1
|
Stewart M, Cameron S, Thunert M, Zampiron A, Wainwright D, Nikora V. High-resolution measurements of swordfish skin surface roughness. BIOINSPIRATION & BIOMIMETICS 2023; 19:016007. [PMID: 37995345 DOI: 10.1088/1748-3190/ad0f32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The three-dimensional morphology of swordfish skin roughness remains poorly understood. Subsequently, its importance to the overall physiology and hydrodynamic performance of the swordfish is yet to be determined. This is at least partly attributable to the inherent difficulty in making the required measurements of these complex biological surfaces. To address this, here two sets of novel high-resolution measurements of swordfish skin, obtained using a modular optical coherence tomography system and a gel-based stereo-profilometer, are reported and compared. Both techniques are shown to provide three-dimensional morphological data at micron-scale resolution. The results indicate that the skin surface is populated with spiny roughness elements, typically elongated in the streamwise direction, in groups of up to six, and in good agreement with previously reported information based on coarser measurements. In addition, our data also provide new information on the spatial distribution and variability of these roughness features. Two approaches, one continuous and another discrete, are used to derive various topographical metrics that characterize the surface texture of the skin. The information provided here can be used to develop statistically representative synthetic models of swordfish skin roughness.
Collapse
Affiliation(s)
- M Stewart
- School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| | - S Cameron
- School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| | | | - A Zampiron
- School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| | - D Wainwright
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - V Nikora
- School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
2
|
Bandyopadhyay PR. Acoustic predation in a sailfish-flying fish cloak. Sci Rep 2023; 13:13820. [PMID: 37620523 PMCID: PMC10449807 DOI: 10.1038/s41598-023-40986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
When a sailfish circles to corral a school of flying fish in a vortex near the ocean surface, a tiny patch of arced surface waves confined to oppositely placed 70° sectors appears dispersing coherently, but why? It is modeled that, when the fish motions stop suddenly, the corralled school compacts, the tail shed propulsion vortices touch, break and radiate the pressure released from the centrifugal vortex rotation creating an acoustic monopole. The surface-wave patch is a section of the sphere of radiation. The oppositely placed curved bodies of the sailfish and the flying fish act as concave acoustic mirrors about the monopole creating a reverberating bell-shaped cloak in between which vibrates the ear bones and bladders of the flying fish disorienting them. A cup of water firmly struck on a table induces a similar vibration of a purely radial mode. The sailfish circles around the school at a depth where the wind induced underwater toroidal motion in the vertical plane becomes negligible such that the flying fish is unable to sense the tailwind direction above, limiting the ability to swim up and emerge in the right direction to glide. Experiments confirm that the flying fish tail rigidity is too low for a quick ballistic exit, which is not called for either.
Collapse
|
3
|
Li G, Liu G, Leng D, Fang X, Li G, Wang W. Underwater Undulating Propulsion Biomimetic Robots: A Review. Biomimetics (Basel) 2023; 8:318. [PMID: 37504206 PMCID: PMC10807579 DOI: 10.3390/biomimetics8030318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The traditional propeller-based propulsion of underwater robots is inefficient and poorly adapted to practice. By contrast, underwater biomimetic robots show better stability and maneuverability in harsh marine environments. This is particularly true of undulating propulsion biomimetic robots. This paper classifies the existing underwater biomimetic robots and outlines their main contributions to the field. The propulsion mechanisms of underwater biomimetic undulating robots are summarized based on theoretical, numerical and experimental studies. Future perspectives on underwater biomimetic undulating robots are also presented, filling the gaps in the existing literature.
Collapse
Affiliation(s)
| | - Guijie Liu
- Department of Mechanical and Electrical Engineering, Ocean University of China, Qingdao 266000, China; (G.L.)
| | - Dingxin Leng
- Department of Mechanical and Electrical Engineering, Ocean University of China, Qingdao 266000, China; (G.L.)
| | | | | | | |
Collapse
|
4
|
Biomimetics Design Optimization and Drag Reduction Analysis for Indonesia N219 Seaplanes Catamaran Float. Processes (Basel) 2021. [DOI: 10.3390/pr9112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Design optimization on the Indonesia N219 seaplane catamaran is necessary to provide better service to rural islands of Indonesia. This research aims at decreasing drag using a design based on biomimicry by imitating the hydrodynamic characteristics of sailfish (Istiophorus platypterus) for pontoon floats. The design is then validated using a numerical fluid test using ANSYS Fluent to see the reduction in drag due to the change from a conventional or Wipeline® 13000 design to a biomimetics adaptation design. Next, further optimization was carried out based on the adaptation design based on trim tests, clearance tests, and deadrise angle dimensions suitable for biomimicry designs at Froude number speeds of 0.4 to 0.7. The design results with the adaptation of biomimicry show that a change in the design with this optimization affects a drag reduction that reaches 30% of the total drag generated by the conventional design.
Collapse
|
5
|
Gutarra S, Rahman IA. The locomotion of extinct secondarily aquatic tetrapods. Biol Rev Camb Philos Soc 2021; 97:67-98. [PMID: 34486794 DOI: 10.1111/brv.12790] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
The colonisation of freshwater and marine ecosystems by land vertebrates has repeatedly occurred in amphibians, reptiles, birds and mammals over the course of 300 million years. Functional interpretations of the fossil record are crucial to understanding the forces shaping these evolutionary transitions. Secondarily aquatic tetrapods have acquired a suite of anatomical, physiological and behavioural adaptations to locomotion in water. However, much of this information is lost for extinct clades, with fossil evidence often restricted to osteological data and a few extraordinary specimens with soft tissue preservation. Traditionally, functional morphology in fossil secondarily aquatic tetrapods was investigated through comparative anatomy and correlation with living functional analogues. However, in the last two decades, biomechanics in palaeobiology has experienced a remarkable methodological shift. Anatomy-based approaches are increasingly rigorous, informed by quantitative techniques for analysing shape. Moreover, the incorporation of physics-based methods has enabled objective tests of functional hypotheses, revealing the importance of hydrodynamic forces as drivers of evolutionary innovation and adaptation. Here, we present an overview of the latest research on the locomotion of extinct secondarily aquatic tetrapods, with a focus on amniotes, highlighting the state-of-the-art experimental approaches used in this field. We discuss the suitability of these techniques for exploring different aspects of locomotory adaptation, analysing their advantages and limitations and laying out recommendations for their application, with the aim to inform future experimental strategies. Furthermore, we outline some unexplored research avenues that have been successfully deployed in other areas of palaeobiomechanical research, such as the use of dynamic models in feeding mechanics and terrestrial locomotion, thus providing a new methodological synthesis for the field of locomotory biomechanics in extinct secondarily aquatic vertebrates. Advances in imaging technology and three-dimensional modelling software, new developments in robotics, and increased availability and awareness of numerical methods like computational fluid dynamics make this an exciting time for analysing form and function in ancient vertebrates.
Collapse
Affiliation(s)
- Susana Gutarra
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.,Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K
| | - Imran A Rahman
- Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K.,Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, U.K
| |
Collapse
|
6
|
Graham ZA. Moving in fast waters: the exaggerated claw gape of the New River crayfish ( Cambarus chasmodactlyus) aids in locomotor performance. Biol Lett 2021; 17:20210045. [PMID: 34006118 DOI: 10.1098/rsbl.2021.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Humans are inherently fascinated by exaggerated morphological structures such as elk antlers and peacock trains. Because these traits are costly to develop and wield, the environment in which they are used can select for specific sizes or shapes to minimize such costs. In aquatic environments, selection to reduce drag can constrain the form of exaggerated structures; this is presumably why exaggerated morphologies are less common in aquatic environments compared to terrestrial ones. Interestingly, some crayfish species possess claws with an exaggerated gape between their pinching fingers, but the function of this claw gape is unknown. Here, I describe and test the function of the exaggerated claw gape of the New River crayfish, Cambarus chasmodactylus. Specifically, I test the hypothesis that the claw gape aids in movement against flowing currents. I found that both claw size and gape size were sexually dimorphic in this species and that males have disproportionately larger gapes compared to females. By experimentally covering their claw gape and testing crayfish locomotor performance, I found that individuals with their gape blocked were 30% slower than crayfish with a natural gape. My results highlight a unique adaptation that compensates for wielding an exaggerated structure in aquatic environments.
Collapse
Affiliation(s)
- Zackary A Graham
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Hansen MJ, Krause S, Breuker M, Kurvers RHJM, Dhellemmes F, Viblanc PE, Müller J, Mahlow C, Boswell K, Marras S, Domenici P, Wilson ADM, Herbert-Read JE, Steffensen JF, Fritsch G, Hildebrandt TB, Zaslansky P, Bach P, Sabarros PS, Krause J. Linking hunting weaponry to attack strategies in sailfish and striped marlin. Proc Biol Sci 2020; 287:20192228. [PMID: 31937224 DOI: 10.1098/rspb.2019.2228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Linking morphological differences in foraging adaptations to prey choice and feeding strategies has provided major evolutionary insights across taxa. Here, we combine behavioural and morphological approaches to explore and compare the role of the rostrum (bill) and micro-teeth in the feeding behaviour of sailfish (Istiophorus platypterus) and striped marlin (Kajikia audax) when attacking schooling sardine prey. Behavioural results from high-speed videos showed that sailfish and striped marlin both regularly made rostrum contact with prey but displayed distinct strategies. Marlin used high-speed dashes, breaking schools apart, often contacting prey incidentally or tapping at isolated prey with their rostra; while sailfish used their rostra more frequently and tended to use a slower, less disruptive approach with more horizontal rostral slashes on cohesive prey schools. Capture success per attack was similar between species, but striped marlin had higher capture rates per minute. The rostra of both species are covered with micro-teeth, and micro-CT imaging showed that species did not differ in average micro-tooth length, but sailfish had a higher density of micro-teeth on the dorsal and ventral sides of their rostra and a higher amount of micro-teeth regrowth, suggesting a greater amount of rostrum use is associated with more investment in micro-teeth. Our analysis shows that the rostra of billfish are used in distinct ways and we discuss our results in the broader context of relationships between morphological and behavioural feeding adaptations across species.
Collapse
Affiliation(s)
- M J Hansen
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - S Krause
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck 23562, Germany
| | - M Breuker
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck 23562, Germany
| | - R H J M Kurvers
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany.,Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
| | - F Dhellemmes
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - P E Viblanc
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - J Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, an der Humboldt-Universität zu Berlin, Invalidenstr. 43, Berlin 10115, Germany
| | - C Mahlow
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, an der Humboldt-Universität zu Berlin, Invalidenstr. 43, Berlin 10115, Germany
| | - K Boswell
- Department of Biological Science, Marine Sciences Program, Florida International University, North Miami, FL 33181, USA
| | - S Marras
- IAMC-CNR, Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - P Domenici
- IAMC-CNR, Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - A D M Wilson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - J E Herbert-Read
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - J F Steffensen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, Helsingør 3000, Denmark
| | - G Fritsch
- Department for Reproduction Management and Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße, Berlin 1710315, Germany
| | - T B Hildebrandt
- Department for Reproduction Management and Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße, Berlin 1710315, Germany
| | - P Zaslansky
- Julius Wolff Institute, Charité - Universitätsmedizin, Berlin 13353, Germany
| | - P Bach
- IRD, Centre Halieutique Méditerranéen et Tropical, BP 171, Sète Cedex 34203, France
| | - P S Sabarros
- IRD, Centre Halieutique Méditerranéen et Tropical, BP 171, Sète Cedex 34203, France.,Institut de Recherche pour le Développement, UMR 248 MARBEC, Ob7, Avenue Jean Monnet, CS 30171, Sète Cedex 34203, France
| | - J Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany.,Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| |
Collapse
|
8
|
Gutarra S, Moon BC, Rahman IA, Palmer C, Lautenschlager S, Brimacombe AJ, Benton MJ. Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs. Proc Biol Sci 2019; 286:20182786. [PMID: 30836867 PMCID: PMC6458325 DOI: 10.1098/rspb.2018.2786] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/11/2019] [Indexed: 01/05/2023] Open
Abstract
Ichthyosaurs are an extinct group of fully marine tetrapods that were well adapted to aquatic locomotion. During their approximately 160 Myr existence, they evolved from elongate and serpentine forms into stockier, fish-like animals, convergent with sharks and dolphins. Here, we use computational fluid dynamics (CFD) to quantify the impact of this transition on the energy demands of ichthyosaur swimming for the first time. We run computational simulations of water flow using three-dimensional digital models of nine ichthyosaurs and an extant functional analogue, a bottlenose dolphin, providing the first quantitative evaluation of ichthyosaur hydrodynamics across phylogeny. Our results show that morphology did not have a major effect on the drag coefficient or the energy cost of steady swimming through geological time. We show that even the early ichthyosaurs produced low levels of drag for a given volume, comparable to those of a modern dolphin, and that deep 'torpedo-shaped' bodies did not reduce the cost of locomotion. Our analysis also provides important insight into the choice of scaling parameters for CFD applied to swimming mechanics, and underlines the great influence of body size evolution on ichthyosaur locomotion. A combination of large bodies and efficient swimming modes lowered the cost of steady swimming as ichthyosaurs became increasingly adapted to a pelagic existence.
Collapse
Affiliation(s)
- Susana Gutarra
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Benjamin C. Moon
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Imran A. Rahman
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - Colin Palmer
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alison J. Brimacombe
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michael J. Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
9
|
Habegger L, Motta P, Huber D, Pulaski D, Grosse I, Dumont E. Feeding Biomechanics in Billfishes: Investigating the Role of the Rostrum through Finite Element Analysis. Anat Rec (Hoboken) 2019; 303:44-52. [PMID: 30623594 DOI: 10.1002/ar.24059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022]
Abstract
Billfishes are large pelagic fishes that have an extreme elongation of the upper jaw bones forming the rostrum. Recent kinematic and biomechanical studies show the rostrum to be associated to feeding, however, it is less clear how the wide range of morphologies present among billfish may affect their striking behavior. In this study, we aim to assess the mechanical performance of different rostrum morphologies under loads that simulate feeding and to test existing hypotheses of species-specific feeding behaviors. We use finite element analysis (FEA)-a physics-based method that predicts patterns of stress and strain in morphologically complex structures under specified boundary conditions-to test hypotheses on the form and mechanical performance of billfish rostra. Patterns of von Mises stress and total strain energy suggest that distinct rostral morphologies may be functionally segregated. The rounder blue marlin rostrum may be better suited for a wide range of slashing motions to disable prey, whereas the more flattened swordfish rostrum appears to be more specialized for lateral swiping during prey capture. The almost homogenous stress distribution along each rostrum implies their possible use as a predatory weapon regardless of morphological differences between species. The mechanical implications of other less commonly reported behaviors such as spearing are discussed, as well as the potential impact of hydrodynamics in shaping the evolution of the rostrum in this lineage. Anat Rec, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Laura Habegger
- Department of Biology, Florida Southern College, 111 Lake Hollingsworth Dr., Lakeland, Florida.,Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida
| | - Philip Motta
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida
| | - Daniel Huber
- Department of Biology, The University of Tampa, 401 W. Kennedy Blvd, Tampa, Florida
| | - Daniel Pulaski
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts.,Department of Mechanical and Industrial Engineering, University of Massachusetts, 160 Governor's Drive, Amherst, Massachusetts
| | - Ian Grosse
- Department of Mechanical and Industrial Engineering, University of Massachusetts, 160 Governor's Drive, Amherst, Massachusetts
| | - Elizabeth Dumont
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts.,School of Natural Sciences, University of California, Merced, 5200 North Lake Rd, Merced, California
| |
Collapse
|
10
|
Nevatte RJ, Wueringer BE, Jacob DE, Park JM, Williamson JE. First insights into the function of the sawshark rostrum through examination of rostral tooth microwear. JOURNAL OF FISH BIOLOGY 2017; 91:1582-1602. [PMID: 29034467 DOI: 10.1111/jfb.13467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Potential roles of the rostrum of sawsharks (Pristiophoridae), including predation and self-defence, were assessed through a variety of inferential methods. Comparison of microwear on the surface of the rostral teeth of sawsharks and sawfishes (Pristidae) show that microwear patterns are alike and suggest that the elongate rostra in these two elasmobranch families are used for a similar purpose (predation). Raman spectroscopy indicates that the rostral teeth of both sawsharks and sawfishes are composed of hydroxyapatite, but differ in their collagen content. Sawfishes possess collagen throughout their rostral teeth whereas collagen is present only in the centre of the rostral teeth of sawsharks, which may relate to differences in ecological use. The ratio of rostrum length to total length in the common sawshark Pristiophorus cirratus was found to be similar to the largetooth sawfish Pristis pristis but not the knifetooth sawfish Anoxypristis cuspidata. Analysis of the stomach contents of P. cirratus indicates that the diet consists of demersal fishes and crustaceans, with shrimp from the family Pandalidae being the most important dietary component. No prey item showed evidence of wounds inflicted by the rostral teeth. In light of the similarities in microwear patterns, rostral tooth chemistry and diet with sawfishes, it is hypothesised that sawsharks use their rostrum in a similar manner for predation (sensing and capturing prey) and possibly for self-defence.
Collapse
Affiliation(s)
- R J Nevatte
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - B E Wueringer
- College of Marine and Environmental Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
- Sharks and Rays Australia, P. O. Box 575, Bungalow, Queensland, 4870, Australia
| | - D E Jacob
- Department of Earth and Planetary Sciences, Macquarie University, New South Wales 2109, Australia
| | - J M Park
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - J E Williamson
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
11
|
Loose EL, Hilton EJ, Graves JE. Comparative morphology of the scales of roundscale spearfish Tetrapturus georgii and white marlin Kajikia albida. JOURNAL OF FISH BIOLOGY 2017; 90:1548-1569. [PMID: 28097667 DOI: 10.1111/jfb.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
The comparative morphology of the scales of roundscale spearfish Tetrapturus georgii and white marlin Kajikia albida was investigated. In addition, variation in scale morphology across different body regions within each species was analysed. Although considerable morphological variation was observed among scales from different body regions in both species, scales of K. albida generally have pointed anterior ends, fewer posterior points and are more heavily imbricated than those of T. georgii, which are frequently rounded anteriorly, often have many posterior points and are separated farther within the skin. In all sampled body regions and individuals, scales of T. georgii are significantly broader and have a lower length-to-width aspect ratio than those of K. albida. Superficial to the scales are denticular plates, which are ossified formations occurring on the surface layer of the epidermis; these were observed and described for T. georgii, K. albida and blue marlin Makaira nigricans. Detailed scale descriptions allow for a more accurate characterization of the variation within and differences between these two species and could potentially be a valuable tool for investigating istiophorid systematics.
Collapse
Affiliation(s)
- E L Loose
- Virginia Institute of Marine Science, College of William & Mary, 1375 Greate Road, Gloucester Point, VA 23062, U.S.A
| | - E J Hilton
- Virginia Institute of Marine Science, College of William & Mary, 1375 Greate Road, Gloucester Point, VA 23062, U.S.A
| | - J E Graves
- Virginia Institute of Marine Science, College of William & Mary, 1375 Greate Road, Gloucester Point, VA 23062, U.S.A
| |
Collapse
|
12
|
Habegger ML, Dean MN, Dunlop JWC, Mullins G, Stokes M, Huber DR, Winters D, Motta PJ. Feeding in billfishes: inferring the role of the rostrum from a biomechanical standpoint. J Exp Biol 2015; 218:824-36. [DOI: 10.1242/jeb.106146] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Perhaps the most striking feature of billfishes is the extreme elongation of the premaxillary bones forming their rostra. Surprisingly, the exact role of this structure in feeding is still controversial. The goal of this study is to investigate the use of the rostrum from a functional, biomechanical and morphological standpoint to ultimately infer its possible role during feeding. Using beam theory, experimental and theoretical loading tests were performed on the rostra from two morphologically different billfish, the blue marlin (Makaira nigricans) and the swordfish (Xiphias gladius). Two loading regimes were applied (dorsoventral and lateral) to simulate possible striking behaviors. Histological samples and material properties of the rostra were obtained along their lengths to further characterize structure and mechanical performance. Intraspecific results show similar stress distributions for most regions of the rostra, suggesting that this structure may be designed to withstand continuous loadings with no particular region of stress concentration. Although material stiffness increased distally, flexural stiffness increased proximally owing to higher second moment of area. The blue marlin rostrum was stiffer and resisted considerably higher loads for both loading planes compared with that of the swordfish. However, when a continuous load along the rostrum was considered, simulating the rostrum swinging through the water, swordfish exhibited lower stress and drag during lateral loading. Our combined results suggest that the swordfish rostrum is suited for lateral swiping to incapacitate their prey, whereas the blue marlin rostrum is better suited to strike prey from a wider variety of directions.
Collapse
Affiliation(s)
- Maria L. Habegger
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33613, USA
| | - Mason N. Dean
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - John W. C. Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Gray Mullins
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33613, USA
| | - Michael Stokes
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33613, USA
| | - Daniel R. Huber
- Department of Biology, University of Tampa, 401 W. Kennedy Blvd, Tampa, FL 33606, USA
| | - Daniel Winters
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33613, USA
| | - Philip J. Motta
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33613, USA
| |
Collapse
|