1
|
Cristinziano M, Shashkina E, Chen L, Xiao J, Miller MB, Doligalski C, Coakley R, Lobo LJ, Footer B, Bartelt L, Abad L, Russell DA, Garlena R, Lauer MJ, Viland M, Kaganovsky A, Mowry E, Jacobs-Sera D, van Duin D, Kreiswirth BN, Hatfull GF, Friedland A. Use of epigenetically modified bacteriophage and dual beta-lactams to treat a Mycobacterium abscessus sternal wound infection. Nat Commun 2024; 15:10360. [PMID: 39609405 PMCID: PMC11604996 DOI: 10.1038/s41467-024-54666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Nontuberculous mycobacterium (NTM) infections are challenging to manage and are frequently non-responsive to aggressive but poorly-tolerated antibiotic therapies. Immunosuppressed lung transplant patients are susceptible to NTM infections and poor patient outcomes are common. Bacteriophages present an alternative treatment option and are associated with favorable clinical outcomes. Similarly, dual beta-lactam combinations show promise in vitro, but clinical use is sparse. We report here a patient with an uncontrolled Mycobacterium abscessus infection following a bilateral lung transplant and failed antibiotic therapy. Both smooth and rough colony morphotype strains were initially present, but treatment with two phages that kill the rough strain - including epigenetic-modification to overcome restriction - resulted in isolation of only the smooth strain. The rough and smooth strains have similar antibiotic susceptibilities suggesting that the phages specifically eliminated the rough strain. Dual beta-lactam therapy with meropenem and ceftazidime-avibactam provided further clinical improvement, and the phages act synergistically with meropenem in vitro.
Collapse
Affiliation(s)
- Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elena Shashkina
- Center for Discovery and Innovation, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Liang Chen
- Center for Discovery and Innovation, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Jaime Xiao
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Melissa B Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Christina Doligalski
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
- University of North Carolina School of Pharmacy, Chapel Hill, NC, USA
| | - Raymond Coakley
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Leonard Jason Lobo
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Brent Footer
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Luther Bartelt
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Lauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maggie Viland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ari Kaganovsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Mowry
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Nutley, NJ, USA.
- Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Anne Friedland
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Zhang H, Tang M, Li D, Xu M, Ao Y, Lin L. Applications and advances in molecular diagnostics: revolutionizing non-tuberculous mycobacteria species and subspecies identification. Front Public Health 2024; 12:1410672. [PMID: 38962772 PMCID: PMC11220129 DOI: 10.3389/fpubh.2024.1410672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Non-tuberculous mycobacteria (NTM) infections pose a significant public health challenge worldwide, affecting individuals across a wide spectrum of immune statuses. Recent epidemiological studies indicate rising incidence rates in both immunocompromised and immunocompetent populations, underscoring the need for enhanced diagnostic and therapeutic approaches. NTM infections often present with symptoms similar to those of tuberculosis, yet with less specificity, increasing the risk of misdiagnosis and potentially adverse outcomes for patients. Consequently, rapid and accurate identification of the pathogen is crucial for precise diagnosis and treatment. Traditional detection methods, notably microbiological culture, are hampered by lengthy incubation periods and a limited capacity to differentiate closely related NTM subtypes, thereby delaying diagnosis and the initiation of targeted therapies. Emerging diagnostic technologies offer new possibilities for the swift detection and accurate identification of NTM infections, playing a critical role in early diagnosis and providing more accurate and comprehensive information. This review delineates the current molecular methodologies for NTM species and subspecies identification. We critically assess the limitations and challenges inherent in these technologies for diagnosing NTM and explore potential future directions for their advancement. It aims to provide valuable insights into advancing the application of molecular diagnostic techniques in NTM infection identification.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Maoting Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yusen Ao
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Lagune M, Kremer L, Herrmann JL. Mycobacterium abscessus, a complex of three fast-growing subspecies sharing virulence traits with slow-growing mycobacteria. Clin Microbiol Infect 2024; 30:726-731. [PMID: 37797823 DOI: 10.1016/j.cmi.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Mycobacterium abscessus belongs to the largest group of mycobacteria, the rapid-growing saprophytic mycobacteria, and is one of the most difficult-to-treat opportunistic pathogen. Several features pertain to the high adaptability of M. abscessus to the host. These include the capacity to survive and persist within amoebae, to transition from a smooth to a rough morphotype that occurs during the course of the disease and to express of a wide array of virulence factors. OBJECTIVES The main objective of this narrative review consists to report major assets of M. abscessus that contribute to the virulence of these rapid-growing saprophytic mycobacteria. Strikingly, many of these determinants, whether they are from a mycobacterial origin or acquired by horizontal gene transfer, are known virulence factors found in slow-growing and strict pathogens for humans and animals. SOURCES In the light of recent published work in the field we attempted to highlight major features characterizing M. abscessus pathogenicity and to explain why this led to the emergence of this mycobacterial species in patients with cystic fibrosis. CONTENT M. abscessus genome plasticity, the smooth-to-rough transition, and the expression of a panel of enzymes associated with virulence in other bacteria are key players in M. abscessus virulence. In addition, the very large repertoire of lipid transporters, known as mycobacterial membrane protein large and small (MmpL and MmpS respectively), deeply influences the pathogenicity of M. abscessus, as exemplified here for some of them. IMPLICATIONS All these traits largely contribute to make M. abscessus a unique mycobacterium regarding to its pathophysiological processes, ranging from the early colonization steps to the establishment of severe and chronic pulmonary diseases.
Collapse
Affiliation(s)
- Marion Lagune
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, U1173 Infection et Inflammation, Montigny-le-Bretonneux, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France.
| |
Collapse
|
4
|
Kania K, Wόjcik K, Czekajewska J, Grzesiak M, Klesiewicz K. Molecular Identification of Strains within the Mycobacterium abscessus Complex and Determination of Resistance to Macrolides and Aminoglycosides. Pol J Microbiol 2023; 72:491-506. [PMID: 38103008 PMCID: PMC10725167 DOI: 10.33073/pjm-2023-048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
One of the most relevant and pathogenic groups among the rapidly growing mycobacteria (RGM) is Mycobacterium abscessus complex (MABC) that includes three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. The aim of this study was the analysis of prevalence of MABC among other non-tuberculous mycobacteria isolated from patients in the Malopolska Region of Poland, between 2018 and 2021, as well as determination of their subspecies and molecular mechanisms of resistance to macrolides and aminoglycosides. The incidence of MABC was 5,4% (12/223). Eight strains were classified as M. abscessus subsp. abscessus, three as M. abscessus subsp. massiliense and one M. abscessus subsp. bolletii. Molecular analysis showed resistance to macrolides for eight strains of M. abscessus subsp. abscessus associated with erm(41)T28 gene mutations. One strain of M. abscessus subsp. abscessus showed resistance to macrolides (two mutations simultaneously: in erm(41)T28 and rrl genes) and aminoglycosides (point mutation in rrs gene). One strain of M. abscessus subs. bolletii was resistant to macrolides (erm(41)T28 mutation), whereas presented no mutations for aminoglycosides. M. abscessus subsp. massiliense reveal no mutations. High clarithromycin resistance of M. abscessus, determines the urgent need for susceptibility-based treatment. Molecular determination of resistance mechanisms to aminoglycosides and macrolides enables fast and accurate targeted treatment implementation.
Collapse
Affiliation(s)
- Katarzyna Kania
- Malopolska Central Laboratory of Tuberculosis Diagnostics, The St. John Paul II Specialist Hospital, Cracow, Poland
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Katarzyna Wόjcik
- Malopolska Central Laboratory of Tuberculosis Diagnostics, The St. John Paul II Specialist Hospital, Cracow, Poland
| | - Joanna Czekajewska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Magdalena Grzesiak
- Laboratory of Microbiology, The St. John Paul II Specialist Hospital, Cracow, Poland
| | - Karolina Klesiewicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| |
Collapse
|
5
|
Ganapathy US, Lan T, Dartois V, Aldrich CC, Dick T. Blocking ADP-ribosylation expands the anti-mycobacterial spectrum of rifamycins. Microbiol Spectr 2023; 11:e0190023. [PMID: 37681986 PMCID: PMC10580999 DOI: 10.1128/spectrum.01900-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 09/09/2023] Open
Abstract
The clinical utility of rifamycins against non-tuberculous mycobacterial (NTM) disease is limited by intrinsic drug resistance achieved by ADP-ribosyltransferase Arr. By blocking the site of ribosylation, we recently optimized a series of analogs with substantially improved potency against Mycobacterium abscessus. Here, we show that a representative member of this series is significantly more potent than rifabutin against major NTM pathogens expressing Arr, providing a powerful medicinal chemistry approach to expand the antimycobacterial spectrum of rifamycins. IMPORTANCE Lung disease caused by a range of different species of non-tuberculous mycobacteria (NTM) is difficult to cure. The rifamycins are very active against Mycobacterium tuberculosis, which causes tuberculosis (TB), but inactive against many NTM species. Previously, we showed that the natural resistance of the NTM Mycobacterium abscessus to rifamycins is due to enzymatic inactivation of the drug by the bacterium. We generated chemically modified versions of rifamycins that prevent inactivation by the bacterium and thus become highly active against M. abscessus. Here, we show that such a chemically modified rifamycin is also highly active against several additional NTM species that harbor the rifamycin inactivating enzyme found in M. abscessus, including M. chelonae, M. fortuitum, and M. simiae. This finding expands the potential therapeutic utility of our novel rifamycins to include several currently difficult-to-cure NTM lung disease pathogens beyond M. abscessus.
Collapse
Affiliation(s)
- Uday S. Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Tian Lan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
6
|
Van N, Degefu YN, Leus PA, Larkins-Ford J, Klickstein J, Maurer FP, Stone D, Poonawala H, Thorpe CM, Smith TC, Aldridge BB. Novel Synergies and Isolate Specificities in the Drug Interaction Landscape of Mycobacterium abscessus. Antimicrob Agents Chemother 2023; 67:e0009023. [PMID: 37278639 PMCID: PMC10353461 DOI: 10.1128/aac.00090-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
Mycobacterium abscessus infections are difficult to treat and are often considered untreatable without tissue resection. Due to the intrinsic drug-resistant nature of the bacteria, combination therapy of three or more antibiotics is recommended. A major challenge in treating M. abscessus infections is the absence of a universal combination therapy with satisfying clinical success rates, leaving clinicians to treat infections using antibiotics lacking efficacy data. We systematically measured drug combinations in M. abscessus to establish a resource of drug interaction data and identify patterns of synergy to help design optimized combination therapies. We measured 191 pairwise drug combination effects among 22 antibacterials and identified 71 synergistic pairs, 54 antagonistic pairs, and 66 potentiator-antibiotic pairs. We found that commonly used drug combinations in the clinic, such as azithromycin and amikacin, are antagonistic in the lab reference strain ATCC 19977, whereas novel combinations, such as azithromycin and rifampicin, are synergistic. Another challenge in developing universally effective multidrug therapies for M. abscessus is the significant variation in drug response between isolates. We measured drug interactions in a focused set of 36 drug pairs across a small panel of clinical isolates with rough and smooth morphotypes. We observed strain-dependent drug interactions that cannot be predicted from single-drug susceptibility profiles or known drug mechanisms of action. Our study demonstrates the immense potential to identify synergistic drug combinations in the vast drug combination space and emphasizes the importance of strain-specific combination measurements for designing improved therapeutic interventions.
Collapse
Affiliation(s)
- Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
| | - Yonatan N. Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
| | - Pathricia A. Leus
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jacob Klickstein
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Florian P. Maurer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - David Stone
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Husain Poonawala
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cheleste M. Thorpe
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Trever C. Smith
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, Massachusetts, USA
| |
Collapse
|
7
|
Ganapathy US, Del Rio RG, Cacho-Izquierdo M, Ortega F, Lelièvre J, Barros-Aguirre D, Lindman M, Dartois V, Gengenbacher M, Dick T. A Leucyl-tRNA Synthetase Inhibitor with Broad-Spectrum Anti-Mycobacterial Activity. Antimicrob Agents Chemother 2023; 95:AAC.02420-20. [PMID: 33558292 PMCID: PMC8092876 DOI: 10.1128/aac.02420-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Global infections by non-tuberculous mycobacteria (NTM) are steadily rising. New drugs are needed to treat NTM infections, but the NTM drug pipeline remains poorly populated and focused on repurposing or reformulating approved antibiotics. We sought to accelerate de novo NTM drug discovery by testing advanced compounds with established activity against Mycobacterium tuberculosis 3-aminomethyl 4-halogen benzoxaboroles, a novel class of leucyl-tRNA synthetase inhibitors, were recently discovered as active against M. tuberculosis Here, we report that the benzoxaborole EC/11770 is not only a potent anti-tubercular agent but is active against the M. abscessus and M. avium complexes. Focusing on M. abscessus, which causes the most difficult-to-cure NTM disease, we show that EC/11770 retained potency against drug-tolerant biofilms in vitro and was effective in a mouse lung infection model. Resistant mutant selection experiments showed a low frequency of resistance and confirmed leucyl-tRNA synthetase as the target. This work establishes the benzoxaborole EC/11770 as a novel preclinical candidate for the treatment of NTM lung disease and tuberculosis and validates leucyl-tRNA synthetase as an attractive target for the development of broad-spectrum anti-mycobacterials.
Collapse
Affiliation(s)
- Uday S Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | | | - Fátima Ortega
- Global Health R&D, GlaxoSmithKline, Tres Cantos, Spain
| | - Joël Lelièvre
- Global Health R&D, GlaxoSmithKline, Tres Cantos, Spain
| | | | - Marissa Lindman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
8
|
Mann L, Ganapathy US, Abdelaziz R, Lang M, Zimmerman MD, Dartois V, Dick T, Richter A. In Vitro Profiling of the Synthetic RNA Polymerase Inhibitor MMV688845 against Mycobacterium abscessus. Microbiol Spectr 2022; 10:e0276022. [PMID: 36377951 PMCID: PMC9769904 DOI: 10.1128/spectrum.02760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
In a library screen of tuberculosis-active compounds for anti-Mycobacterium abscessus activity, we previously identified the synthetic phenylalanine amide MMV688845. In Mycobacterium tuberculosis, this class was shown to target the RpoB subunit of RNA polymerase, engaging a binding site distinct from that of the rifamycins. Due to its bactericidal activity, rifampicin is a key drug for the treatment of tuberculosis (TB). However, this natural product shows poor potency against M. abscessus due to enzymatic modification, and its clinical use is limited. Here, we carried out in vitro microbiological profiling of MMV688845 to determine its attractiveness as a substrate for a chemistry optimization project. MMV688845 was broadly active against the M. abscessus complex, displayed bactericidal against M. abscessus in vitro, and in a macrophage infection model showed additivity with commonly used anti-M. abscessus antibiotics and synergy with macrolides. Analyses of spontaneous resistant mutants mapped resistance to RpoB, confirming that MMV688845 has retained its target in M. abscessus. Together with its chemical tractability, the presented microbiological profiling reveals MMV688845 as an attractive starting point for hit-to-lead development to improve potency and to identify a lead compound with demonstrated oral in vivo efficacy. IMPORTANCE Infections with nontuberculous mycobacteria are an increasing health problem, and only a few new drug classes show activity against these multidrug-resistant bacteria. Due to insufficient therapy options, the development of new drug leads is necessary and should be advanced. The lead compound MMV688845, a substance active against M. abscessus complex, was characterized in depth. In various assays, it showed activity against M. abscessus, synergy with other antibiotics, and bactericidal effects.
Collapse
Affiliation(s)
- Lea Mann
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Uday S. Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Rana Abdelaziz
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
9
|
Abstract
Nontuberculous mycobacteria (NTM) are important pathogens, with a longitudinal prevalence of up to 20% within the cystic fibrosis (CF) population. Diagnosis of NTM pulmonary disease in people with CF (pwCF) is challenging, as a majority have NTM infection that is transient or indolent, without evidence of clinical consequence. In addition, the radiographic and clinical manifestations of chronic coinfections with typical CF pathogens can overlap those of NTM, making diagnosis difficult. Comprehensive care of pwCF must be optimized to assess the true clinical impact of NTM and to improve response to treatment. Treatment requires prolonged, multidrug therapy that varies depending on NTM species, resistance pattern, and extent of disease. With a widespread use of highly effective modulator therapy (HEMT), clinical signs and symptoms of NTM disease may be less apparent, and sensitivity of sputum cultures further reduced. The development of a disease-specific approach to the diagnosis and treatment of NTM infection in pwCF is a research priority, as a lifelong strategy is needed for this high-risk population.
Collapse
|
10
|
Atypical Mycobacteriosis Due to Mycobacterium abscessus subsp. massiliense: Our Experince. Pathogens 2022; 11:pathogens11121399. [PMID: 36558733 PMCID: PMC9782088 DOI: 10.3390/pathogens11121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Members of Micobacterium. abscessus complex comprises three subspecies (M. abscessus subsp. Abscessus, M. abscessus subsp. Bolletii, and M. abscessus subsp. Massiliense) and are a rapid-growing nontuberculous mycobacteria present in different aquatic habitats and soil. It often causes a wide spectrum of infections involving pulmonary infections, surgical wound infections, and infections related to mesotherapy, catheters, hemodialysis devices, endocarditis, and disseminated infections in immunocompromised individuals. METHODS In this article we comment on the most relevant aspects of nine patients with skin lesions caused by M. abscessus subsp. massiliense infection. Clinical characteristics, histopathology, and molecular identification were performed. RESULTS The patients in the clinical cases presented a history of trauma, tattoos, and physical therapy techniques. The most common treatments were minocycline and clindamycin, doxycycline, ceftriaxone, cephalexin, moxifloxacin, rifampicin, and trimethoprim-sulfamethoxazole. The evolution of the treated patients was acceptable, except for one patient, who showed a partial improvement. M. massiliense were identified in all clinical cases using a species-specific PCR. CONCLUSION Our series consisted of nine cases of skin biopsies recorded in different years; for this reason, we do not have all the data necessary for a complete description, in particular in four cases, causing limitations in the manuscript, especially in the therapy used and the evolution of patients due to lack of follow-up.
Collapse
|
11
|
Ganapathy US, del Río RG, Cacho-Izquierdo M, Ortega F, Lelièvre J, Barros-Aguirre D, Aragaw WW, Zimmerman MD, Lindman M, Dartois V, Gengenbacher M, Dick T. A Mycobacterium tuberculosis NBTI DNA Gyrase Inhibitor Is Active against Mycobacterium abscessus. Antimicrob Agents Chemother 2021; 65:e0151421. [PMID: 34606340 PMCID: PMC8597734 DOI: 10.1128/aac.01514-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Fluoroquinolones-the only clinically used DNA gyrase inhibitors-are effective against tuberculosis (TB) but are in limited clinical use for nontuberculous mycobacteria (NTM) lung infections due to intrinsic drug resistance. We sought to test alternative DNA gyrase inhibitors for anti-NTM activity. Mycobacterium tuberculosis gyrase inhibitors (MGIs), a subclass of novel bacterial topoisomerase inhibitors (NBTIs), were recently shown to be active against the tubercle bacillus. Here, we show that the MGI EC/11716 not only has potent anti-tubercular activity but is active against M. abscessus and M. avium in vitro. Focusing on M. abscessus, which causes the most difficult to cure NTM disease, we show that EC/11716 is bactericidal, active against drug-tolerant biofilms, and efficacious in a murine model of M. abscessus lung infection. Based on resistant mutant selection experiments, we report a low frequency of resistance to EC/11716 and confirm DNA gyrase as its target. Our findings demonstrate the potential of NBTIs as anti-M. abscessus and possibly broad-spectrum anti-mycobacterial agents.
Collapse
Affiliation(s)
- Uday S. Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | | | - Fátima Ortega
- Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Joël Lelièvre
- Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Marissa Lindman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
12
|
Abstract
New, more-effective drugs for the treatment of lung disease caused by nontuberculous mycobacteria (NTM) are needed. Among NTM opportunistic pathogens, Mycobacterium abscessus is the most difficult to cure and intrinsically multidrug resistant. In a whole-cell screen of a compound collection active against Mycobacterium tuberculosis, we previously identified the piperidine-4-carboxamide (P4C) MMV688844 (844) as a hit against M. abscessus. Here, we identified a more potent analog of 844 and showed that both the parent and improved analog retain activity against strains representing all three subspecies of the M. abscessus complex. Furthermore, P4Cs showed bactericidal and antibiofilm activity. Spontaneous resistance against the P4Cs emerged at a frequency of 10−8/CFU and mapped to gyrA and gyrB encoding the subunits of DNA gyrase. Biochemical studies with recombinant M. abscessus DNA gyrase showed that P4Cs inhibit the wild-type enzyme but not the P4C-resistant mutant. P4C-resistant strains showed limited cross-resistance to the fluoroquinolone moxifloxacin, which is in clinical use for the treatment of macrolide-resistant M. abscessus disease, and no cross-resistance to the benzimidazole SPR719, a novel DNA gyrase inhibitor in clinical development for the treatment of mycobacterial diseases. Analyses of P4Cs in recA promoter-based DNA damage reporter strains showed induction of recA promoter activity in the wild type but not in the P4C-resistant mutant background. This indicates that P4Cs, similar to fluoroquinolones, cause DNA gyrase-mediated DNA damage. Together, our results show that P4Cs present a novel class of mycobacterial DNA gyrase inhibitors with attractive antimicrobial activities against the M. abscessus complex.
Collapse
|
13
|
Byrne AS, Goudreau A, Bissonnette N, Shamputa IC, Tahlan K. Methods for Detecting Mycobacterial Mixed Strain Infections-A Systematic Review. Front Genet 2020; 11:600692. [PMID: 33408740 PMCID: PMC7779811 DOI: 10.3389/fgene.2020.600692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with multiple strains of a single pathogenic species. Known to occur in humans and animals, MSIs deserve special consideration when studying transmission dynamics, evolution, and treatment of mycobacterial diseases, notably tuberculosis in humans and paratuberculosis (or Johne's disease) in ruminants. Therefore, a systematic review was conducted to examine how MSIs are defined in the literature, how widespread the phenomenon is across the host species spectrum, and to document common methods used to detect such infections. Our search strategy identified 121 articles reporting MSIs in both humans and animals, the majority (78.5%) of which involved members of the Mycobacterium tuberculosis complex, while only a few (21.5%) examined non-tuberculous mycobacteria (NTM). In addition, MSIs exist across various host species, but most reports focused on humans due to the extensive amount of work done on tuberculosis. We reviewed the strain typing methods that allowed for MSI detection and found a few that were commonly employed but were associated with specific challenges. Our review notes the need for standardization, as some highly discriminatory methods are not adapted to distinguish between microevolution of one strain and concurrent infection with multiple strains. Further research is also warranted to examine the prevalence of NTM MSIs in both humans and animals. In addition, it is envisioned that the accurate identification and a better understanding of the distribution of MSIs in the future will lead to important information on the epidemiology and pathophysiology of mycobacterial diseases.
Collapse
Affiliation(s)
| | - Alex Goudreau
- Science & Health Sciences Librarian, University of New Brunswick, Saint John, NB, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Isdore Chola Shamputa
- Department of Nursing & Health Sciences, University of New Brunswick, Saint John, NB, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
14
|
TBAJ-876, a 3,5-Dialkoxypyridine Analogue of Bedaquiline, Is Active against Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64:AAC.02404-19. [PMID: 31964791 PMCID: PMC7179298 DOI: 10.1128/aac.02404-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Lung disease caused by Mycobacterium abscessus is very difficult to cure, and treatment failure rates are high. The antituberculosis drug bedaquiline (BDQ) is used as salvage therapy against this dreadful disease. However, BDQ is highly lipophilic, displays a long terminal half-life, and presents a cardiotoxicity liability associated with QT interval prolongation. Recent medicinal chemistry campaigns resulted in the discovery of 3,5-dialkoxypyridine analogues of BDQ which are less lipophilic, have higher clearance, and display lower cardiotoxic potential. Lung disease caused by Mycobacterium abscessus is very difficult to cure, and treatment failure rates are high. The antituberculosis drug bedaquiline (BDQ) is used as salvage therapy against this dreadful disease. However, BDQ is highly lipophilic, displays a long terminal half-life, and presents a cardiotoxicity liability associated with QT interval prolongation. Recent medicinal chemistry campaigns resulted in the discovery of 3,5-dialkoxypyridine analogues of BDQ which are less lipophilic, have higher clearance, and display lower cardiotoxic potential. TBAJ-876, a clinical development candidate of this series, shows attractive in vitro antitubercular activity and efficacy in a murine tuberculosis model. Here, we asked whether TBAJ-876 is active against M. abscessus. TBAJ-876 displayed submicromolar in vitro activity against reference strains representing the three subspecies of M. abscessus and against a collection of clinical isolates. Drug-drug potency interaction studies with commonly used anti-M. abscessus antibiotics showed no antagonistic effects, suggesting that TBAJ-876 could be coadministered with currently used drugs. Efficacy studies, employing a mouse model of M. abscessus infection, demonstrated potent activity in vivo. In summary, we demonstrate that TBAJ-876 shows attractive in vitro and in vivo activities against M. abscessus, similar to its BDQ parent. This suggests that next-generation BDQ, with improved tolerability and pharmacological profiles, may be useful for the treatment of M. abscessus lung disease in addition to the treatment of tuberculosis.
Collapse
|
15
|
Carvalho NFGD, Pavan F, Sato DN, Leite CQF, Arbeit RD, Chimara E. Genetic correlates of clarithromycin susceptibility among isolates of the Mycobacterium abscessus group and the potential clinical applicability of a PCR-based analysis of erm(41). J Antimicrob Chemother 2019; 73:862-866. [PMID: 29272470 DOI: 10.1093/jac/dkx476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/19/2017] [Indexed: 11/12/2022] Open
Abstract
Objectives To define the genetic basis of clarithromycin resistance among isolates of the Mycobacterium abscessus group (MAG). Methods We analysed 133 isolates identified as MAG. Species identification was confirmed by sequencing the rpoB gene. Clarithromycin susceptibility testing was performed according to CLSI recommendations, with an extended 14 day incubation. Known resistance genotypes of erm(41) and rrl were identified by sequencing; the presence of deletions in erm(41) was detected by PCR. Results The 133 MAG isolates included 82 M. abscessus, 27 Mycobacterium massiliense and 24 Mycobacterium bolletii. After the 3 day incubation, only five isolates demonstrated clarithromycin resistance (R); after 14 days of extended incubation, an additional 92 exhibited inducible resistance (IR), with the remaining being susceptible (S). The distribution of susceptibility phenotypes varied among the species. Among M. abscessus isolates, 11% were S, 84% IR and 5% R; among M. bolletii isolates, 96% were IR and 4% R; and among M. massiliense isolates 100% were S. Sequencing of rrl identified only a single isolate with the A2058G mutation. Deletions in erm(41) were present in 30 susceptible isolates; among the remaining 103 isolates, 97 were R or IR (sensitivity, 83%; specificity, 100%; positive predictive value, 100%; negative predictive value, 94%). Among the six susceptible isolates without deletions, all carried the erm(41) T28C point mutation. Conclusions A significant proportion of MAG isolates demonstrate inducible resistance to clarithromycin that is only detectable with an extended 14 day incubation. Further, the majority of clarithromycin-susceptible MAG isolates have characteristic deletions in erm(41) that can rapidly and reliably be detected by a simple PCR.
Collapse
Affiliation(s)
- Natalia F G de Carvalho
- Tuberculosis and Mycobacteriosis Laboratory, Bacteriology Center, Instituto Adolfo Lutz, São Paulo, Brazil
| | - Fernando Pavan
- Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Brazil
| | - Daisy N Sato
- Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Brazil
| | | | - Robert D Arbeit
- Division of Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Erica Chimara
- Tuberculosis and Mycobacteriosis Laboratory, Bacteriology Center, Instituto Adolfo Lutz, São Paulo, Brazil
| |
Collapse
|
16
|
Baldwin SL, Larsen SE, Ordway D, Cassell G, Coler RN. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl Trop Dis 2019; 13:e0007083. [PMID: 30763316 PMCID: PMC6375572 DOI: 10.1371/journal.pntd.0007083] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seemingly innocuous nontuberculous mycobacteria (NTM) species, classified by their slow or rapid growth rates, can cause a wide range of illnesses, from skin ulceration to severe pulmonary and disseminated disease. Despite their worldwide prevalence and significant disease burden, NTM do not garner the same financial or research focus as Mycobacterium tuberculosis. In this review, we outline the most abundant of over 170 NTM species and inadequacies of diagnostics and treatments and weigh the advantages and disadvantages of currently available in vivo animal models of NTM. In order to effectively combat this group of mycobacteria, more research focused on appropriate animal models of infection, screening of chemotherapeutic compounds, and development of anti-NTM vaccines and diagnostics is urgently needed.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Sasha E. Larsen
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gail Cassell
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- PAI Life Sciences, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Nontuberculous mycobacteria (NTM) are important emerging cystic fibrosis (CF) pathogens, with estimates of prevalence ranging from 6% to 13%. Diagnosis of NTM disease in patients with CF is challenging, as the infection may remain indolent in some, without evidence of clinical consequence, whereas other patients suffer significant morbidity and mortality. Treatment requires prolonged periods of multiple drugs and varies depending on NTM species, resistance pattern, and extent of disease. The development of a disease-specific approach to the diagnosis and treatment of NTM infection in CF patients is a research priority, as a lifelong strategy is needed for this high-risk population.
Collapse
Affiliation(s)
- Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Denver School of Medicine, 13123 East 16th Avenue, Box B-395, Aurora, CO 80045, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO 80045, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
Hydroalcoholic Extract and Ethyl Acetate Fraction of Bixa orellana Leaves Decrease the Inflammatory Response to Mycobacterium abscessus Subsp. massiliense. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6091934. [PMID: 30369954 PMCID: PMC6189676 DOI: 10.1155/2018/6091934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/18/2018] [Indexed: 12/18/2022]
Abstract
The incidence of infections caused by rapidly growing mycobacteria (RGM), especially Mycobacterium abscessus subsp. massiliense (Mabs), is increasing worldwide. Severe infections are associated with abscess formation and strong inflammatory response. This study evaluated the antimicrobial and anti-inflammatory activities of a hydroalcoholic extract (BoHE) and ethyl acetate fraction (BoEA) of Bixa orellana leaves. Antimicrobial activity was evaluated by broth microdilution to determine the minimum inhibitory (MIC) and the minimum bactericidal (MBC) concentrations. Cytotoxicity was evaluated using erythrocytes and RAW 264.7 cells. Nitric oxide (NO) was assayed in stimulated RAW 264.7 cells, and inflammatory cell migration and acute toxicity were evaluated in a Mabs-induced peritonitis mouse model. The compounds present in BoEA were identified by high performance liquid chromatography and mass spectrometry (HPLC-MS). The MIC and MBC values were 2.34 mg/mL and 37.5 mg/mL for BoHE and 0.39 mg/mL and 6.25 mg/mL for BoEA. The extracts did not induce significant toxicity in erythrocytes and RAW 264.7 cells. High levels of NO induced by Mabs were decreased by treatment with both extracts. The anti-inflammatory activity was confirmed in vivo by significant reduction of the cell migration to the peritoneum following BoHE and BoEA pretreatment. Animals treated with BoHE or BoEA did not show signs of acute toxicity in stomach, liver, and kidney. The chemical characterization of BoEA (the most active extract) revealed that kaempferol-3-O-coumaroyl glucose is its major component. The extract of B. orellana may be effective for treating infections caused by Mabs.
Collapse
|
19
|
Rominski A, Schulthess B, Müller DM, Keller PM, Sander P. Effect of β-lactamase production and β-lactam instability on MIC testing results for Mycobacterium abscessus. J Antimicrob Chemother 2018; 72:3070-3078. [PMID: 28961987 DOI: 10.1093/jac/dkx284] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/09/2017] [Indexed: 12/27/2022] Open
Abstract
Objectives Limited treatment options available for Mycobacterium abscessus infections include the parenteral β-lactam antibiotics cefoxitin and imipenem, which show moderate in vitro activity. Other β-lactam antibiotics (except meropenem) have no considerable in vitro activity, due to their rapid hydrolysis by a broad-spectrum β-lactamase (Bla_Mab). We here addressed the impact of β-lactamase production and β-lactam in vitro stability on M. abscessus MIC results and determined the epidemiological cut-off (ECOFF) values of cefoxitin, imipenem and meropenem. Methods By LC high-resolution MS (LC-HRMS), we assessed the in vitro stability of cefoxitin, imipenem and meropenem. M. abscessus ATCC 19977 strain and its isogenic blaMab deletion mutant were used for MIC testing. Based on MIC distributions for M. abscessus clinical strains, we determined ECOFFs of cefoxitin, imipenem and meropenem. Results A functional Bla_Mab increased MICs of penicillins, ceftriaxone and meropenem. LC-HRMS data showed significant degradation of cefoxitin, imipenem and meropenem during standard antibiotic susceptibility testing procedures. MIC, MIC50 and ECOFF values of cefoxitin, imipenem and meropenem are influenced by incubation time. Conclusions The results of our study support administration of imipenem, meropenem and cefoxitin, for treatment of patients infected with M. abscessus. Our findings on in vitro instability of imipenem, meropenem and cefoxitin explain the problematic correlation between in vitro susceptibility and in vivo activity of these antibiotics and question the clinical utility of susceptibility testing of these chemotherapeutic agents.
Collapse
Affiliation(s)
- Anna Rominski
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Bettina Schulthess
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland.,Nationales Zentrum für Mykobakterien, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Daniel M Müller
- Institut für Klinische Chemie, UniversitätsSpital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Peter M Keller
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland.,Nationales Zentrum für Mykobakterien, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland.,Nationales Zentrum für Mykobakterien, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| |
Collapse
|
20
|
Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Cardoso-Leão S, Garcia MJ, Vasireddy S, Turenne CY, Griffith DE, Philley JV, Niemann S, Wallace RJ, Cirillo DM. Mycobacterium abscessus, a taxonomic puzzle. Int J Syst Evol Microbiol 2017; 68:467-469. [PMID: 29139343 DOI: 10.1099/ijsem.0.002457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tomas A Kohl
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Barbara A Brown-Elliott
- Department of Microbiology, Mycobacteria/Nocardia Research Laboratory, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Alberto Trovato
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sylvia Cardoso-Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Jesus Garcia
- Department of Preventive Medicine, Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | - Sruthi Vasireddy
- Department of Microbiology, Mycobacteria/Nocardia Research Laboratory, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | - David E Griffith
- Department of Pulmonary Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Julie V Philley
- Department of Pulmonary Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Richard J Wallace
- Department of Microbiology, Mycobacteria/Nocardia Research Laboratory, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Mycobacterium abscessus WhiB7 Regulates a Species-Specific Repertoire of Genes To Confer Extreme Antibiotic Resistance. Antimicrob Agents Chemother 2017; 61:AAC.01347-17. [PMID: 28874378 DOI: 10.1128/aac.01347-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus causes acute and chronic bronchopulmonary infection in patients with chronic lung damage, of which cystic fibrosis (CF) patients are particularly vulnerable. The major threat posed by this organism is its high intrinsic antibiotic resistance. A typical treatment regimen involves a 6- to 12-month-long combination therapy of clarithromycin and amikacin, with cure rates below 50% and multiple side effects, especially due to amikacin. In the present work, we show that M. abscessuswhiB7, a homologue of Mycobacterium tuberculosis and Mycobacterium smegmatis whiB7 with previously demonstrated effects on intrinsic antibiotic resistance, is strongly induced when exposed to clinically relevant antibiotics that target the ribosome: erythromycin, clarithromycin, amikacin, tetracycline, and spectinomycin. The deletion of M. abscessuswhiB7 results in sensitivity to all of the above-mentioned antibiotics. Further, we have defined and compared the whiB7 regulon of M. abscessus with the closely related nontuberculous mycobacterium (NTM) M. smegmatis to demonstrate the induction of a species-specific repertoire of genes. Finally, we show that one such gene, eis2, is specifically induced in M. abscessus by whiB7 and contributes to its higher levels of intrinsic amikacin resistance. This species-specific pattern of gene induction might account for the differences in drug susceptibilities to other antibiotics and between different mycobacterial species.
Collapse
|
22
|
Tan JL, Ng KP, Ong CS, Ngeow YF. Genomic Comparisons Reveal Microevolutionary Differences in Mycobacterium abscessus Subspecies. Front Microbiol 2017; 8:2042. [PMID: 29109707 PMCID: PMC5660101 DOI: 10.3389/fmicb.2017.02042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium abscessus, a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex (M. abscessus, M. massiliense, and M. bolletii) are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site) identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a) recombination has affected the M. abscessus complex more than mutation and positive selection; (b) recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c) the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the diversification among members in this complex.
Collapse
Affiliation(s)
- Joon L Tan
- Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
| | - Kee P Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chia S Ong
- Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
| | - Yun F Ngeow
- Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
| |
Collapse
|
23
|
Kim N, Jang Y, Kim JK, Ryoo S, Kwon KH, Kim M, Kang SS, Byeon HS, Lee HS, Lim YH, Kim JM. Molecular and genomic features of Mycobacterium bovis strain 1595 isolated from Korean cattle. J Vet Sci 2017; 18:333-341. [PMID: 28385004 PMCID: PMC5583421 DOI: 10.4142/jvs.2017.18.s1.333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/11/2016] [Accepted: 01/02/2017] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to investigate the molecular characteristics and to conduct a comparative genomic analysis of Mycobacterium (M.) bovis strain 1595 isolated from a native Korean cow. Molecular typing showed that M. bovis 1595 has spoligotype SB0140 with mycobacterial interspersed repetitive units-variable number of tandem repeats typing of 4-2-5-3-2-7-5-5-4-3-4-3-4-3, representing the most common type of M. bovis in Korea. The complete genome sequence of strain 1595 was determined by single-molecule real-time technology, which showed a genome of 4351712 bp in size with a 65.64% G + C content and 4358 protein-coding genes. Comparative genomic analysis with the genomes of Mycobacterium tuberculosis complex strains revealed that all genomes are similar in size and G + C content. Phylogenetic analysis revealed all strains were within a 0.1% average nucleotide identity value, and MUMmer analysis illustrated that all genomes showed positive collinearity with strain 1595. A sequence comparison based on BLASTP analysis showed that M. bovis AF2122/97 was the strain with the greatest number of completely matched proteins to M. bovis 1595. This genome sequence analysis will serve as a valuable reference for improving understanding of the virulence and epidemiologic traits among M. bovis isolates in Korea.
Collapse
Affiliation(s)
- Narae Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Anyang 14089, Korea.,Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul 02841, Korea
| | - Yunho Jang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Anyang 14089, Korea
| | - Jin Kyoung Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Anyang 14089, Korea
| | - Soyoon Ryoo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Anyang 14089, Korea
| | - Ka Hee Kwon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Anyang 14089, Korea
| | - Miso Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Anyang 14089, Korea
| | - Shin Seok Kang
- Chungcheongbukdo Veterinary Service, Chungju 27492, Korea
| | | | - Hee Soo Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Anyang 14089, Korea
| | - Young-Hee Lim
- Department of Public Health Science (Brain Korea 21 PLUS Program), Graduate School, Korea University, Seoul 02841, Korea
| | - Jae-Myung Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Anyang 14089, Korea
| |
Collapse
|
24
|
Adekambi T, Sassi M, van Ingen J, Drancourt M. Reinstating Mycobacterium massiliense and Mycobacterium bolletii as species of the Mycobacterium abscessus complex. Int J Syst Evol Microbiol 2017; 67:2726-2730. [PMID: 28820087 DOI: 10.1099/ijsem.0.002011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TheMycobacterium abscessus complex is a group of rapidly growing, multiresistant mycobacteria previously divided into three species. Proposal for the union of Mycobacterium bolletii and Mycobacterium massiliense into one subspecies, so-called M. abscessus subsp. massiliense, created much confusion about the routine identification and reporting of M. abscessus clinical isolates for clinicians. Results derived from multigene sequencing unambiguously supported the reinstatement of M. massiliense and M. bolletii as species, culminating in the presence of erm(41)-encoded macrolide resistance in M. bolletii. Present genome-based analysis unambiguously supports the reinstatement of M. massiliense and M. bolletii as species after the average nucleotide identity values of 96.7 % for M. abscessus versus M. bolletii, and 96.4 % for M. abscessus versus M. massiliense, and the 96.6 % identity between M. bolletii and M. massiliense was put into the perspective of a larger, 28-species analysis. Accordingly, DNA-DNA hybridization values predicted by the complete rpoB gene sequencing analysis were between 68.7 and 72.3 % in this complex. These genomic data as well as the phenotypic characteristics prompted us to propose to reinstate the previously known M. massiliense and M. bolletii into two distinct species among the M. abscessus complex.
Collapse
Affiliation(s)
- Toidi Adekambi
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mohamed Sassi
- University of Rennes 1, Inserm U835 Biochimie Pharmaceutique, Rennes, France
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, The Netherlands
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR 63, CNRS 7278, IRD 198, Inserm 1095, Faculté de Médecine, Marseille 13005, France
| |
Collapse
|
25
|
Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species. J Clin Microbiol 2017; 55:2736-2751. [PMID: 28659320 DOI: 10.1128/jcm.00549-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022] Open
Abstract
The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 103 and 104 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species.
Collapse
|
26
|
Rifabutin Is Active against Mycobacterium abscessus Complex. Antimicrob Agents Chemother 2017; 61:AAC.00155-17. [PMID: 28396540 PMCID: PMC5444174 DOI: 10.1128/aac.00155-17] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
Lung infections caused by Mycobacterium abscessus are emerging as a global threat to individuals with cystic fibrosis and to other patient groups. Recent evidence for human-to-human transmission worsens the situation. M. abscessus is an intrinsically multidrug-resistant pathogen showing resistance to even standard antituberculosis drugs, such as rifampin. Here, our objective was to identify existing drugs that may be employed for the treatment of M. abscessus lung disease. A collection of more than 2,700 approved drugs was screened at a single-point concentration against an M. abscessus clinical isolate. Hits were confirmed with fresh solids in dose-response experiments. For the most attractive hit, growth inhibition and bactericidal activities against reference strains of the three M. abscessus subspecies and a collection of clinical isolates were determined. Surprisingly, the rifampin derivative rifabutin had MICs of 3 ± 2 μM (3 μg/ml) against the screening strain, the reference strains M. abscessus subsp. abscessus ATCC 19977, M. abscessus subsp. bolletii CCUG 50184-T, and M. abscessus subsp. massiliense CCUG 48898-T, as well as against a collection of clinical isolates. Furthermore, rifabutin was active against clarithromycin-resistant strains. In conclusion, rifabutin, in contrast to rifampin, is active against the Mycobacterium abscessus complex bacteria in vitro and may be considered for treatment of M. abscessus lung disease.
Collapse
|
27
|
Birmes FS, Wolf T, Kohl TA, Rüger K, Bange F, Kalinowski J, Fetzner S. Mycobacterium abscessus subsp. abscessus Is Capable of Degrading Pseudomonas aeruginosa Quinolone Signals. Front Microbiol 2017; 8:339. [PMID: 28303132 PMCID: PMC5332414 DOI: 10.3389/fmicb.2017.00339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/17/2017] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa employs 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal, PQS) and 2-heptyl-4(1H)-quinolone (HHQ) as quorum sensing signal molecules, which contribute to a sophisticated regulatory network controlling the production of virulence factors and antimicrobials. We demonstrate that Mycobacterium abscessusT and clinical M. abscessus isolates are capable of degrading these alkylquinolone signals. Genome sequences of 50 clinical M. abscessus isolates indicated the presence of aqdRABC genes, contributing to fast degradation of HHQ and PQS, in M. abscessus subsp. abscessus strains, but not in M. abscessus subsp. bolletii and M. abscessus subsp. massiliense isolates. A subset of 18 M. a. subsp. abscessus isolates contained the same five single nucleotide polymorphisms (SNPs) compared to the aqd region of the type strain. Interestingly, representatives of these isolates showed faster PQS degradation kinetics than the M. abscessus type strain. One of the SNPs is located in the predicted promoter region of the aqdR gene encoding a putative transcriptional regulator, and two others lead to a variant of the AqdC protein termed AqdCII, which differs in two amino acids from AqdCI of the type strain. AqdC, the key enzyme of the degradation pathway, is a PQS dioxygenase catalyzing quinolone ring cleavage. While transcription of aqdR and aqdC is induced by PQS, transcript levels in a representative of the subset of 18 isolates were not significantly altered despite the detected SNP in the promoter region. However, purified recombinant AqdCII and AqdCI exhibit different kinetic properties, with approximate apparent Km values for PQS of 14 μM and 37 μM, and kcat values of 61 s-1 and 98 s-1, respectively, which may (at least in part) account for the observed differences in PQS degradation rates of the strains. In co-culture experiments of P. aeruginosa PAO1 and M. abscessus, strains harboring the aqd genes reduced the PQS levels, whereas mycobacteria lacking the aqd gene cluster even boosted PQS production. The results suggest that the presence and expression of the aqd genes in M. abscessus lead to a competitive advantage against P. aeruginosa.
Collapse
Affiliation(s)
- Franziska S Birmes
- Institute for Molecular Microbiology and Biotechnology, University of Münster Münster, Germany
| | - Timo Wolf
- Center for Biotechnology (CeBiTec) Bielefeld, Germany
| | - Thomas A Kohl
- Research Center BorstelSülfeld, Germany; German Center for Infection ResearchBorstel, Germany
| | - Kai Rüger
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School Hannover, Germany
| | - Franz Bange
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School Hannover, Germany
| | | | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster Münster, Germany
| |
Collapse
|
28
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
29
|
Mougari F, Guglielmetti L, Raskine L, Sermet-Gaudelus I, Veziris N, Cambau E. Infections caused by Mycobacterium abscessus: epidemiology, diagnostic tools and treatment. Expert Rev Anti Infect Ther 2016; 14:1139-1154. [PMID: 27690688 DOI: 10.1080/14787210.2016.1238304] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mycobacterium abscessus is an emerging mycobacteria that is responsible for lung diseases and healthcare-associated extrapulmonary infections. Recent findings support its taxonomic status as a single species comprising 3 subspecies designated abscessus, bolletii and massiliense. We performed a review of English-language publications investigating all three of these subspecies. Areas covered: Worldwide, human infections are often attributable to environmental contamination, although the isolation of M. abscessus in this reservoir is very rare. Basic research has demonstrated an association between virulence and cell wall components and cording, and genome analysis has identified gene transfer from other bacteria. The bacteriological diagnosis of M. abscessus is based on innovative tools combining molecular biology and mass spectrometry. Genotypic and phenotypic susceptibility testing are required to predict the success of macrolide (clarithromycin or azithromycin)-based therapeutic regimens. Genotyping methods are helpful to assess relapse and cross-transmission and to search for a common source. Treatment is not standardised, and outcomes are often unsatisfactory. Expert commentary: M. abscessus is still an open field in terms of clinical and bacteriological research. Further knowledge of its ecology and transmission routes, as well as host-pathogen interactions, is required. Because the number of human cases is increasing, it is also necessary to identify more active treatments and perform clinical trials to assess standard effective regimens.
Collapse
Affiliation(s)
- Faiza Mougari
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France.,c IAME, UMR 1137, INSERM , Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| | - Lorenzo Guglielmetti
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France.,e INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France
| | - Laurent Raskine
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France
| | - Isabelle Sermet-Gaudelus
- f AP-HP, Groupe Hospitalier Necker-Enfants Malades , Centre de Ressources et de Compétences pour la Mucoviscidose (CRCM) et Centre de Formation de Traitement à Domicile Chez l'Enfant (CFTDE) , Paris , France
| | - Nicolas Veziris
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France.,e INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France.,g AP-HP, Hôpital Pitié-Salpêtrière , Laboratory of Bacteriology , Paris , France
| | - Emmanuelle Cambau
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France.,c IAME, UMR 1137, INSERM , Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
30
|
Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Leão SC, Garcia MJ, Vasireddy S, Turenne CY, Griffith DE, Philley JV, Baldan R, Campana S, Cariani L, Colombo C, Taccetti G, Teri A, Niemann S, Wallace RJ, Cirillo DM. Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and Mycobacteriumabscessus subsp. bolletii and designation of Mycobacteriumabscessus subsp. massiliense comb. nov. Int J Syst Evol Microbiol 2016; 66:4471-4479. [PMID: 27499141 DOI: 10.1099/ijsem.0.001376] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of members of the Mycobacterium abscessus complex has been the subject of intensive investigation and, in some aspects confusion, in recent years as a result of varying approaches to genetic data interpretation. Currently, the former species Mycobacterium massiliense and Mycobacterium bolletii are grouped together as Mycobacterium abscessus subsp. bolletii. They differ greatly, however, as the former M. bolletii has a functional erm(41) gene that confers inducible resistance to macrolides, the primary therapeutic antimicrobials for M. abscessus, while in the former M. massiliense the erm(41) gene is non-functional. Furthermore, previous whole genome studies of the M. abscessus group support the separation of M. bolletii and M. massiliense. To shed further light on the population structure of Mycobacterium abscessus, 43 strains and three genomes retrieved from GenBank were subjected to pairwise comparisons using three computational approaches: verage ucleotide dentity, enome to enome istance and single nucleotide polymorphism analysis. The three methods produced overlapping results, each demonstrating three clusters of strains corresponding to the same number of taxonomic entities. The distances were insufficient to warrant distinction at the species level, but met the criteria for differentiation at the subspecies level. Based on prior erm(41)-related phenotypic data and current genomic data, we conclude that the species M. abscessus encompasses, in adjunct to the presently recognized subspecies M. abscessus subsp. abscessus and M. abscessus subsp. bolletii, a third subspecies for which we suggest the name M. abscessus subsp. massiliense comb. nov. (type strain CCUG 48898T=CIP 108297T=DSM 45103T=KCTC 19086T).
Collapse
Affiliation(s)
- Enrico Tortoli
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Barbara A Brown-Elliott
- Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Alberto Trovato
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Jesus Garcia
- Department of Preventive Medicine, Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | - Sruthi Vasireddy
- Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | - David E Griffith
- Department of Pulmonary Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Julie V Philley
- Department of Pulmonary Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Rossella Baldan
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Campana
- Regional Reference Center for Cystic Fibrosis, Meyer University Hospital, Florence, Italy
| | - Lisa Cariani
- Cystic Fibrosis Microbiology Laboratory, IRCCS Ca' Granda, Milan, Italy
| | - Carla Colombo
- Cystic Fibrosis Center, IRCSS Ca' Granda, Milan, Italy
| | - Giovanni Taccetti
- Regional Reference Center for Cystic Fibrosis, Meyer University Hospital, Florence, Italy
| | - Antonio Teri
- Cystic Fibrosis Microbiology Laboratory, IRCCS Ca' Granda, Milan, Italy
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Richard J Wallace
- Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus Complex Infections in Humans. Emerg Infect Dis 2016; 21:1638-46. [PMID: 26295364 PMCID: PMC4550155 DOI: 10.3201/2109.141634] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
New treatments, rapid and inexpensive identification methods, and measures to contain nosocomial transmission and outbreaks are urgently needed. Mycobacterium abscessus complex comprises a group of rapidly growing, multidrug-resistant, nontuberculous mycobacteria that are responsible for a wide spectrum of skin and soft tissue diseases, central nervous system infections, bacteremia, and ocular and other infections. M. abscessus complex is differentiated into 3 subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. massiliense, and M. abscessus subsp. bolletii. The 2 major subspecies, M. abscessus subsp. abscessus and M.abscessus subsp. massiliense, have different erm(41) gene patterns. This gene provides intrinsic resistance to macrolides, so the different patterns lead to different treatment outcomes. M. abscessus complex outbreaks associated with cosmetic procedures and nosocomial transmissions are not uncommon. Clarithromycin, amikacin, and cefoxitin are the current antimicrobial drugs of choice for treatment. However, new treatment regimens are urgently needed, as are rapid and inexpensive identification methods and measures to contain nosocomial transmission and outbreaks.
Collapse
|
32
|
Koh WJ, Jeong BH, Jeon K, Kim SY, Park KU, Park HY, Huh HJ, Ki CS, Lee NY, Lee SH, Kim CK, Daley CL, Shin SJ, Kim H, Kwon OJ. Oral Macrolide Therapy Following Short-term Combination Antibiotic Treatment of Mycobacterium massiliense Lung Disease. Chest 2016; 150:1211-1221. [PMID: 27167209 DOI: 10.1016/j.chest.2016.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although Mycobacterium massiliense lung disease is increasing in patients with cystic fibrosis and non-cystic fibrosis bronchiectasis, optimal treatment regimens remain largely unknown. This study aimed to evaluate the efficacy of oral macrolide therapy after an initial 2-week course of combination antibiotics for the treatment of M massiliense lung disease. METHODS Seventy-one patients received oral macrolides, along with an initial 4-week (n = 28) or 2-week (n = 43) IV amikacin and cefoxitin (or imipenem) treatment. These patients were treated for 24 months (4-week IV group) or for at least 12 months after negative sputum culture conversion (2-week IV group). RESULTS Total treatment duration was longer in the 4-week IV group (median, 23.9 months) than in the 2-week IV group (15.2 months; P < .001). The response rates after 12 months of treatment were 89% for symptoms, 79% for CT scanning, and 100% for negative sputum culture results in the 4-week IV group. In the 2-week IV group, these values were 100% (P = .057), 91% (P = .177), and 91% (P = .147), respectively. Acquired macrolide resistance developed in two patients in the 2-week IV group. Genotyping analyses of isolates from patients who did not achieve negative sputum culture conversion during treatment and from those with positive culture results after successful treatment completion revealed that most episodes were due to reinfection with different genotypes of M massiliense. CONCLUSIONS Oral macrolide therapy after an initial 2-week course of combination antibiotics might be effective in most patients with M massiliense lung disease. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00970801; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, and Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Chang Ki Kim
- Korean Institute of Tuberculosis, Cheongju, South Korea
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Sung Jae Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - O Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
33
|
Kwon YS, Koh WJ. Diagnosis and Treatment of Nontuberculous Mycobacterial Lung Disease. J Korean Med Sci 2016; 31:649-59. [PMID: 27134484 PMCID: PMC4835588 DOI: 10.3346/jkms.2016.31.5.649] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/01/2016] [Indexed: 01/15/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous organisms; their isolation from clinical specimens does not always indicate clinical disease. The incidence of NTM lung diseases has been increasing worldwide. Although the geographic diversity of NTM species is well known, Mycobacterium avium complex (MAC), M. abscessus complex (MABC), and M. kansasii are the most commonly encountered and important etiologic organisms. Two distinct types of NTM lung diseases have been reported, namely fibrocavitary and nodular bronchiectatic forms. For laboratory diagnosis of NTM lung diseases, both liquid and solid media cultures and species-level identification are strongly recommended to enhance growth detection and determine the clinical relevance of isolates. Treatment for NTM lung diseases consists of a multidrug regimen and a long course of therapy, lasting more than 12 months after negative sputum conversion. For MAC lung disease, several new macrolide-based regimens are now recommended. For nodular bronchiectatic forms of MAC lung diseases, an intermittent three-time-weekly regimen produces outcomes similar to those of daily therapy. Treatment of MABC lung disease is very difficult, requiring long-term use of parenteral agents in combination with new macrolides. Treatment outcomes are much better for M. massiliense lung disease than for M. abscessus lung disease. Thus, precise identification of species in MABC infection is needed for the prediction of antibiotic response. Likewise, increased efforts to improve treatment outcomes and develop new agents for NTM lung disease are needed.
Collapse
Affiliation(s)
- Yong-Soo Kwon
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Ryu YJ, Koh WJ, Daley CL. Diagnosis and Treatment of Nontuberculous Mycobacterial Lung Disease: Clinicians' Perspectives. Tuberc Respir Dis (Seoul) 2016; 79:74-84. [PMID: 27066084 PMCID: PMC4823187 DOI: 10.4046/trd.2016.79.2.74] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 01/10/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are emerging pathogens that affect both immunocompromised and immunocompetent patients. The incidence and prevalence of NTM lung disease are increasing worldwide and rapidly becoming a major public health problem. For the diagnosis of NTM lung disease, patients suspected to have NTM lung disease are required to meet all clinical and microbiologic criteria. The development of molecular methods allows the characterization of new species and NTM identification at a subspecies level. Even after the identification of NTM species from respiratory specimens, clinicians should consider the clinical significance of such findings. Besides the limited options, treatment is lengthy and varies by species, and therefore a challenge. Treatment may be complicated by potential toxicity with discouraging outcomes. The decision to start treatment for NTM lung disease is not easy and requires careful individualized analysis of risks and benefits. Clinicians should be alert to those unique aspects of NTM lung disease concerning diagnosis with advanced molecular methods and treatment with limited options. Current recommendations and recent advances for diagnosis and treatment of NTM lung disease are summarized in this article.
Collapse
Affiliation(s)
- Yon Ju Ryu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO, USA
| |
Collapse
|
35
|
Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis 2016; 45:123-34. [PMID: 26976549 DOI: 10.1016/j.ijid.2016.03.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023] Open
Abstract
Non-tuberculous mycobacteria (NTM) are emerging worldwide as significant causes of chronic pulmonary infection, posing a number of challenges for both clinicians and researchers. While a number of studies worldwide have described an increasing prevalence of NTM pulmonary disease over time, population-based data are relatively sparse and subject to ascertainment bias. Furthermore, the disease is geographically heterogeneous. While some species are commonly implicated worldwide (Mycobacterium avium complex, Mycobacterium abscessus), others (e.g., Mycobacterium malmoense, Mycobacterium xenopi) are regionally important. Thoracic computed tomography, microbiological testing with identification to the species level, and local epidemiology must all be taken into account to accurately diagnose NTM pulmonary disease. A diagnosis of NTM pulmonary disease does not necessarily imply that treatment is required; a patient-centered approach is essential. When treatment is required, multidrug therapy based on appropriate susceptibility testing for the species in question should be used. New diagnostic and therapeutic modalities are needed to optimize the management of these complicated infections.
Collapse
Affiliation(s)
- Jason E Stout
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Box 102359-DUMC, Durham, NC 27710, USA.
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Cheng A, Sheng WH, Huang YC, Sun HY, Tsai YT, Chen ML, Liu YC, Chuang YC, Huang SC, Chang CI, Chang LY, Huang WC, Hsueh PR, Hung CC, Chen YC, Chang SC. Prolonged postprocedural outbreak of Mycobacterium massiliense infections associated with ultrasound transmission gel. Clin Microbiol Infect 2016; 22:382.e1-382.e11. [PMID: 26794030 DOI: 10.1016/j.cmi.2015.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
Abstract
Postprocedural infections by Mycobacterium abscessus complex are increasing worldwide, and the source and route of transmission are infrequently identified. Here the extension of a previous clustering of paediatric patients with surgical site infections due to a single strain of the subspecies M. massiliense is reported. The investigation was conducted at a 2200-bed teaching hospital in Taiwan and included microbial surveillance of the environment (water, air, equipment and supplies) and a case-control study. We performed molecular identification and typing of the isolates by a trilocus sequencing scheme, confirmed by multilocus sequencing typing and pulsed-field gel electrophoresis. We investigated 40 patients who developed postprocedure soft tissue or bloodstream infections by M. massiliense (TPE101) during a 3-year period. Thirty-eight patients were identified at hospital A, and one newborn and her mother were identified at hospital B (185 km from hospital A). A case-control study identified the association of invasive procedures (adjusted odds ratio, 9.13) and ultrasonography (adjusted odds ratio, 2.97) (both p <0.05) with acquiring the outbreak strain. Isolates from the cases and unopened bottles of ultrasound transmission gel were all of strain ST48 and indistinguishable or closely related by pulsed-field gel electrophoresis. After replacement of contaminated gel, no new cases were detected during 18 months' follow-up. This investigation identified the use of contaminated gel as the common source causing an outbreak on a larger scale than had been recognized. Our findings halted production by the manufacturer and prompted revision of hospital guidelines.
Collapse
Affiliation(s)
- A Cheng
- Department of Internal Medicine, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - W-H Sheng
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Center for Infection Control, National Taiwan University Hospital, Taipei, Taiwan
| | - Y-C Huang
- Department of Paediatrics, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - H-Y Sun
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Y-T Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - M-L Chen
- Center for Infection Control, National Taiwan University Hospital, Taipei, Taiwan
| | - Y-C Liu
- Center for Infection Control, National Taiwan University Hospital, Taipei, Taiwan
| | - Y-C Chuang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - S-C Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - C-I Chang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - L-Y Chang
- Department of Paediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - W-C Huang
- Department of Paediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - P-R Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - C-C Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Y-C Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan.
| | - S-C Chang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
37
|
Martiniano SL, Nick JA, Daley CL. Nontuberculous Mycobacterial Infections in Cystic Fibrosis. Clin Chest Med 2015; 37:83-96. [PMID: 26857770 DOI: 10.1016/j.ccm.2015.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nontuberculous mycobacteria (NTM) are important emerging cystic fibrosis (CF) pathogens, with estimates of prevalence ranging from 6% to 13%. Diagnosis of NTM disease in patients with CF is challenging, as the infection may remain indolent in some, without evidence of clinical consequence, whereas other patients suffer significant morbidity and mortality. Treatment requires prolonged periods of multiple drugs and varies depending on NTM species, resistance pattern, and extent of disease. The development of a disease-specific approach to the diagnosis and treatment of NTM infection in CF patients is a research priority, as a lifelong strategy is needed for this high-risk population.
Collapse
Affiliation(s)
- Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Denver School of Medicine, 13123 East 16th Avenue, Box B-395, Aurora, CO 80045, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO 80045, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E. 17th Place, Aurora, CO 80045, USA.
| |
Collapse
|
38
|
Bernut A, Viljoen A, Dupont C, Sapriel G, Blaise M, Bouchier C, Brosch R, de Chastellier C, Herrmann JL, Kremer L. Insights into the smooth-to-rough transitioning inMycobacterium bolletiiunravels a functional Tyr residue conserved in all mycobacterial MmpL family members. Mol Microbiol 2015; 99:866-83. [DOI: 10.1111/mmi.13283] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Audrey Bernut
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280; 13288 Marseille France
| | - Christian Dupont
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | - Guillaume Sapriel
- UMR1173; INSERM; Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Mickaël Blaise
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | | | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée; 25 rue du Dr. Roux 75724 Paris France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280; 13288 Marseille France
| | - Jean-Louis Herrmann
- UMR1173; INSERM; Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
- INSERM; CPBS; 34293 Montpellier France
| |
Collapse
|
39
|
Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Complex. PLoS One 2015; 10:e0140166. [PMID: 26448181 PMCID: PMC4598034 DOI: 10.1371/journal.pone.0140166] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Clarithromycin was considered the cornerstone for the treatment of Mycobacterium abscessus complex infections. Genetic resistance mechanisms have been described and many experts propose amikacin as an alternative. Nevertheless, clarithromycin has several advantages; therefore, it is necessary to identify the non-functional erm(41) allele to determine the most suitable treatment. The aims of this study were to characterize the molecular mechanisms of clarithromycin resistance in a collection of Mycobacterium abscessus complex isolates and to verify the relationship between these mechanisms and the antibiogram. MATERIALS AND METHODS Clinical isolates of M. abscessus complex (n = 22) from 16 patients were identified using four housekeeping genes (rpoB, secA1, sodA and hsp65), and their genetic resistance was characterized by studying erm(41) and rrl genes. Nine strains were recovered from the clinical isolates and subjected to E-test and microdilution clarithromycin susceptibility tests, with readings at 3, 7 and 14 days. RESULTS We classified 11/16 (68.8%) M. abscessus subsp. abscessus, 4/16 (25.0%) M. abscessus subsp. bolletii, and 1/16 (6.3%) M. abscessus subsp. massiliense. T28 erm(41) allele was observed in 8 Mycobacterium abscessus subps. abscessus and 3 Mycobacterium abscessus subsp. bolletii. One strain of M. abscessus subsp. bolletii had an erm(41) gene truncated and was susceptible to clarithromycin. No mutations were observed in rrl gene first isolates. In three patients, follow-up of initial rrl wild-type strains showed acquired resistance. CONCLUSIONS Most clinical isolates of M. abscessus complex had inducible resistance to clarithromycin and total absence of constitutive resistance. Our findings showed that the acquisition of resistance mutations in rrl gene was associated with functional and non-functional erm(41) gene. Caution is needed when using erm(41) sequencing alone to identify M. abscessus subspecies. This study reports an acquired mutation at position 2057 of rrl gene, conferring medium-low clarithromycin constitutive resistance.
Collapse
|
40
|
Guglielmetti L, Mougari F, Lopes A, Raskine L, Cambau E. Human infections due to nontuberculous mycobacteria: the infectious diseases and clinical microbiology specialists' point of view. Future Microbiol 2015; 10:1467-83. [PMID: 26344005 DOI: 10.2217/fmb.15.64] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nontuberculous mycobacteria (>150 species such as Mycobacterium avium, Mycobacterium kansasii, Mycobacterium chelonae and Mycobacterium abscessus) are opportunistic pathogens causing lung and extrarespiratory infections, beside M. ulcerans and M. marinum that are pathogens causing specific skin and soft tissue infections. Disseminated infections occur only in severe immunosuppressed conditions such as AIDS. The diagnosis is based on repeated isolations of the same mycobacterium associated with clinical and radiological signs, and the absence of tuberculosis. Precise species identification is obtained by molecular biology. Therapeutic antibiotic regimens differ with regard to the mycobacterial species that are involved. Prevention of iatrogenic infections relies on using sterile water in all injections, healthcare and cosmetic occupations. Future perspectives are to set effective antibiotic regimens tested in randomized therapeutic trials.
Collapse
Affiliation(s)
- Lorenzo Guglielmetti
- AP-HP, Hôpital Lariboisière-Fernand Widal, Service de Bactériologie, F-75010 Paris, France.,Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), F-75010 Paris, France.,Service de Maladies Infectieuses, Hôpital de Verona, Italie
| | - Faiza Mougari
- AP-HP, Hôpital Lariboisière-Fernand Widal, Service de Bactériologie, F-75010 Paris, France.,Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), F-75010 Paris, France.,IAME, UMR 1137, INSERM, Univ Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France
| | - Amanda Lopes
- AP-HP, Hôpital Lariboisière-Fernand Widal, Service de Médecine interne 1, F-75475 Paris, France
| | - Laurent Raskine
- AP-HP, Hôpital Lariboisière-Fernand Widal, Service de Bactériologie, F-75010 Paris, France.,Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), F-75010 Paris, France
| | - Emmanuelle Cambau
- AP-HP, Hôpital Lariboisière-Fernand Widal, Service de Bactériologie, F-75010 Paris, France.,Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA), F-75010 Paris, France.,IAME, UMR 1137, INSERM, Univ Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France
| |
Collapse
|
41
|
Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus Complex Infections in Humans. Emerg Infect Dis 2015. [PMID: 26295364 DOI: 10.3201/eid2109.141634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Mycobacterium abscessus complex comprises a group of rapidly growing, multidrug-resistant, nontuberculous mycobacteria that are responsible for a wide spectrum of skin and soft tissue diseases, central nervous system infections, bacteremia, and ocular and other infections. M. abscessus complex is differentiated into 3 subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. massiliense, and M. abscessus subsp. bolletii. The 2 major subspecies, M. abscessus subsp. abscessus and M. abscessus subsp. massiliense, have different erm(41) gene patterns. This gene provides intrinsic resistance to macrolides, so the different patterns lead to different treatment outcomes. M. abscessus complex outbreaks associated with cosmetic procedures and nosocomial transmissions are not uncommon. Clarithromycin, amikacin, and cefoxitin are the current antimicrobial drugs of choice for treatment. However, new treatment regimens are urgently needed, as are rapid and inexpensive identification methods and measures to contain nosocomial transmission and outbreaks.
Collapse
|
42
|
Hoshino Y, Suzuki K. Differential diagnostic assays for discriminating mycobacteria, especially for nontuberculous mycobacteria: what does the future hold? Future Microbiol 2015; 10:205-16. [PMID: 25689533 DOI: 10.2217/fmb.14.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacteria infections are an important medical problem, and many are regarded as emerging and re-emerging diseases. Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a leading cause of human morbidity and mortality worldwide, with approximately 8.6 million cases and 1.3 million deaths in 2012. In addition, the incidence of nontuberculous Mycobacterium infection has significantly increased, especially among developed countries. Although phenotypical appearances such as culture characteristics and/or susceptibility to anti-Mycobacterium drugs are variable between different mycobacterial species, early diagnosis is crucial in terms of patient treatment and clinical outcome. In this manuscript, we describe the development of diagnostic techniques, from the classical/conventional to the most recent advances, and provide an overview of the future direction of discrimination procedures.
Collapse
Affiliation(s)
- Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba, Higashi-Murayama, Tokyo, Japan
| | | |
Collapse
|
43
|
Molecular mechanisms of clarithromycin resistance in Mycobacterium abscessus complex clinical isolates from Venezuela. J Glob Antimicrob Resist 2015; 3:205-209. [PMID: 27873710 DOI: 10.1016/j.jgar.2015.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
In this study, 26 clinical isolates of Mycobacterium abscessus complex strains were characterised using available identification algorithms for the three species (M. abscessus, M. massiliense and M. bolletii) and the genotypic characteristics of clarithromycin (CLR) resistance were determined. Strains were identified by PCR restriction fragment length polymorphism analysis of the hsp65 and erm(41) gene sequences. Susceptibility to CLR was determined by the broth microdilution method. The mechanism of resistance to this macrolide was evaluated by sequencing the erm(41) and rrl genes. Mutations and/or deletions associated with resistance to CLR as determined in this study were those that have been previously described. No constitutive resistance to CLR was found, however 35% (9/26) of the M. abscessus complex strains tested had a functional inducible erm(41) gene. Based on sequencing of this gene, the strains of M. abscessus were separated into six sequevars, of which only two are consistent with those previously reported. In conclusion, we demonstrated that the low percentage of strains with a resistant phenotype to CLR was due only to an inducible resistance mechanism conferred by the erm(41) gene and not to mutations in the rrl gene. CLR can still be useful for treatment in some Venezuelan patients infected with a member of the M. abscessus group, but drug resistance testing and/or molecular analysis must precede the prescription of this antibiotic.
Collapse
|
44
|
Support from Phylogenomic Networks and Subspecies Signatures for Separation of Mycobacterium massiliense from Mycobacterium bolletii. J Clin Microbiol 2015; 53:3042-6. [PMID: 26157149 DOI: 10.1128/jcm.00541-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus subspecies classification has important clinical implications. We used phylogenomic network and amino acid analyses to provide evidence for the separation of Mycobacterium bolletii and Mycobacterium massiliense into two distinct subspecies which can potentially be differentiated rapidly by their protein signatures.
Collapse
|
45
|
Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 2015; 27:727-52. [PMID: 25278573 DOI: 10.1128/cmr.00035-14] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are present in the environment, mainly in water, and are occasionally responsible for opportunistic infections in humans. Despite the fact that NTM are characterized by a moderate pathogenicity, the diseases caused by NTM at various body sites are increasing on a worldwide level. Among over 150 officially recognized NTM species, only two or three dozen are familiar to clinicians, and even to most microbiologists. In this paper, approximately 50 new species described in the last 8 years are reviewed, and their role in human infections is assessed on the basis of reported clinical cases. The small number of reports concerning most of the "new" mycobacterial species is responsible for the widespread conviction that they are very rare. Their role is actually largely underestimated, mainly because they often remain unrecognized and misidentified. Aiming to minimize such bias, emphasis has been placed on more common identification pitfalls. Together with new NTM, new members of the Mycobacterium tuberculosis complex described in the last few years are also an object of the present review.
Collapse
|
46
|
Sekizuka T, Kai M, Nakanaga K, Nakata N, Kazumi Y, Maeda S, Makino M, Hoshino Y, Kuroda M. Complete genome sequence and comparative genomic analysis of Mycobacterium massiliense JCM 15300 in the Mycobacterium abscessus group reveal a conserved genomic island MmGI-1 related to putative lipid metabolism. PLoS One 2014; 9:e114848. [PMID: 25503461 PMCID: PMC4263727 DOI: 10.1371/journal.pone.0114848] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/14/2014] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium abscessus group subsp., such as M. massiliense, M. abscessus sensu stricto and M. bolletii, are an environmental organism found in soil, water and other ecological niches, and have been isolated from respiratory tract infection, skin and soft tissue infection, postoperative infection of cosmetic surgery. To determine the unique genetic feature of M. massiliense, we sequenced the complete genome of M. massiliense type strain JCM 15300 (corresponding to CCUG 48898). Comparative genomic analysis was performed among Mycobacterium spp. and among M. abscessus group subspp., showing that additional ß-oxidation-related genes and, notably, the mammalian cell entry (mce) operon were located on a genomic island, M. massiliense Genomic Island 1 (MmGI-1), in M. massiliense. In addition, putative anaerobic respiration system-related genes and additional mycolic acid cyclopropane synthetase-related genes were found uniquely in M. massiliense. Japanese isolates of M. massiliense also frequently possess the MmGI-1 (14/44, approximately 32%) and three unique conserved regions (26/44; approximately 60%, 34/44; approximately 77% and 40/44; approximately 91%), as well as isolates of other countries (Malaysia, France, United Kingdom and United States). The well-conserved genomic island MmGI-1 may play an important role in high growth potential with additional lipid metabolism, extra factors for survival in the environment or synthesis of complex membrane-associated lipids. ORFs on MmGI-1 showed similarities to ORFs of phylogenetically distant M. avium complex (MAC), suggesting that horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (TS); (YH)
| | - Masanori Kai
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazue Nakanaga
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noboru Nakata
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Kazumi
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Shinji Maeda
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Masahiko Makino
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (TS); (YH)
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
47
|
Singh S, Bouzinbi N, Chaturvedi V, Godreuil S, Kremer L. In vitro evaluation of a new drug combination against clinical isolates belonging to the Mycobacterium abscessus complex. Clin Microbiol Infect 2014; 20:O1124-7. [DOI: 10.1111/1469-0691.12780] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/13/2014] [Indexed: 11/28/2022]
|
48
|
Kim SY, Koh WJ, Kim YH, Jeong BH, Park HY, Jeon K, Kim JS, Cho SN, Shin SJ. Importance of reciprocal balance of T cell immunity in Mycobacterium abscessus complex lung disease. PLoS One 2014; 9:e109941. [PMID: 25295870 PMCID: PMC4190320 DOI: 10.1371/journal.pone.0109941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Little is known about the nature of the host immune response to Mycobacterium abscessus complex (MABC) infection. The aim of the present study was to investigate whether alterations in serum immunomolecule levels after treating MABC lung disease patients with antibiotics can reflect the disease-associated characteristics. Methods A total of 22 immunomolecules in 24 MABC lung disease patients before and after antibiotic therapy were quantitatively analyzed using a multiplex bead-based system. Results In general, the pre-treatment levels of T helper type 1 (Th1)-related cytokines, i.e., interferon (IFN)-γ and interleukin (IL)-12, and Th2-related cytokines, i.e., IL-4 and IL-13, were significantly decreased in patients compared with control subjects. In contrast, the pre-treatment levels of Th17-related cytokines, i.e., IL-17 and IL-23, were significantly increased in MABC patients. Interestingly, significantly higher levels of IFN-γ-induced protein (IP)-10 and monokine induced by IFN-γprotein (MIG) were detected in patients with failure of sputum conversion at post-treatment compared to patients with successful sputum conversion. Conclusion Reduced Th1 and Th2 responses and enhanced Th17 responses in patients may perpetuate MABC lung disease, and the immunomolecules IP-10 and MIG, induced through IFN-γ, may serve as key markers for indicating the treatment outcome.
Collapse
Affiliation(s)
- Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yee Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
49
|
Sassi M, Gouret P, Chabrol O, Pontarotti P, Drancourt M. Mycobacteriophage-drived diversification of Mycobacterium abscessus. Biol Direct 2014; 9:19. [PMID: 25224692 PMCID: PMC4172396 DOI: 10.1186/1745-6150-9-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
Background Mycobacterium abscessus is an emerging opportunistic pathogen which diversity was acknowledged by the recent description of two subspecies accommodating M. abscessus, Mycobacterium bolletii and Mycobacterium massiliense isolates. Results Here, genome analysis found 1–8 prophage regions in 47/48 M. abscessus genomes ranging from small prophage-like elements to complete prophages. A total of 20,304 viral and phage proteins clustered into 853 orthologous groups. Phylogenomic and phylogenetic analyses based on prophage region homology found three main clusters corresponding to M. abscessus, M. bolletii and M. massiliense. Analysing 135 annotated Tape Measure Proteins found thirteen clusters and four singletons, suggesting that at least 17 mycobacteriophages had infected M. abscessus during its evolution. The evolutionary history of phages differed from that of their mycobacterial hosts. In particular, 33 phage-related proteins have been horizontally transferred within M. abscessus genomes. They comprise of an integrase, specific mycobacteriophage proteins, hypothetical proteins and DNA replication and metabolism proteins. Gene exchanges, loss and gains which occurred in M. abscessus genomes have been driven by several mycobacteriophages. Conclusions This analysis of phage-mycobacterium co-evolution suggests that mycobacteriophages are playing a key-role in the on-going diversification of M. abscessus. Reviewers This article was reviewed by Eric Bapteste, Patrick Forterre and Eugene Koonin.
Collapse
Affiliation(s)
| | | | | | | | - Michel Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes UMR CNRS 6236 IRD198, IFR48, Institut Méditerranée Infection, Aix Marseille Université, Marseille, France.
| |
Collapse
|
50
|
Genome sequencing of Mycobacterium abscessus isolates from patients in the united states and comparisons to globally diverse clinical strains. J Clin Microbiol 2014; 52:3573-82. [PMID: 25056330 DOI: 10.1128/jcm.01144-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial infections caused by Mycobacterium abscessus are responsible for a range of disease manifestations from pulmonary to skin infections and are notoriously difficult to treat, due to innate resistance to many antibiotics. Previous population studies of clinical M. abscessus isolates utilized multilocus sequence typing or pulsed-field gel electrophoresis, but high-resolution examinations of genetic diversity at the whole-genome level have not been well characterized, particularly among clinical isolates derived in the United States. We performed whole-genome sequencing of 11 clinical M. abscessus isolates derived from eight U.S. patients with pulmonary nontuberculous mycobacterial infections, compared them to 30 globally diverse clinical isolates, and investigated intrapatient genomic diversity and evolution. Phylogenomic analyses revealed a cluster of closely related U.S. and Western European M. abscessus subsp. abscessus isolates that are genetically distinct from other European isolates and all Asian isolates. Large-scale variation analyses suggested genome content differences of 0.3 to 8.3%, relative to the reference strain ATCC 19977(T). Longitudinally sampled isolates showed very few single-nucleotide polymorphisms and correlated genomic deletion patterns, suggesting homogeneous infection populations. Our study explores the genomic diversity of clinical M. abscessus strains from multiple continents and provides insight into the genome plasticity of an opportunistic pathogen.
Collapse
|