1
|
de Oliveira BCD, Shiburah ME, Assis LHC, Fontes VS, Bisetegn H, Passos ADO, de Oliveira LS, Alves CDS, Ernst E, Martienssen R, Gallo-Francisco PH, Giorgio S, Batista MM, Soeiro MDNC, Menna-Barreto RFS, Aoki JI, Coelho AC, Cano MIN. Leishmania major telomerase RNA knockout: From altered cell proliferation to decreased parasite infectivity. Int J Biol Macromol 2024; 279:135150. [PMID: 39218181 DOI: 10.1016/j.ijbiomac.2024.135150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study focuses on the biological impacts of deleting the telomerase RNA from Leishmania major (LeishTER), a parasite responsible for causing leishmaniases, for which no effective treatment or prevention is available. TER is a critical player in the telomerase ribonucleoprotein complex, containing the template sequence copied by the reverse transcriptase component during telomere elongation. The success of knocking out both LeishTER alleles was confirmed, and no off-targets were detected. LmTER-/- cells share similar characteristics with other TER-depleted eukaryotes, such as altered growth patterns and partial G0/G1 cell cycle arrest in early passages, telomere shortening, and elevated TERRA expression. They also exhibit increased γH2A phosphorylation, suggesting that the loss of LeishTER induces DNA damage signaling. Moreover, pro-survival autophagic signals and mitochondrion alterations were shown without any detectable plasma membrane modifications. LmTER-/- retained the ability to transform into metacyclics, but their infectivity capacity was compromised. Furthermore, the overexpression of LeishTER was also deleterious, inducing a dominant negative effect that led to telomere shortening and growth impairments. These findings highlight TER's vital role in parasite homeostasis, opening discussions about its potential as a drug target candidate against Leishmania.
Collapse
Affiliation(s)
- Beatriz Cristina Dias de Oliveira
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Mark Ewusi Shiburah
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Animal Research Institute, Council for Scientific and Industrial Research (CSIR-ARI), Accra, Ghana
| | - Luiz Henrique Castro Assis
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Veronica Silva Fontes
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Habtye Bisetegn
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Arthur de Oliveira Passos
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Leilane S de Oliveira
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | | - Evan Ernst
- Howard Hughes Medical Institute/Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rob Martienssen
- Howard Hughes Medical Institute/Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Selma Giorgio
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Marcos Meuser Batista
- Cellular Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Juliana Ide Aoki
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Adriano Cappellazzo Coelho
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Maria Isabel Nogueira Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
2
|
da Silva Bortoleti BT, Camargo PG, Gonçalves MD, Tomiotto-Pellissier F, Silva TF, Concato VM, Detoni MB, Bidóia DL, da Silva Lima CH, Rodrigues CR, Bispo MDLF, de Macedo FC, Conchon-Costa I, Miranda-Sapla MM, Wowk PF, Pavanelli WR. Effect of a thiohydantoin salt derived from l-Arginine on Leishmania amazonensis and infected cells: Insights from biological effects to molecular docking interactions. Chem Biol Interact 2024; 403:111216. [PMID: 39218371 DOI: 10.1016/j.cbi.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania and is responsible for more than 1 million new cases and 70,000 deaths annually worldwide. Treatment has high costs, toxicity, complex and long administration time, several adverse effects, and drug-resistant strains, therefore new therapies are urgently needed. Synthetic compounds have been highlighted in the medicinal chemistry field as a strong option for drug development against different diseases. Organic salts (OS) have multiple biological activities, including activity against protozoa such as Leishmania spp. This study aimed to investigate the in vitro leishmanicidal activity and death mechanisms of a thiohydantoin salt derived from l-arginine (ThS) against Leishmania amazonensis. We observed that ThS treatment inhibited promastigote proliferation, increased ROS production, phosphatidylserine exposure and plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid body accumulation, autophagic vacuole formation, cell cycle alteration, and morphological and ultrastructural changes, showing parasites death. Additionally, ThS presents low cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), and sheep erythrocytes. ThS in vitro cell treatment reduced the percentage of infected macrophages and the number of amastigotes per macrophage by increasing ROS production and reducing TNF-α levels. These results highlight the potential of ThS among thiohydantoins, mainly related to the arginine portion, as a leishmanicidal drug for future drug strategies for leishmaniasis treatment. Notably, in silico investigation of key targets from L. amazonensis, revealed that a ThS compound from the l-arginine amino acid strongly interacts with arginase (ARG) and TNF-α converting enzyme (TACE), suggesting its potential as a Leishmania inhibitor.
Collapse
Affiliation(s)
- Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Priscila Goes Camargo
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Rio de Janeiro, Rio de Janeiro, Brazil; State University of Londrina (UEL/PR), Chemistry Department, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- State University of Londrina (UEL/PR), Laboratory of Biotransformation and Phytochemistry, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Virginia Marcia Concato
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Mariana Barbosa Detoni
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Danielle Larazin Bidóia
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | - Carlos Rangel Rodrigues
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Ivete Conchon-Costa
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | - Pryscilla Fanini Wowk
- Carlos Chagas Institute (ICC/Fiocruz/PR), Molecular Immunology and Cellular Group, Curitiba, Paraná, Brazil.
| | - Wander Rogério Pavanelli
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Hair M, Yanase R, Moreira-Leite F, Wheeler RJ, Sádlová J, Volf P, Vaughan S, Sunter JD. Whole cell reconstructions of Leishmania mexicana through the cell cycle. PLoS Pathog 2024; 20:e1012054. [PMID: 38416776 PMCID: PMC10927142 DOI: 10.1371/journal.ppat.1012054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024] Open
Abstract
The unicellular parasite Leishmania has a precisely defined cell architecture that is inherited by each subsequent generation, requiring a highly coordinated pattern of duplication and segregation of organelles and cytoskeletal structures. A framework of nuclear division and morphological changes is known from light microscopy, yet this has limited resolution and the intrinsic organisation of organelles within the cell body and their manner of duplication and inheritance is unknown. Using volume electron microscopy approaches, we have produced three-dimensional reconstructions of different promastigote cell cycle stages to give a spatial and quantitative overview of organelle positioning, division and inheritance. The first morphological indications seen in our dataset that a new cell cycle had begun were the assembly of a new flagellum, the duplication of the contractile vacuole and the increase in volume of the nucleus and kinetoplast. We showed that the progression of the cytokinesis furrow created a specific pattern of membrane indentations, while our analysis of sub-pellicular microtubule organisation indicated that there is likely a preferred site of new microtubule insertion. The daughter cells retained these indentations in their cell body for a period post-abscission. By comparing cultured and sand fly derived promastigotes, we found an increase in the number and overall volume of lipid droplets in the promastigotes from the sand fly, reflecting a change in their metabolism to ensure transmissibility to the mammalian host. Our insights into the cell cycle mechanics of Leishmania will support future molecular cell biology analyses of these parasites.
Collapse
Affiliation(s)
- Molly Hair
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ryuji Yanase
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Flávia Moreira-Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Jovana Sádlová
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
4
|
Perin LR, Parreira LA, Barcelos ECS, Santos MFC, Menini L, Gomes DDO, Careta FDP. In vitro effect of alpha-bisabolol and its synthetic derivatives on macrophages, promastigotes, and amastigotes of Leishmania amazonensis and Leishmania infantum. Nat Prod Res 2023:1-6. [PMID: 38013219 DOI: 10.1080/14786419.2023.2288232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cutaneous and visceral leishmaniasis are public health problems in Africa, Asia, Europe, and America. The treatment has a high cost and toxicity. Thus, this work aims to evaluate the leishmanicidal activity of alpha-bisabolol and its three synthetic derivatives, P1, P2, and P3, on the promastigotes and amastigotes Leishmania infantum and L. amazonensis forms. Alpha-bisabolol showed the lowest IC50 with 3.43 for L. amazonensis promastigotes, while P1 was the most toxic for L. infantum with an IC50 of 9.10. The derivative P3 was better for the amastigote form, with an IC50 of 3.39 for L. amazonensis. All the compounds effectively decreased the intracellular load of amastigote and its ability to turn promastigote again. Thus, alpha-bisabolol and its three synthetic derivatives were effective in their leishmanicidal activity. Therefore, it can be an option for developing new treatments against leishmaniasis.
Collapse
Affiliation(s)
- Livia Reisen Perin
- Departamento de Medicina Veterinária, Universidade Federal do Espírito Santo, Alegre, Brasil
| | - Luciana Alves Parreira
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alegre, Brasil
| | | | | | - Luciano Menini
- Instituto Federal do Espírito Santo/Campus de Alegre, Alegre, Brasil
| | - Daniel de Oliveira Gomes
- Núcleo de Doenças Infecciosas/Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brasil
| | | |
Collapse
|
5
|
Belmehdi O, El Menyiy N, Bouyahya A, El Baaboua A, El Omari N, Gallo M, Montesano D, Naviglio D, Zengin G, Skali Senhaji N, Goh BH, Abrini J. Recent Advances in the Chemical Composition and Biological Activities of Propolis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2089164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Nadia Skali Senhaji
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
6
|
Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl Trop Dis 2022; 16:e0010510. [PMID: 35749562 PMCID: PMC9232130 DOI: 10.1371/journal.pntd.0010510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Diana Zagirova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Lˇubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Evgeny S. Gerasimov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
7
|
de Oliveira BCD, Assis LHC, Shiburah ME, Paiva SC, Fontes VS, de Oliveira LS, da Silva VL, da Silva MS, Cano MIN. Synchronization of Leishmania amazonensis Cell Cycle Using Hydroxyurea. Methods Mol Biol 2022; 2579:127-135. [PMID: 36045203 DOI: 10.1007/978-1-0716-2736-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leishmania spp. comprises a group of protozoan parasites that affect millions of people around the world. Understanding the main cell cycle-dependent events could provide an important route for developing specific therapies since some factors involved in cell cycle control may have low similarity relative to their homologs in mammals. Furthermore, accurate cell cycle-dependent analyses often require many cells, which can be achieved through cell cycle synchronization. Here, we described a useful method to synchronize procyclic promastigote forms of Leishmania amazonensis using hydroxyurea (HU) and the analysis of its DNA content profile. This approach can be extended to other trypanosomatids, such as Trypanosoma cruzi or Trypanosoma brucei, and provides an effective method for arresting more than 80% of cells at the G1/S phase transition.
Collapse
Affiliation(s)
- Beatriz C D de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz H C Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mark E Shiburah
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Stephany C Paiva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Veronica S Fontes
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Leilane S de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vitor L da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcelo S da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Maria Isabel N Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
8
|
Passos ADO, Assis LHC, Ferri YG, da Silva VL, da Silva MS, Cano MIN. The Trypanosomatids Cell Cycle: A Brief Report. Methods Mol Biol 2022; 2579:25-34. [PMID: 36045195 DOI: 10.1007/978-1-0716-2736-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trypanosomatids are protozoan parasites among which are the etiologic agents of various infectious diseases in humans, such as Trypanosoma cruzi (causative agent of Chagas disease), Trypanosoma brucei (causative agent of sleeping sickness), and species of the genus Leishmania (causative agents of leishmaniases). The cell cycle in these organisms presents a sequence of events conserved throughout evolution. However, these parasites also have unique characteristics that confer some peculiarities related to the cell cycle phases. This review compares general and peculiar aspects of the cell cycle in the replicative forms of trypanosomatids. Moreover, a brief discussion about the possible cross-talk between telomeres and the cell cycle is presented. Finally, we intend to open a discussion on how a profound understanding of the cell cycle would facilitate the search for potential targets for developing antiparasitic therapies that could help millions of people worldwide.
Collapse
Affiliation(s)
- Arthur de Oliveira Passos
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz H C Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Yete G Ferri
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vitor L da Silva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcelo S da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Maria Isabel N Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
9
|
Assis LHC, Andrade-Silva D, Shiburah ME, de Oliveira BCD, Paiva SC, Abuchery BE, Ferri YG, Fontes VS, de Oliveira LS, da Silva MS, Cano MIN. Cell Cycle, Telomeres, and Telomerase in Leishmania spp.: What Do We Know So Far? Cells 2021; 10:cells10113195. [PMID: 34831418 PMCID: PMC8621916 DOI: 10.3390/cells10113195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniases belong to the inglorious group of neglected tropical diseases, presenting different degrees of manifestations severity. It is caused by the transmission of more than 20 species of parasites of the Leishmania genus. Nevertheless, the disease remains on the priority list for developing new treatments, since it affects millions in a vast geographical area, especially low-income people. Molecular biology studies are pioneers in parasitic research with the aim of discovering potential targets for drug development. Among them are the telomeres, DNA–protein structures that play an important role in the long term in cell cycle/survival. Telomeres are the physical ends of eukaryotic chromosomes. Due to their multiple interactions with different proteins that confer a likewise complex dynamic, they have emerged as objects of interest in many medical studies, including studies on leishmaniases. This review aims to gather information and elucidate what we know about the phenomena behind Leishmania spp. telomere maintenance and how it impacts the parasite’s cell cycle.
Collapse
Affiliation(s)
- Luiz H. C. Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Débora Andrade-Silva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Mark E. Shiburah
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Beatriz C. D. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Stephany C. Paiva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Bryan E. Abuchery
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Yete G. Ferri
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Veronica S. Fontes
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Leilane S. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Marcelo S. da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| | - Maria Isabel N. Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| |
Collapse
|
10
|
Bortoleti BTDS, Gonçalves MD, Tomiotto-Pellissier F, Camargo PG, Assolini JP, Concato VM, Detoni MB, Bidóia DL, Bispo MDLF, Lima CHDS, de Macedo FC, Conchon-Costa I, Miranda-Sapla MM, Wowk PF, Pavanelli WR. Investigation of the antileishmanial activity and mechanisms of action of acetyl-thiohydantoins. Chem Biol Interact 2021; 351:109690. [PMID: 34637778 DOI: 10.1016/j.cbi.2021.109690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
The currently available treatment options for leishmaniasis are associated with high costs, severe side effects, and high toxicity. In previous studies, thiohydantoins demonstrated some pharmacological activities and were shown to be potential hit compounds with antileishmanial properties. The present study further explored the antileishmanial effect of acetyl-thiohydantoins against Leishmania amazonensis and determined the main processes involved in parasite death. We observed that compared to thiohydantoin nuclei, acetyl-thiohydantoin treatment inhibited the proliferation of promastigotes. This treatment caused alterations in cell cycle progression and parasite size and caused morphological and ultrastructural changes. We then investigated the mechanisms involved in the death of the protozoan; there was an increase in ROS production, phosphatidylserine exposure, and plasma membrane permeabilization and a loss of mitochondrial membrane potential, resulting in an accumulation of lipid bodies and the formation of autophagic vacuoles on these parasites and confirming an apoptosis-like process. In intracellular amastigotes, selected acetyl-thiohydantoins reduced the percentage of infected macrophages and the number of amastigotes/macrophages by increasing ROS production and reducing TNF-α levels. Moreover, thiohydantoins did not induce cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), or sheep erythrocytes. In silico and in vitro analyses showed that acetyl-thiohydantoins exerted in vitro antileishmanial effects on L. amazonensis promastigotes in apoptosis-like and amastigote forms by inducing ROS production and reducing TNF-α levels, indicating that they are good candidates for drug discovery studies in leishmaniasis treatment. Additionally, we carried out molecular docking analyses of acetyl-thiohydantoins on two important targets of Leishmania amazonensis: arginase and TNF-alpha converting enzyme. The results suggested that the acetyl groups in the N1-position of the thiohydantoin ring and the ring itself could be pharmacophoric groups due to their affinity for binding amino acid residues at the active site of both enzymes via hydrogen bond interactions. These results demonstrate that thiohydantoins are promising hit compounds that could be used as antileishmanial agents.
Collapse
Affiliation(s)
- Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- State University of Londrina (UEL/PR), Laboratory of Biotransformation and Phytochemistry, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Priscila Goes Camargo
- State University of Londrina (UEL/PR), Laboratory of Research on Bioactive Molecules, Londrina, Paraná, Brazil
| | - João Paulo Assolini
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Virginia Marcia Concato
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Mariana Barbosa Detoni
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Danielle Larazin Bidóia
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | | | - Fernando Cesar de Macedo
- State University of Londrina (UEL/PR), Laboratory of Research on Bioactive Molecules, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | | | - Wander Rogério Pavanelli
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil.
| |
Collapse
|
11
|
Teixeira SC, da Silva MS, Gomes AAS, Moretti NS, Lopes DS, Ferro EAV, Rodrigues VDM. Panacea within a Pandora's box: the antiparasitic effects of phospholipases A 2 (PLA 2s) from snake venoms. Trends Parasitol 2021; 38:80-94. [PMID: 34364805 DOI: 10.1016/j.pt.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Parasitic diseases affect millions of individuals worldwide, mainly in low-income regions. There is no cure for most of these diseases, and the treatment relies on drugs that have side effects and lead to drug resistance, emphasizing the urgency to find new treatments. Snake venom has been gaining prominence as a rich source of molecules with antiparasitic potentials, such as phospholipases A2 (PLA2s). Here, we compile the findings involving PLA2s with antiparasitic activities against helminths, Plasmodium, Toxoplasma, and trypanosomatids. We indicate their molecular features, highlighting the possible antiparasitic mechanisms of action of these proteins. We also demonstrate interactions between PLA2s and some parasite membrane components, shedding light on potential targets for drug design that may provide better treatment for the illnesses caused by parasites.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil.
| | - Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Nilmar Silvio Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
12
|
Histone deacetylases inhibitors as new potential drugs against Leishmania braziliensis, the main causative agent of new world tegumentary leishmaniasis. Biochem Pharmacol 2020; 180:114191. [PMID: 32777278 DOI: 10.1016/j.bcp.2020.114191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
The protozoan parasite Leishmania braziliensis is a major causative agent of the neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New World. There are no vaccines to prevent the infection and the treatment relies on few drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are required. Histone Deacetylases (HDACs) are epigenetic enzymes involved in the control of chromatin structure. In this work, we tested an in-house library of 78 hydroxamic acid derivatives as putative inhibitors of L. braziliensis HDACs (HDACi). The compounds were evaluated in relation to the toxicity to the host cell macrophage and to the leishmanicidal effect against L. braziliensis during in vitro infection. Eight HDACi showed significant leishmanicidal effects and the top 5 compounds showed effective concentrations (EC50) in the range of 4.38 to 10.21 μM and selectivity indexes (SI) from of 6 to 21.7. Analyses by Transmission Electron Microscopy (TEM) indicated induction of apoptotic cell death of L. braziliensis amastigotes with a necrotic phenotype. An altered chromatin condensation pattern and cellular disorganization of intracellular amastigotes was also observed. A tight connection between the mitochondrion and nuclear protrusions, presumably of endoplasmic reticulum origin, was found in parasites but not in the host cell. In flow cytometry (FC) analyses, HDACi promoted parasite cell cycle arrest in the G2-M phase and no changes were found in macrophages. In addition, the direct effect of HDACi against the promastigotes showed apoptosis as the main mechanism of cell death. The FC results corroborate the TEM analyses indicating that the HDACi lead to changes in the cell cycle and induction of apoptosis of L. braziliensis. The production of nitric oxide by the infected macrophages was not altered after treatment with the top 5 compounds. Taken together, our results evidenced new HDACi as promising agents for the development of new treatments for American Tegumentary Leishmaniasis caused by L. braziliensis.
Collapse
|
13
|
Comparative Analysis of the Minimum Number of Replication Origins in Trypanosomatids and Yeasts. Genes (Basel) 2020; 11:genes11050523. [PMID: 32397111 PMCID: PMC7288466 DOI: 10.3390/genes11050523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Single-celled eukaryote genomes predominantly replicate through multiple origins. Although origin usage during the S-phase has been elucidated in some of these organisms, few studies have comparatively approached this dynamic. Here, we developed a user-friendly website able to calculate the length of the cell cycle phases for any organism. Next, using a formula developed by our group, we showed a comparative analysis among the minimum number of replication origins (MO) required to duplicate an entire chromosome within the S-phase duration in trypanosomatids (Trypanosoma cruzi, Leishmania major, and Trypanosoma brucei) and yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe). Using the data obtained by our analysis, it was possible to predict the MO required in a situation of replication stress. Also, our findings allow establishing a threshold for the number of origins, which serves as a parameter for genome approaches that map origins. Moreover, our data suggest that when compared to yeasts, trypanosomatids use much more origins than the minimum needed. This is the first time a comparative analysis of the minimum number of origins has been successfully applied. These data may provide new insight into the understanding of the replication mechanism and a new methodological framework for studying single-celled eukaryote genomes.
Collapse
|
14
|
da Silva MS, Cayres-Silva GR, Vitarelli MO, Marin PA, Hiraiwa PM, Araújo CB, Scholl BB, Ávila AR, McCulloch R, Reis MS, Elias MC. Transcription activity contributes to the firing of non-constitutive origins in African trypanosomes helping to maintain robustness in S-phase duration. Sci Rep 2019; 9:18512. [PMID: 31811174 PMCID: PMC6898680 DOI: 10.1038/s41598-019-54366-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
The co-synthesis of DNA and RNA potentially generates conflicts between replication and transcription, which can lead to genomic instability. In trypanosomatids, eukaryotic parasites that perform polycistronic transcription, this phenomenon and its consequences are still little studied. Here, we showed that the number of constitutive origins mapped in the Trypanosoma brucei genome is less than the minimum required to complete replication within S-phase duration. By the development of a mechanistic model of DNA replication considering replication-transcription conflicts and using immunofluorescence assays and DNA combing approaches, we demonstrated that the activation of non-constitutive (backup) origins are indispensable for replication to be completed within S-phase period. Together, our findings suggest that transcription activity during S phase generates R-loops, which contributes to the emergence of DNA lesions, leading to the firing of backup origins that help maintain robustness in S-phase duration. The usage of this increased pool of origins, contributing to the maintenance of DNA replication, seems to be of paramount importance for the survival of this parasite that affects million people around the world.
Collapse
Affiliation(s)
- Marcelo S da Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Gustavo R Cayres-Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Marcela O Vitarelli
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Paula A Marin
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Priscila M Hiraiwa
- Plataforma de citometria de fluxo, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Christiane B Araújo
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Bruno B Scholl
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Andrea R Ávila
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marcelo S Reis
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
15
|
Upregulation of miR-874-3p decreases cerebral ischemia/reperfusion injury by directly targeting BMF and BCL2L13. Biomed Pharmacother 2019; 117:108941. [DOI: 10.1016/j.biopha.2019.108941] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
|
16
|
Fernandes CAH, Perez AM, Barros AC, Dreyer TR, da Silva MS, Morea EGO, Fontes MRM, Cano MIN. Dual cellular localization of the Leishmania amazonensis Rbp38 (LaRbp38) explains its affinity for telomeric and mitochondrial DNA. Biochimie 2019; 162:15-25. [PMID: 30930281 DOI: 10.1016/j.biochi.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Rbp38 is a protein exclusively found in trypanosomatid parasites, including Leishmania amazonensis, the etiologic agent of tegumentar leishmaniasis in the Americas. The protein was first described as a Leishmania tarentolae mitochondrial RNA binding protein. Later, it was shown that the trypanosomes Rbp38 orthologues were exclusively found in the mitochondria and involved in the stabilization and replication of kinetoplast DNA (kDNA). In contrast, L. amazonensis Rbp38 (LaRbp38), co-purifies with telomerase activity and interacts not only with kDNA but also with telomeric DNA, although shares with its counterparts high sequence identity and a putative N-terminal mitochondrial targeting signal (MTS). To understand how LaRbp38 interacts both with nuclear and kDNA, we have first investigated its subcellular localization. Using hydroxy-urea synchronized L. amazonensis promastigotes we could show that LaRbp38 shuttles from mitochondria to the nucleus at late S and G2 phases. Further, we identified a non-classical nuclear localization signal (NLS) at LaRbp38 C-terminal that binds with importin alpha, a protein involved in the nuclear transport of several proteins. Also, we obtained LaRbp38 truncated forms among which, some of them also showed an affinity for both telomeric DNA and kDNA. Analysis of these truncated forms showed that LaRbp38 DNA-binding region is located between amino acid residues 95-235. Together, our findings strongly suggest that LaRbp38 is multifunctional with dual subcellular localization.
Collapse
Affiliation(s)
- Carlos A H Fernandes
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Arina M Perez
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Andrea C Barros
- Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Thiago R Dreyer
- Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcelo S da Silva
- Laboratório Especial de Ciclo Cellular, (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Edna Gicela O Morea
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria Isabel N Cano
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
17
|
Zhang X, Li SJ, Li Z, He CY, Hide G, Lai DH, Lun ZR. Cell cycle and cleavage events during in vitro cultivation of bloodstream forms of Trypanosoma lewisi, a zoonotic pathogen. Cell Cycle 2019; 18:552-567. [PMID: 30712435 PMCID: PMC6464594 DOI: 10.1080/15384101.2019.1577651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023] Open
Abstract
Trypanosoma (Herpetosoma) lewisi is a globally distributed rat trypanosome, currently considered as a zoonotic pathogen; however, a detailed understanding of the morphological events occurring during the cell cycle is lacking. This study aimed to investigate the cell cycle morphology and cleavage events of Trypanosoma lewisi (T. lewisi) during in vitro cultivation. By establishing in vitro cultivation of T. lewisi at 37°C, various cell morphologies and stages could be observed. We have provided a quantitative analysis of the morphological events during T. lewisi proliferation. We confirmed a generation time of 12.14 ± 0.79 hours, which is similar to that in vivo (12.21 ± 0.14 hours). We also found that there are two distinct cell cycles, with a two-way transformation connection in the developmental status of this parasite, which was contrasted with the previous model of multiple division patterns seen in T. lewisi. We quantified the timing of cell cycle phases (G1n, 0.56 U; Sn, 0.14 U; G2n, 0.16 U; M, 0.06 U; C, 0.08 U; G1k, 0.65 U; Sk, 0.10 U; G2k, 0.17 U; D, 0.03 U; A, 0.05 U) and their morphological characteristics, particularly with respect to the position of kinetoplast(s) and nucleus/nuclei. Interestingly, we found that both nuclear synthesis initiation and segregation in T. lewisi occurred prior to kinetoplast, different to the order of replication found in Trypanosoma brucei and Trypanosoma cruzi, implicating a distinct cell cycle control mechanism in T. lewisi. We characterized the morphological events during the T. lewisi cell cycle and presented evidence to support the existence of two distinct cell cycles with two-way transformation between them. These results provide insights into the differentiation and evolution of this parasite and its related species.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Su-Jin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX, USA
| | - Cynthia Y. He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Geoff Hide
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford UK
| | - De-Hua Lai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford UK
| |
Collapse
|
18
|
Leishmanicidal Activity of Isoselenocyanate Derivatives. Antimicrob Agents Chemother 2019; 63:AAC.00904-18. [PMID: 30478164 DOI: 10.1128/aac.00904-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
Conventional chemotherapy against leishmaniasis includes agents exhibiting considerable toxicity. In addition, reports of drug resistance are not uncommon. Thus, safe and effective therapies are urgently needed. Isoselenocyanate compounds have recently been identified with potential antitumor activity. It is well known that some antitumor agents demonstrate effects against Leishmania In this study, the in vitro leishmanicidal activities of several organo-selenium and organo-sulfur compounds were tested against Leishmania major and Leishmania amazonensis parasites, using promastigotes and intracellular amastigote forms. The cytotoxicity of these agents was measured in murine peritoneal macrophages and their selectivity indexes were calculated. One of the tested compounds, the isoselenocyanate derivative NISC-6, showed selectivity indexes 2- and 10-fold higher than those of the reference drug amphotericin B when evaluated in L. amazonensis and L. major, respectively. The American strain (L. amazonensis) was less sensitive to NISC-6 than L. major, showing a trend similar to that observed previously for amphotericin B. In addition, we also observed that NISC-6 significantly reduced the number of amastigotes per infected macrophage. On the other hand, we showed that NISC-6 decreases expression levels of Leishmania genes involved in the cell cycle, such as topoisomerase-2 (TOP-2), PCNA, and MCM4, therefore contributing to its leishmanicidal activity. The effect of this compound on cell cycle progression was confirmed by flow cytometry. We observed a significant increase of cells in the G1 phase and a dramatic reduction of cells in the S phase compared to untreated cells. Altogether, our data suggest that the isoselenocyanate NISC-6 may be a promising candidate for new drug development against leishmaniasis.
Collapse
|
19
|
da Silva MS, Marin PA, Repolês BM, Elias MC, Machado CR. Analysis of DNA Exchange Using Thymidine Analogs (ADExTA) in Trypanosoma cruzi. Bio Protoc 2018; 8:e3125. [PMID: 34532563 PMCID: PMC8342059 DOI: 10.21769/bioprotoc.3125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/20/2018] [Indexed: 11/02/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite belonging to the Trypanosomatidae family. Although the trypanosomatids multiply predominantly by clonal generation, the presence of DNA exchange in some of them has been puzzling researchers over the years, mainly because it may represent a novel form that these organisms use to gain variability. Analysis of DNA Exchange using Thymidine Analogs (ADExTA) is a method that allows the in vitro detection and measurement of rates of DNA exchange, particularly in trypanosomatid cells, in a rapid and simple manner by indirect immunofluorescence assay (IFA). The method can be used to detect DNA exchange within one trypanosomatid lineage or among different lineages by paired analysis. The principle of this assay is based on the incorporation of two distinguishable halogenated thymidine analogs called 5'-chloro-2'-deoxyuridine (CldU) and 5'-iodo-2'-deoxyuridine (IdU) during DNA replication. After mixing the two cell cultures that had been previously incorporated with CldU and IdU separately, the presence of these unusual deoxynucleosides in the genome can be detected by specific antibodies. For this, a DNA denaturation step is required to expose the sites of thymidine analogs incorporated. Subsequently, a secondary reaction using fluorochrome-labeled antibodies will generate distinct signals under fluorescence analysis. By using this method, DNA exchange verification (i.e., the presence of both CldU and IdU in the same cell) is possible using a standard fluorescence microscope. It typically takes 2-3 days from the thymidine analogs incorporation to results. Of note, ADExTA is relatively cheap and does not require transfections or harsh genetic manipulation. These features represent an advantage when compared to other time-consuming protocols that demand DNA manipulation to introduce distinct drug-resistance markers in different cells for posterior selection.
Collapse
Affiliation(s)
- Marcelo S. da Silva
- Laboratório Especial de Ciclo Celular (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Paula A. Marin
- Laboratório Especial de Ciclo Celular (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Bruno M. Repolês
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria C. Elias
- Laboratório Especial de Ciclo Celular (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Carlos R. Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Wang C, Liu E, Li W, Cui J, Li T. MiR-3188 Inhibits Non-small Cell Lung Cancer Cell Proliferation Through FOXO1-Mediated mTOR-p-PI3K/AKT-c-JUN Signaling Pathway. Front Pharmacol 2018; 9:1362. [PMID: 30618730 PMCID: PMC6297856 DOI: 10.3389/fphar.2018.01362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
This study investigated the role of miR-3188 on the proliferation of non-small cell lung cancer cells and its relationship to FOXO1-modulated feedback loop. Two non-small cell lung cancer (NSCLC) cell lines A549 and H1299 were used. RNA silencing was achieved by lentiviral transfection. Cell proliferation was assessed by immunohistochemical staining of Ki67 and PCNA, Edu incorporation, and colony formation assay. Western blotting was used to examine expression of FOXO1, mTOR, p-mTOR, CCND1, p21, c-JUN, AKT, pAKT, PI3K, p-PI3K, and p27 proteins. It was found that miR-3188 reduced cell proliferation in NSCLC cells. Molecular analyses indicated that the effect of mammalian target of rapamycin (mTOR) was directly mediated by miR-3188, leading to p-PI3K/p-AKT/c-JUN inactivation. The inhibition of this signaling pathway further caused cell-cycle suppression. Moreover, FOXO1 was found to be involved in regulating the interaction of miR-3188 and mTOR through p-PI3K/p-AKT/c-JUN signaling pathway. Taken together, our study demonstrated that miR-3188 interacts with mTOR and FOXO1 to inhibit NSCLC cell proliferation through a mTOR-p-PI3K/AKT-c-JUN signaling pathway. Therefore, miR-3188 might be a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Chunyan Wang
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Enqi Liu
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Wen Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Jue Cui
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Tongxiang Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| |
Collapse
|
21
|
Borges AR, Toledo DA, Fermino BR, de Oliveira JC, Silber AM, Elias MC, D'Avila H, Scopel KKG. In Vitro Cellular Division of Trypanosoma abeli Reveals Two Pathways for Organelle Replication. J Eukaryot Microbiol 2018; 66:385-392. [PMID: 30076737 DOI: 10.1111/jeu.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/07/2018] [Accepted: 07/22/2018] [Indexed: 11/28/2022]
Abstract
Since the observation of the great pleomorphism of fish trypanosomes, in vitro culture has become an important tool to support taxonomic studies investigating the biology of cultured parasites, such as their structure, growth dynamics, and cellular cycle. Relative to their biology, ex vivo and in vitro studies have shown that these parasites, during the multiplication process, duplicate and segregate the kinetoplast before nucleus replication and division. However, the inverse sequence (the nucleus divides before the kinetoplast) has only been documented for a species of marine fish trypanosomes on a single occasion. Now, this previously rare event was observed in Trypanosoma abeli, a freshwater fish trypanosome. Specifically, from 376 cultured parasites in the multiplication process, we determined the sequence of organelle division for 111 forms; 39% exhibited nucleus duplication prior to kinetoplast replication. Thus, our results suggest that nucleus division before the kinetoplast may not represent an accidental or erroneous event occurring in the main pathway of parasite reproduction, but instead could be a species-specific process of cell biology in trypanosomes, such as previously noticed for Leishmania. This "alternative" pathway for organelle replication is a new field to be explored concerning the biology of marine and freshwater fish trypanosomes.
Collapse
Affiliation(s)
- Alyssa R Borges
- Laboratory of Parasitology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Daniel A Toledo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Bruno R Fermino
- Department of Parasitology, Institute of Biomedical Sciences, São Paulo University, Av. Prof. Lineu Prestes 1374 - Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - José Carlos de Oliveira
- Department of Zoology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374 - Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, Av. Vital Brasil 1500 - Butantã, São Paulo, SP, 05503-900, Brazil
| | - Heloisa D'Avila
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Kézia K G Scopel
- Laboratory of Parasitology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer s/n - Campus Universitário, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
22
|
Morea EGO, Viviescas MA, Fernandes CAH, Matioli FF, Lira CBB, Fernandez MF, Moraes BS, da Silva MS, Storti CB, Fontes MRM, Cano MIN. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein. Biochim Biophys Acta Gen Subj 2017; 1861:2583-2597. [PMID: 28844976 DOI: 10.1016/j.bbagen.2017.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/06/2017] [Accepted: 08/14/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. METHODS AND RESULTS Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. CONCLUSIONS We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. GENERAL SIGNIFICANCE LCalA is the first reported calmodulin that binds in vivo telomeric DNA.
Collapse
Affiliation(s)
- Edna G O Morea
- Genetics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Carlos A H Fernandes
- Biophysics and Physics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Fabio F Matioli
- Biophysics and Physics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cristina B B Lira
- Genetics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maribel F Fernandez
- Instituto Tocantinense Presidente Antonio Carlos LTDA., ITPAC-Porto Nacional S.A., TO, Brazil
| | - Barbara S Moraes
- PROAHSA - Programa de Estudos Avançados em Administração Hospitalar e Sistemas de Saúde, São Paulo, Brazil
| | - Marcelo S da Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Camila B Storti
- Genetics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Biophysics and Physics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria Isabel N Cano
- Genetics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
23
|
da Silva MS, Muñoz PAM, Armelin HA, Elias MC. Differences in the Detection of BrdU/EdU Incorporation Assays Alter the Calculation for G1, S, and G2 Phases of the Cell Cycle in Trypanosomatids. J Eukaryot Microbiol 2017; 64:756-770. [PMID: 28258618 DOI: 10.1111/jeu.12408] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 01/22/2023]
Abstract
Trypanosomatids are the etiologic agents of various infectious diseases in humans. They diverged early during eukaryotic evolution and have attracted attention as peculiar models for evolutionary and comparative studies. Here, we show a meticulous study comparing the incorporation and detection of the thymidine analogs BrdU and EdU in Leishmania amazonensis, Trypanosoma brucei, and Trypanosoma cruzi to monitor their DNA replication. We used BrdU- and EdU-incorporated parasites with the respective standard detection approaches: indirect immunofluorescence to detect BrdU after standard denaturation (2 M HCl) and "click" chemistry to detect EdU. We found a discrepancy between these two thymidine analogs due to the poor detection of BrdU, which is reflected on the estimative of the duration of the cell cycle phases G1, S, and G2. To solve this discrepancy, we increase the exposure of incorporated BrdU using different concentrations of HCl. Using a new value for HCl concentration, we re-estimated the phases G1, S, G2 + M, and cytokinesis durations, confirming the values found by this approach using EdU. In conclusion, we suggest that the studies using BrdU with standard detection approach, not only in trypanosomatids but also in others cell types, should be reviewed to ensure an accurate estimation of DNA replication monitoring.
Collapse
Affiliation(s)
- Marcelo Santos da Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| | - Paula Andrea Marin Muñoz
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| | - Hugo Aguirre Armelin
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| |
Collapse
|
24
|
da Silva MS, Segatto M, Pavani RS, Gutierrez-Rodrigues F, Bispo VDS, de Medeiros MHG, Calado RT, Elias MC, Cano MIN. Consequences of acute oxidative stress in Leishmania amazonensis : From telomere shortening to the selection of the fittest parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:138-150. [DOI: 10.1016/j.bbamcr.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
|
25
|
Sanchez MA, Tran KD, Valli J, Hobbs S, Johnson E, Gluenz E, Landfear SM. KHARON Is an Essential Cytoskeletal Protein Involved in the Trafficking of Flagellar Membrane Proteins and Cell Division in African Trypanosomes. J Biol Chem 2016; 291:19760-73. [PMID: 27489106 DOI: 10.1074/jbc.m116.739235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 11/06/2022] Open
Abstract
African trypanosomes and related kinetoplastid parasites selectively traffic specific membrane proteins to the flagellar membrane, but the mechanisms for this trafficking are poorly understood. We show here that KHARON, a protein originally identified in Leishmania parasites, interacts with a putative trypanosome calcium channel and is required for its targeting to the flagellar membrane. KHARON is located at the base of the flagellar axoneme, where it likely mediates targeting of flagellar membrane proteins, but is also on the subpellicular microtubules and the mitotic spindle. Hence, KHARON is probably a multifunctional protein that associates with several components of the trypanosome cytoskeleton. RNA interference-mediated knockdown of KHARON mRNA results in failure of the calcium channel to enter the flagellar membrane, detachment of the flagellum from the cell body, and disruption of mitotic spindles. Furthermore, knockdown of KHARON mRNA induces a lethal failure of cytokinesis in both bloodstream (mammalian host) and procyclic (insect vector) life cycle stages, and KHARON is thus critical for parasite viability.
Collapse
Affiliation(s)
- Marco A Sanchez
- From the Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Khoa D Tran
- From the Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Jessica Valli
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sam Hobbs
- From the Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Errin Johnson
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Eva Gluenz
- the Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Scott M Landfear
- From the Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|
26
|
Kumar G, Kajuluri LP, Gupta CM, Sahasrabuddhe AA. A twinfilin-like protein coordinates karyokinesis by influencing mitotic spindle elongation and DNA replication in Leishmania. Mol Microbiol 2016; 100:173-87. [PMID: 26713845 DOI: 10.1111/mmi.13310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 11/30/2022]
Abstract
Twinfilin is an evolutionarily conserved actin-binding protein, which regulates actin-dynamics in eukaryotic cells. Homologs of this protein have been detected in the genome of various protozoan parasites causing diseases in human. However, very little is known about their core functions in these organisms. We show here that a twinfilin homolog in a human pathogen Leishmania, primarily localizes to the nucleolus and, to some extent, also in the basal body region. In the dividing cells, nucleolar twinfilin redistributes to the mitotic spindle and remains there partly associated with the spindle microtubules. We further show that approximately 50% depletion of this protein significantly retards the cell growth due to sluggish progression of S phase of the cell division cycle, owing to the delayed nuclear DNA synthesis. Interestingly, overexpression of this protein results in significantly increased length of the mitotic spindle in the dividing Leishmania cells, whereas, its depletion adversely affects spindle elongation and architecture. Our results indicate that twinfilin controls on one hand, the DNA synthesis and on the other, the mitotic spindle elongation, thus contributing to karyokinesis in Leishmania.
Collapse
Affiliation(s)
- Gaurav Kumar
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| | - Lova P Kajuluri
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| | - Chhitar M Gupta
- Department of Biosciences, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City, Phase-I, Bangaluru, PIN-560 100, India
| | - Amogh A Sahasrabuddhe
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| |
Collapse
|
27
|
Yang G, Zhu W, Wang Y, Huang G, Byun S, Choi G, Li K, Huang Z, Docampo R, Oldfield E, No JH. In Vitro and in Vivo Activity of Multitarget Inhibitors against Trypanosoma brucei. ACS Infect Dis 2015; 1:388-98. [PMID: 26295062 PMCID: PMC4539249 DOI: 10.1021/acsinfecdis.5b00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We tested a series of amidine and related compounds against Trypanosoma brucei. The most active compound was a biphenyldiamidine that had an EC 50 of 7.7 nM against bloodstream-form parasites. There was little toxicity against two human cell lines with CC 50 > 100 μM. There was also good in vivo activity in a mouse model of infection with 100% survival at 3 mg/kg i.p. The most potent lead blocked replication of kinetoplast DNA (k-DNA), but not nuclear DNA, in the parasite. Some compounds also inhibited the enzyme farnesyl diphosphate synthase (FPPS), and some were uncouplers of oxidative phosphorylation. We developed a computational model for T. brucei cell growth inhibition (R (2) = 0.76) using DNA ΔT m values for inhibitor binding combined with T. brucei FPPS IC 50 values. Overall, the results suggest that it may be possible to develop multitarget drug leads against T. brucei that act by inhibiting both k-DNA replication and isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Gyongseon Yang
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
- Interdisciplinary Programs of Functional Genomics, Yonsei University, Seoul 120-749, Republic of Korea
| | - Wei Zhu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yang Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Sooyoung Byun
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| | - Gahee Choi
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| | - Kai Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zhuoli Huang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Republic of Korea
| |
Collapse
|
28
|
Selenium-Functionalized Molecules (SeFMs) as Potential Drugs and Nutritional Supplements. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
29
|
N-butyl-[1-(4-methoxy)phenyl-9H-β-carboline]-3-carboxamide prevents cytokinesis in Leishmania amazonensis. Antimicrob Agents Chemother 2014; 58:7112-20. [PMID: 25224005 DOI: 10.1128/aac.03340-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis, a complex of diseases caused by protozoa of the genus Leishmania, is endemic in 98 countries, affecting approximately 12 million people worldwide. Current treatments for leishmaniasis have many disadvantages, such as toxicity, high costs, and prolonged treatment, making the development of new treatment alternatives highly relevant. Several studies have verified the antileishmanial activity of β-carboline compounds. In the present study, we investigated the in vitro antileishmanial activity of N-butyl-[1-(4-methoxy)phenyl-9H-β-carboline]-3-carboxamide (β-CB) against Leishmania amazonensis. The compound was active against promastigote, axenic amastigote, and intracellular amastigote forms of L. amazonensis, exhibiting high selectivity for the parasite. Moreover, β-CB did not exhibit hemolytic or mutagenic potential. Promastigotes treated with the alkaloid presented rounding of the body cell, cell membrane projections, an increase in the number of promastigotes presenting two flagella, and parasites of abnormal phenotype, with three or more flagella and/or nuclei. Furthermore, we observed an increase in the subpopulation of cells in the G2/M stage of the cell cycle. Altogether, these results suggest that β-CB likely prevents cytokinesis, although it does not interfere with the duplication of cell structures. We also verified an increase in O2(·-) production and the accumulation of lipid storage bodies. Cell membrane integrity was maintained, in addition to the absence of phosphatidylserine externalization, DNA fragmentation, and autophagosomes. Although the possibility of an apoptotic process cannot be discarded, β-CB likely exerts its antileishmanial activity through a cytostatic effect, thus preventing cellular proliferation.
Collapse
|