1
|
Lien VT, Hauge E, Nuruddin S, Klaveness J, Olberg DE. Synthesis and preclinical evaluation of a selective MET kinase positron emission tomography tracer. J Labelled Comp Radiopharm 2023; 66:452-460. [PMID: 37867318 DOI: 10.1002/jlcr.4066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
The tyrosine kinase MET (hepatocyte growth factor receptor) is activated or mutated in a wide range of cancers and is often correlated with a poor prognosis. Precision medicine with positron emission tomography (PET) can potentially aid in the assessment of tumor biochemistry and heterogeneity, which can prompt the selection of the most effective therapeutic regimes. The selective MET inhibitor PF04217903 (1) formed the basis for a bioisosteric replacement, leading to the deoxyfluorinated analog [18 F]2. [18 F]2 could be synthesized with a "hydrous fluoroethylation" protocol in 6.3 ± 2.6% radiochemical yield and a molar activity of >50 GBq/μmol. In vitro autoradiography indicated that [18 F]2 selectively binds to MET in PC3 tumor tissue, and in vivo biodistribution in mice showed predominantly a hepatobiliary excretion along with a low retention of radiotracer in other organs.
Collapse
Affiliation(s)
- Vegard Torp Lien
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Norwegian Medical Cyclotron Center, Oslo, Norway
| | - Emily Hauge
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Norwegian Medical Cyclotron Center, Oslo, Norway
| | | | - Jo Klaveness
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Dag Erlend Olberg
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Norwegian Medical Cyclotron Center, Oslo, Norway
| |
Collapse
|
2
|
Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev 2019; 151-152:262-288. [PMID: 29410158 PMCID: PMC6072632 DOI: 10.1016/j.addr.2018.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Institute for Molecular Medicine, Fort Worth, TX, United States
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Kim E, Koo H. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem Sci 2019; 10:7835-7851. [PMID: 31762967 PMCID: PMC6855312 DOI: 10.1039/c9sc03368h] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, click chemistry has provided important advances in biomedical research fields. Particularly, copper-free click chemistry including strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse-electron-demand Diels-Alder (iEDDA) reactions enable fast and specific chemical conjugation under aqueous conditions without the need for toxic catalysts. Click chemistry has resulted in a change of paradigm, showing that artificial chemical reactions can occur on cell surfaces, in cell cytosol, or within the body, which is not easy with most other chemical reactions. Click chemistry in vitro allows specific labelling of cellular target proteins and studying of drug target engagement with drug surrogates in live cells. Furthermore, cellular membrane lipids and proteins could be selectively labelled with click chemistry in vitro and cells could be adhered together using click chemistry. Click chemistry in vivo enables efficient and effective molecular imaging and drug delivery for diagnosis and therapy. Click chemistry ex vivo can be used to develop molecular tools to understand tissue development, diagnosis of diseases, and therapeutic monitoring. Overall, the results from research to date suggest that click chemistry has emerged as a valuable tool in biomedical fields as well as in organic chemistry.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Molecular Science and Technology , Ajou University , Suwon 16499 , Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea .
- Department of Biomedicine & Health Sciences , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea
- Catholic Photomedicine Research Institute , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea
| |
Collapse
|
4
|
Prevet H, Collins I. Labelled chemical probes for demonstrating direct target engagement in living systems. Future Med Chem 2019; 11:1195-1224. [PMID: 31280668 DOI: 10.4155/fmc-2018-0370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Demonstrating target engagement in living systems can help drive successful drug discovery. Target engagement and occupancy studies in cells confirm direct binding of a ligand to its intended target protein and provide the binding affinity. Combined with biomarkers to measure the functional consequences of target engagement, these experiments can increase confidence in the relationship between in vitro pharmacology and observed biological effects. In this review, we focus on chemically and radioactively labelled probes as key reagents for performing such experiments. Using recent examples, we examine how the labelled probes have been employed in combination with unlabelled ligands to quantify target engagement in cells and in animals. Finally, we consider future developments of this emerging methodology.
Collapse
Affiliation(s)
- Hugues Prevet
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP, UK
| |
Collapse
|
5
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
6
|
Kim YR, Kim YH, Kim SW, Lee YJ, Chae DE, Kim KA, Lee ZW, Kim ND, Choi JS, Choi IS, Lee KB. A bioorthogonal approach for imaging the binding between Dasatinib and its target proteins inside living cells. Chem Commun (Camb) 2018; 52:11764-11767. [PMID: 27711355 DOI: 10.1039/c6cc07011f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein, we present a simple readout of the binding between a chemical drug and its target proteins in the cytoplasm by using a two-step bioorthogonal labeling method combined with spatially-localized expression of proteins. Dasatinib was modified with trans-cyclooctene (TCO), and its cytoplasmic target kinases were expressed in intracellular compartments, such as endosomes and F-actins. After bioorthogonal labeling, the colocalization between Dasatinib and its target proteins was observed in intracellular compartments.
Collapse
Affiliation(s)
- Young-Rang Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea.
| | - Young Hye Kim
- Biomedical Omics Group, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea
| | - Sung Woo Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea.
| | - Yong Ju Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea.
| | - Dong-Eon Chae
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea. and Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
| | - Kyung-A Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea. and Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
| | - Zee-Won Lee
- Drug Discovery System & Pharmaceuticals, Inc. (DDSPharm), Daejeon 34165, Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Jong-Soon Choi
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea. and Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea.
| |
Collapse
|
7
|
Vinegoni C, Fumene Feruglio P, Brand C, Lee S, Nibbs AE, Stapleton S, Shah S, Gryczynski I, Reiner T, Mazitschek R, Weissleder R. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nat Protoc 2017; 12:1472-1497. [PMID: 28686582 PMCID: PMC5928516 DOI: 10.1038/nprot.2017.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sungon Lee
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- School of Electrical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Antoinette E Nibbs
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shawn Stapleton
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil Shah
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ignacy Gryczynski
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Kang K, Park J, Kim E. Tetrazine ligation for chemical proteomics. Proteome Sci 2017; 15:15. [PMID: 28674480 PMCID: PMC5485739 DOI: 10.1186/s12953-017-0121-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022] Open
Abstract
Determining small molecule-target protein interaction is essential for the chemical proteomics. One of the most important keys to explore biological system in chemical proteomics field is finding first-class molecular tools. Chemical probes can provide great spatiotemporal control to elucidate biological functions of proteins as well as for interrogating biological pathways. The invention of bioorthogonal chemistry has revolutionized the field of chemical biology by providing superior chemical tools and has been widely used for investigating the dynamics and function of biomolecules in live condition. Among 20 different bioorthogonal reactions, tetrazine ligation has been spotlighted as the most advanced bioorthogonal chemistry because of their extremely faster kinetics and higher specificity than others. Therefore, tetrazine ligation has a tremendous potential to enhance the proteomic research. This review highlights the current status of tetrazine ligation reaction as a molecular tool for the chemical proteomics.
Collapse
Affiliation(s)
- Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104 Republic of Korea
| | - Jongmin Park
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114 USA
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499 Republic of Korea
| |
Collapse
|
9
|
Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 2017; 113:61-86. [PMID: 27266447 PMCID: PMC5136524 DOI: 10.1016/j.addr.2016.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Therapeutic nanoparticles (NPs) can deliver cytotoxic chemotherapeutics and other drugs more safely and efficiently to patients; furthermore, selective delivery to target tissues can theoretically be accomplished actively through coating NPs with molecular ligands, and passively through exploiting physiological "enhanced permeability and retention" features. However, clinical trial results have been mixed in showing improved efficacy with drug nanoencapsulation, largely due to heterogeneous NP accumulation at target sites across patients. Thus, a clear need exists to better understand why many NP strategies fail in vivo and not result in significantly improved tumor uptake or therapeutic response. Multicolor in vivo confocal fluorescence imaging (intravital microscopy; IVM) enables integrated pharmacokinetic and pharmacodynamic (PK/PD) measurement at the single-cell level, and has helped answer key questions regarding the biological mechanisms of in vivo NP behavior. This review summarizes progress to date and also describes useful technical strategies for successful IVM experimentation.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Xu H, Roberts LR, Chou S, Pierce B, Narayanan A, Jones LH. Quantitative measurement of intracellular HDAC1/2 drug occupancy using a trans-cyclooctene largazole thiol probe. MEDCHEMCOMM 2017; 8:767-770. [PMID: 30108795 DOI: 10.1039/c6md00633g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/23/2016] [Indexed: 11/21/2022]
Abstract
Histone deacetylases (HDACs) regulate diverse cellular processes, and are promising targets for a number of diseases. Here we describe the design and utilization of a largazole-based chemical probe to quantitatively measure the intracellular occupancy of HDAC1 and HDAC2 by dacinostat. Surprisingly, the probe was unable to enrich HDAC3 despite its nanomolar potency in a biochemical assay, further proving the necessity of cell-based target occupancy assays to understand compound potency in physiologically-relevant settings. This occupancy assay has the potential to aid the development of novel HDAC1/2 inhibitors in drug discovery.
Collapse
Affiliation(s)
- Hua Xu
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , MA 02135 , USA .
| | - Lee R Roberts
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , MA 02135 , USA .
| | - Song Chou
- Pfizer Inc. Rare Diseases Research Unit , 610 Main Street , Cambridge , MA 02135 , USA
| | - Betsy Pierce
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , CT 06340 , USA
| | - Arjun Narayanan
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , MA 02135 , USA .
| | - Lyn H Jones
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , MA 02135 , USA .
| |
Collapse
|
11
|
Abstract
Imaging reveals complex structures and dynamic interactive processes, located deep inside the body, that are otherwise difficult to decipher. Numerous imaging modalities harness every last inch of the energy spectrum. Clinical modalities include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, and light-based methods [endoscopy and optical coherence tomography (OCT)]. Research modalities include various light microscopy techniques (confocal, multiphoton, total internal reflection, superresolution fluorescence microscopy), electron microscopy, mass spectrometry imaging, fluorescence tomography, bioluminescence, variations of OCT, and optoacoustic imaging, among a few others. Although clinical imaging and research microscopy are often isolated from one another, we argue that their combination and integration is not only informative but also essential to discovering new biology and interpreting clinical datasets in which signals invariably originate from hundreds to thousands of cells per voxel.
Collapse
|
12
|
Prasai B, Silvers WC, McCarley RL. Oxidoreductase-Facilitated Visualization and Detection of Human Cancer Cells. Anal Chem 2015; 87:6411-8. [PMID: 26005900 DOI: 10.1021/acs.analchem.5b01615] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED Achieving highly selective and sensitive detection/visualization of intracellular biological events through the use of cell-penetrable, bioanalyte-activatable, turn-on probes is dependent on the presence of specific event-linked cellular biomarkers, if and only if there exist activatable probes that appropriately respond to the biomarker analyte. Here is described the evaluation of, and use in cellular imaging studies, a previously undisclosed naphthalimide probe QMeNN, whose fluorescence is deactivated by photoinduced electron transfer (PeT) quenching that results from the presence of a covalently linked biomarker-specific quinone trigger group. Highly selective and rapid activation of the quinone group by the human cancer tumor-linked NAD(P)H quinone oxido-reductase isozyme 1 (hNQO1) results in fast trigger group removal to yield a highly fluorescent green-energy-range reporter that possesses a high molar absorptivity; there is a 136-fold increase in brightness for the enzymatically produced reporter versus probe precursor, a value 4 times greater than previously reported for the hNQO1 analyte. The novel probe is taken up and activated rapidly within only hNQO1-positive human cancer cells; addition of an hNQO1 inhibitor prevents the selective activation of the probe. Comparison of cytosolic fluorescence intensity in positive cells versus background in negative cells yields a quantitative metric (positive-to-negative ratio, PNR) for judging hNQO1 activity. We show it is possible to determine hNQO1 presence in previously studied colorectal cancer cells and the unexplored ovarian cancer cell line NIH:OVCAR-3, with respective PNR values of 926 and 34 being obtained. Even with 10 min probe incubation, ready discrimination of positive cells from negative cells is achieved. Cell viability is unaffected by probe presence, thereby highlighting the practicality of probe use in live-cell imaging applications.
Collapse
Affiliation(s)
- Bijeta Prasai
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - William C Silvers
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Robin L McCarley
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| |
Collapse
|
13
|
Denk C, Svatunek D, Filip T, Wanek T, Lumpi D, Fröhlich J, Kuntner C, Mikula H. Development of a (18) F-labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging. Angew Chem Int Ed Engl 2014; 53:9655-9. [PMID: 24989029 DOI: 10.1002/anie.201404277] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/09/2014] [Indexed: 11/07/2022]
Abstract
A low-molecular-weight (18) F-labeled tetrazine derivative was developed as a highly versatile tool for bioorthogonal PET imaging. Prosthetic groups and undesired carrying of (18) F through additional steps were evaded by direct (18) F-fluorination of an appropriate tetrazine precursor. Reaction kinetics of the cycloaddition with trans-cyclooctenes were investigated by applying quantum chemical calculations and stopped-flow measurements in human plasma; the results indicated that the labeled tetrazine is suitable as a bioorthogonal probe for the imaging of dienophile-tagged (bio)molecules. In vitro and in vivo investigations revealed high stability and PET/MRI in mice showed fast homogeneous biodistribution of the (18) F-labeled tetrazine that also passes the blood-brain barrier. An in vivo click experiment confirmed the bioorthogonal behavior of this novel tetrazine probe. Due to favorable chemical and pharmacokinetic properties this bioorthogonal agent should find application in bioimaging and biomedical research.
Collapse
Affiliation(s)
- Christoph Denk
- Institut für Angewandte Synthesechemie, Technische Universität Wien (TUW) (Austria)
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Denk C, Svatunek D, Filip T, Wanek T, Lumpi D, Fröhlich J, Kuntner C, Mikula H. Entwicklung eines18F-markierten Tetrazins mit vorteilhaften pharmakokinetischen Eigenschaften für die bioorthogonale Positronenemissionstomographie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Sprachman MM, Laughney AM, Kohler RH, Weissleder R. In vivo imaging of multidrug resistance using a third generation MDR1 inhibitor. Bioconjug Chem 2014; 25:1137-42. [PMID: 24806886 PMCID: PMC4098115 DOI: 10.1021/bc500154c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cellular up-regulation of multidrug resistance protein 1 (MDR1) is a common cause for resistance to chemotherapy; development of third generation MDR1 inhibitors-several of which contain a common 6,7-dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline substructure-is underway. Efficacy of these agents has been difficult to ascertain, partly due to a lack of pharmacokinetic reporters for quantifying inhibitor localization and transport dynamics. Some of the recent third generation inhibitors have a pendant heterocycle, for example, a chromone moiety, which we hypothesized could be converted to a fluorophore. Following synthesis and teasing of a small set of analogues, we identified one lead compound that can be used as a cellular imaging agent that exhibits structural similarity and behavior akin to the latest generation of MDR1 inhibitors.
Collapse
Affiliation(s)
- Melissa M Sprachman
- Center for Systems Biology, Massachusetts General Hospital , 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | | | | | | |
Collapse
|