are a subset of carbohydrate-active enzymes (CAZy) produced by plant pathogens to degrade plant cell walls. To counteract PCWDEs, plants release PCWDEs inhibitor proteins (PIPs) to reduce their impact. Several transgenic plants expressing exogenous PIPs that interact with fungal glycoside hydrolase (GH)11-type xylanases or GH28-type polygalacturonase (PG) have been shown to enhance disease resistance. However, many plant pathogenic Fusarium species were reported to escape PIPs inhibition. Fusarium virguliforme is a soilborne pathogen that causes soybean sudden death syndrome (SDS). Although the genome of F. virguliforme was sequenced, there were limited studies focused on the PCWDEs of F. virguliforme. Our goal was to understand the genomic CAZy structure of F. viguliforme, and determine if exogenous PIPs could be theoretically used in soybean to enhance resistance against F. virguliforme. RESULTS F. virguliforme produces diverse CAZy to degrade cellulose and pectin, similar to other necrotorphic and hemibiotrophic plant pathogenic fungi. However, some common CAZy of plant pathogenic fungi that catalyze hemicellulose, such as GH29, GH30, GH44, GH54, GH62, and GH67, were deficient in F. virguliforme. While the absence of these CAZy families might be complemented by other hemicellulases, F. virguliforme contained unique families including GH131, polysaccharide lyase (PL) 9, PL20, and PL22 that were not reported in other plant pathogenic fungi or oomycetes. Sequence analysis revealed two GH11 xylanases of F. virguliforme, FvXyn11A and FvXyn11B, have conserved residues that allow xylanase inhibitor protein I (XIP-I) binding. Structural modeling suggested that FvXyn11A and FvXyn11B could be blocked by XIP-I that serves as good candidate for developing transgenic soybeans. In contrast, one GH28 PG, FvPG2, contains an amino acid substitution that is potentially incompatible with the bean polygalacturonase-inhibitor protein II (PvPGIP2). CONCLUSIONS Identification and annotation of CAZy provided advanced understanding of genomic composition of PCWDEs in F. virguliforme. Sequence and structural analyses of FvXyn11A and FvXyn11B suggested both xylanases were conserved in residues that allow XIP-I inhibition, and expression of both xylanases were detected during soybean roots infection. We postulate that a transgenic soybean expressing wheat XIP-I may be useful for developing root rot resistance to F. virguliforme.
Collapse
Affiliation(s)
- Hao-Xun Chang
- />Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
| | | | | | - Glen L. Hartman
- />Department of Crop Sciences, University of Illinois, Urbana, IL 61801 USA
- />USDA–Agricultural Research Services, Urbana, IL 61801 USA
- />National Soybean Research Center, University of Illinois, 1101 W. Peabody Dr., Urbana, IL 61801 USA
| |
Collapse
|
17
|
Wang K, Remigi P, Anisimova M, Lonjon F, Kars I, Kajava A, Li CH, Cheng CP, Vailleau F, Genin S, Peeters N. Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2016; 17:553-64. [PMID: 26300048 PMCID: PMC6638336 DOI: 10.1111/mpp.12302] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The soil-borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1-like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine-rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease-controlling T3E, and sheds light on the co-evolutionary arms race between the bacterium and its hosts.
Collapse
Affiliation(s)
- Keke Wang
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
| | - Philippe Remigi
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Gruenalstrasse 14, 8820, Wädesnwil, Switzerland
| | - Fabien Lonjon
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
| | - Ilona Kars
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
| | - Andrey Kajava
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, UMR5237, 1919 Route de Mende, 34000, Montpellier, France
| | - Chien-Hui Li
- Institute of Plant Biology, National Taiwan University, Taipei, 11529, Taiwan, R.O.C
| | - Chiu-Ping Cheng
- Institute of Plant Biology, National Taiwan University, Taipei, 11529, Taiwan, R.O.C
| | - Fabienne Vailleau
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, 18 Chemin de Borde Rouge, Castanet-Tolosan, 31326, France
| | - Stéphane Genin
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
| | - Nemo Peeters
- INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, CS52627 Chemin de Borde Rouge, 31326, Castanet-Tolosan, France
| |
Collapse
|
18
|
Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci U S A 2015; 112:5533-8. [PMID: 25870275 DOI: 10.1073/pnas.1504154112] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.
Collapse
|
19
|
Kalunke RM, Tundo S, Benedetti M, Cervone F, De Lorenzo G, D'Ovidio R. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. FRONTIERS IN PLANT SCIENCE 2015; 6:146. [PMID: 25852708 PMCID: PMC4367531 DOI: 10.3389/fpls.2015.00146] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 05/20/2023]
Abstract
Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the pectin-depolymerizing activity of polygalacturonases secreted by microbial pathogens and insects. These ubiquitous inhibitors have a leucine-rich repeat structure that is strongly conserved in monocot and dicot plants. Previous reviews have summarized the importance of PGIP in plant defense and the structural basis of PG-PGIP interaction; here we update the current knowledge about PGIPs with the recent findings on the composition and evolution of pgip gene families, with a special emphasis on legume and cereal crops. We also update the information about the inhibition properties of single pgip gene products against microbial PGs and the results, including field tests, showing the capacity of PGIP to protect crop plants against fungal, oomycetes and bacterial pathogens.
Collapse
Affiliation(s)
- Raviraj M. Kalunke
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università della TusciaViterbo, Italy
| | - Silvio Tundo
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università della TusciaViterbo, Italy
| | - Manuel Benedetti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di RomaRoma, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di RomaRoma, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di RomaRoma, Italy
- Giulia De Lorenzo, Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Roma, Italy
| | - Renato D'Ovidio
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università della TusciaViterbo, Italy
- *Correspondence: Renato D'Ovidio, Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia, Università Degli Studi Della Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
20
|
Kalunke RM, Cenci A, Volpi C, O’Sullivan DM, Sella L, Favaron F, Cervone F, De Lorenzo G, D’Ovidio R. The pgip family in soybean and three other legume species: evidence for a birth-and-death model of evolution. BMC PLANT BIOLOGY 2014; 14:189. [PMID: 25034494 PMCID: PMC4115169 DOI: 10.1186/s12870-014-0189-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/14/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. RESULTS BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. CONCLUSIONS The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.
Collapse
Affiliation(s)
- Raviraj M Kalunke
- Dipartimento di Scienze e tecnologie per l’Agricoltura, le Foreste, la Natura e l’Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, Viterbo, Italy
| | - Alberto Cenci
- Bioversity International, Commodity systems & genetic resources programme, Parc Scientifique Agropolis II, 1990 Boulevard de la Lironde, Montpellier Cedex 5, 34397, France
| | - Chiara Volpi
- Dipartimento di Scienze e tecnologie per l’Agricoltura, le Foreste, la Natura e l’Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, Viterbo, Italy
- Present address: Enza Zaden Italia Research SRL, S.S. Aurelia km 96.710, Tarquinia (VT), 01016, Italy
| | - Donal M O’Sullivan
- NIAB, Huntingdon Road, Cambridge CB3 0LE, UK
- Present address: School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK
| | - Luca Sella
- Dipartimento Territorio e Sistemi agro-forestali (TESAF), Università di Padova, Agripolis, Viale dell’Università 16, Legnaro (PD), 35020, Italy
| | - Francesco Favaron
- Dipartimento Territorio e Sistemi agro-forestali (TESAF), Università di Padova, Agripolis, Viale dell’Università 16, Legnaro (PD), 35020, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro, 5, Roma, 00185, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro, 5, Roma, 00185, Italy
| | - Renato D’Ovidio
- Dipartimento di Scienze e tecnologie per l’Agricoltura, le Foreste, la Natura e l’Energia, (DAFNE), Università della Tuscia, Via S. Camillo de Lellis snc, Viterbo, Italy
| |
Collapse
|