1
|
Zhang Y, Zhang Q, Liu Q, Zhao Y, Xu W, Hong C, Xu C, Qi X, Qi X, Liu B. Fine mapping and functional validation of the maize nicosulfuron-resistance gene CYP81A9. FRONTIERS IN PLANT SCIENCE 2024; 15:1443413. [PMID: 39157517 PMCID: PMC11328016 DOI: 10.3389/fpls.2024.1443413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Nicosulfuron, a widely utilized herbicide, is detrimental to some maize varieties due to their sensitivity. Developing tolerant varieties with resistance genes is an economical and effective way to alleviate phytotoxicity. In this study, map-based cloning revealed that the maize resistance gene to nicosulfuron is Zm00001eb214410 (CYP81A9), which encodes a cytochrome P450 monooxygenase. qRT- PCR results showed that CYP81A9 expression in the susceptible line JS188 was significantly reduced compared to the resistant line B73 during 0-192 hours following 80 mg/L nicosulfuron spraying. Meanwhile, a CYP81A9 overexpression line exhibited normal growth under a 20-fold nicosulfuron concentration (1600 mg/L), while the transgenic acceptor background material Zong31 did not survive. Correspondingly, silencing CYP81A9 through CRISPR/Cas9 mutagenesis and premature transcription termination mutant EMS4-06e182 resulted in the loss of nicosulfuron resistance in maize. Acetolactate Synthase (ALS), the target enzyme of nicosulfuron, exhibited significantly reduced activity in the roots, stems, and leaves of susceptible maize post-nicosulfuron spraying. The CYP81A9 expression in the susceptible material was positively correlated with ALS activity in vivo. Therefore, this study identified CYP81A9 as the key gene regulating nicosulfuron resistance in maize and discovered three distinct haplotypes of CYP81A9, thereby laying a solid foundation for further exploration of the underlying resistance mechanisms.
Collapse
Affiliation(s)
- Yongzhong Zhang
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Qingrong Zhang
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhi Liu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Yan Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Wei Xu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Cuiping Hong
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Changli Xu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Xiushan Qi
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Xinli Qi
- Department of Maize Breeding, Taian Denghai WuYue Taishan Seed Industry CO., LTD, Taian, Shandong, China
| | - Baoshen Liu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
2
|
Font-Farre M, Brown D, Toth R, Mahadevan C, Brazier-Hicks M, Morimoto K, Kaschani F, Sinclair J, Dale R, Hall S, Morris M, Kaiser M, Wright AT, Burton J, van der Hoorn RAL. Discovery of active mouse, plant and fungal cytochrome P450s in endogenous proteomes and upon expression in planta. Sci Rep 2024; 14:10091. [PMID: 38698065 PMCID: PMC11066006 DOI: 10.1038/s41598-024-60333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Eukaryotes produce a large number of cytochrome P450s that mediate the synthesis and degradation of diverse endogenous and exogenous metabolites. Yet, most of these P450s are uncharacterized and global tools to study these challenging, membrane-resident enzymes remain to be exploited. Here, we applied activity profiling of plant, mouse and fungal P450s with chemical probes that become reactive when oxidized by P450 enzymes. Identification by mass spectrometry revealed labeling of a wide range of active P450s, including six plant P450s, 40 mouse P450s and 13 P450s of the fungal wheat pathogen Zymoseptoria tritici. We next used transient expression of GFP-tagged P450s by agroinfiltration to show ER-targeting and NADPH-dependent, activity-based labeling of plant, mouse and fungal P450s. Both global profiling and transient expression can be used to detect a broad range of active P450s to study e.g. their regulation and discover selective inhibitors.
Collapse
Affiliation(s)
- Maria Font-Farre
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | - Daniel Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Reka Toth
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | - Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - John Sinclair
- Bioscience, Syngenta, Jealotts Hill International Research Centre, Bracknell, UK
| | - Richard Dale
- Bioscience, Syngenta, Jealotts Hill International Research Centre, Bracknell, UK
| | - Samantha Hall
- Bioscience, Syngenta, Jealotts Hill International Research Centre, Bracknell, UK
| | - Melloney Morris
- Bioscience, Syngenta, Jealotts Hill International Research Centre, Bracknell, UK
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Jonathan Burton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Casey A, Dolan L. Genes encoding cytochrome P450 monooxygenases and glutathione S-transferases associated with herbicide resistance evolved before the origin of land plants. PLoS One 2023; 18:e0273594. [PMID: 36800395 PMCID: PMC9937507 DOI: 10.1371/journal.pone.0273594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Cytochrome P450 (CYP) monooxygenases and glutathione S-transferases (GST) are enzymes that catalyse chemical modifications of a range of organic compounds. Herbicide resistance has been associated with higher levels of CYP and GST gene expression in some herbicide-resistant weed populations compared to sensitive populations of the same species. By comparing the protein sequences of 9 representative species of the Archaeplastida-the lineage which includes red algae, glaucophyte algae, chlorophyte algae, and streptophytes-and generating phylogenetic trees, we identified the CYP and GST proteins that existed in the common ancestor of the Archaeplastida. All CYP clans and all but one land plant GST classes present in land plants evolved before the divergence of streptophyte algae and land plants from their last common ancestor. We also demonstrate that there are more genes encoding CYP and GST proteins in land plants than in algae. The larger numbers of genes among land plants largely results from gene duplications in CYP clans 71, 72, and 85 and in the GST phi and tau classes [1,2]. Enzymes that either metabolise herbicides or confer herbicide resistance belong to CYP clans 71 and 72 and the GST phi and tau classes. Most CYP proteins that have been shown to confer herbicide resistance are members of the CYP81 family from clan 71. These results demonstrate that the clan and class diversity in extant plant CYP and GST proteins had evolved before the divergence of land plants and streptophyte algae from a last common ancestor estimated to be between 515 and 474 million years ago. Then, early in embryophyte evolution during the Palaeozoic, gene duplication in four of the twelve CYP clans, and in two of the fourteen GST classes, led to the large numbers of CYP and GST proteins found in extant land plants. It is among the genes of CYP clans 71 and 72 and GST classes phi and tau that alleles conferring herbicide resistance evolved in the last fifty years.
Collapse
Affiliation(s)
- Alexandra Casey
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Liam Dolan
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Yu H, Guo X, Cui H, Chen J, Li X. Metabolism Difference Is Involved in Mesosulfuron-Methyl Selectivity between Aegilops tauschii and Triticum aestivum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:186-196. [PMID: 36534090 DOI: 10.1021/acs.jafc.2c05809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The acetolactate synthase (ALS) inhibitor mesosulfuron-methyl is currently the only selective herbicide to control Aegilops tauschii in wheat fields; however, the mechanism underlying this selectivity remains unclear. Results showed that the tolerance of Triticum aestivum to mesosulfuron-methyl was much higher than that of A. tauschii. Mesosulfuron-methyl inhibited the in vitro ALS activity of A. tauschii and T. aestivum similarly, but the predicted structural interactions of ALS with mesosulfuron-methyl and induced expression of als were different in the two species. Compared with T. aestivum, A. tauschii was found to absorb more mesosulfuron-methyl and metabolize much less mesosulfuron-methyl. The cytochrome P450 monooxygenase (CYP450) inhibitor, malathion, greatly increased the sensitivity of T. aestivum to mesosulfuron-methyl, while its synergistic effect was smaller in A. tauschii. Finally, 19 P450 genes were selected as candidate genes related with metabolism-based mesosulfuron-methyl selectivity. Collectively, different sensitivities to mesosulfuron-methyl in the two species were likely to be attributed to metabolism variances.
Collapse
Affiliation(s)
- Haiyan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaotong Guo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Hailan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingchao Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Zhang C, Li J, Li S, Ma C, Liu H, Wang L, Qi J, Wu J. ZmMPK6 and ethylene signalling negatively regulate the accumulation of anti-insect metabolites DIMBOA and DIMBOA-Glc in maize inbred line A188. THE NEW PHYTOLOGIST 2021; 229:2273-2287. [PMID: 32996127 DOI: 10.1111/nph.16974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and DIMBOA-glucoside (DIMBOA-Glc) are anti-insect benzoxazinoids in maize, yet very little information is known about how they are regulated. Reverse genetics, kinase activity analysis, phytohormone and DIMBOA/DIMBOA-Glc quantification, bioassays and transcriptome analysis were employed to study the function of ZmMPK6, a mitogen-activated protein kinase, in maize response to herbivory. ZmMPK6 was rapidly activated by wounding and simulated herbivory. Silencing ZmMPK6 in maize A188 compromised simulated herbivory-induced ethylene levels but not those of jasmonic acid or salicylic acid, and the ZmMPK6-silenced plants exhibited elevated DIMBOA/DIMBOA-Glc and insect resistance. An ethylene complementation experiment revealed that ZmMPK6 repressed the accumulation of DIMBOA/DIMBOA-Glc in an ethylene-dependent manner. Transcriptome analysis revealed that ZmMPK6 might meditate the transcription of BX1 by controlling a MYB transcription factor that is likely to be located in the ethylene signalling pathway and, furthermore, ZmMPK6 and ethylene signalling also specifically and commonly regulate the transcription of other benzoxazinoid biosynthetic genes. We also show that different maize lines have very different responses to simulated herbivory in terms of ZmMPK6 activation, ethylene emission and benzoxazinoid levels. These results uncover that ZmMPK6 and ethylene pathway are novel repressors of DIMBOA/DIMBOA-Glc and provide new insight into the regulatory mechanisms underlying these two pathways.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Sen Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
6
|
Dimaano NG, Iwakami S. Cytochrome P450-mediated herbicide metabolism in plants: current understanding and prospects. PEST MANAGEMENT SCIENCE 2021; 77:22-32. [PMID: 32776423 DOI: 10.1002/ps.6040] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450s (P450s) have been at the center of herbicide metabolism research as a result of their ability to endow selectivity in crops and resistance in weeds. In the last 20 years, ≈30 P450s from diverse plant species have been revealed to possess herbicide-metabolizing function, some of which were demonstrated to play a key role in plant herbicide sensitivity. Recent research even demonstrated that some P450s from crops and weeds metabolize numerous herbicides from various chemical backbones, which highlights the importance of P450s in the current agricultural systems. However, due to the enormous number of plant P450s and the complexity of their function, expression and regulation, it remains a challenge to fully explore the potential of P450-mediated herbicide metabolism in crop improvement and herbicide resistance mitigation. Differences in the substrate specificity of each herbicide-metabolizing P450 are now evident. Comparisons of the substrate specificity and protein structures of P450s will be beneficial for the discovery of selective herbicides and may lead to the development of crops with higher herbicide tolerance by transgenics or genome-editing technologies. Furthermore, the knowledge will help design sound management strategies for weed resistance including the prediction of cross-resistance patterns. Overcoming the ambiguity of P450 function in plant xenobiotic pathways will unlock the full potential of this enzyme family in advancing global agriculture and food security. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Niña Gracel Dimaano
- College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Philippines
| | - Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Giannakopoulos G, Dittgen J, Schulte W, Zoellner P, Helmke H, Lagojda A, Edwards R. Safening activity and metabolism of the safener cyprosulfamide in maize and wheat. PEST MANAGEMENT SCIENCE 2020; 76:3413-3422. [PMID: 32083366 DOI: 10.1002/ps.5801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Safeners extend the application of existing herbicides by selectively enhancing tolerance in large-grained cereal crops. While their activity is linked to enhanced herbicide metabolism, their exact mode of action and reasons for their crop specificity have yet to be determined. In this study, we investigated the selectivity of the recently developed sulfonamide safener cyprosulfamide (CSA) in maize (Zea mays L.) and wheat (Triticum aestivum), focusing on its uptake, distribution and metabolism in the two species. RESULTS CSA protected maize, but not wheat, from injury by thiencarbazone-methyl (TCM). This correlated with the selective enhanced detoxification of the herbicide in maize. CSA underwent more rapid metabolism in maize than in wheat, with the formation of a specific hydroxylated metabolite correlating with safening. Studies with the nsf1 mutant sweetcorn line showed that the hydroxylation of CSA was partly mediated by the cytochrome P450 CYP81A9. However, primary metabolites of CSA were chemically synthesised and tested for their ability to safen TCM in maize but when tested were inactive as safeners. CONCLUSION The results of this study suggest that the protection against TCM injury by CSA is linked to enhanced herbicide metabolism. This selective activity is due to the specific recognition of parent CSA in maize but not in wheat. Subsequent rapid oxidative metabolism of CSA led to its inactivation, demonstrating that cytochrome P450s regulate the activity of safeners as well as herbicides. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- George Giannakopoulos
- Crop Protection Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jan Dittgen
- Weed Control Research, Bayer AG, Frankfurt, Germany
| | | | - Peter Zoellner
- Small Molecules Technologies, Bayer AG, Frankfurt, Germany
| | | | - Andreas Lagojda
- Structure Elucidation, Environmental Safety, Development, Bayer AG, Monheim, Germany
| | - Robert Edwards
- Crop Protection Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Dimaano NG, Yamaguchi T, Fukunishi K, Tominaga T, Iwakami S. Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon. PLANT MOLECULAR BIOLOGY 2020; 102:403-416. [PMID: 31898147 DOI: 10.1007/s11103-019-00954-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/23/2019] [Indexed: 05/10/2023]
Abstract
CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR) Echinochloa phyllopogon were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in E. phyllopogon, thus the functions of all its nine putative functional CYP81A genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in Arabidopsis thaliana identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in Escherichia coli. CYP81A expression in E. coli was optimized via modification of the N-terminus, co-expression with HemA gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated, N-/O-demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy-D-xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR E. phyllopogon. This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in E. phyllopogon.
Collapse
Affiliation(s)
- Niña Gracel Dimaano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takuya Yamaguchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kanade Fukunishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tohru Tominaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
9
|
Guo F, Iwakami S, Yamaguchi T, Uchino A, Sunohara Y, Matsumoto H. Role of CYP81A cytochrome P450s in clomazone metabolism in Echinochloa phyllopogon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:321-328. [PMID: 31128703 DOI: 10.1016/j.plantsci.2019.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/24/2018] [Accepted: 02/16/2019] [Indexed: 05/11/2023]
Abstract
Clomazone is a herbicide used in the cultivation of numerous crops due to its unique site of action and effectiveness on weeds. The differences in clomazone susceptibility among plants have been attributed to the differences in their complex clomazone metabolic pathways that are not fully understood. We previously identified two CYP81A cytochrome P450 monooxygenases that metabolize five chemically unrelated herbicides in multiple-herbicide resistant Echinochloa phyllopogon. Since the resistant E. phyllopogon have decreased clomazone susceptibility, involvement of these P450s in clomazone resistance was suggested. In this study, we revealed that each P450 gene endowed Arabidopsis thaliana (Arabidopsis) with clomazone resistance. Consistent with this, clomazone resistance co-segregated with resistance to other herbicides in F6 progenies of crosses between susceptible and resistant E. phyllopogon, suggesting that the P450s are involved in differential clomazone susceptibility in E. phyllopogon. Arabidopsis transformations of the other seven CYP81As of E. phyllopogon found that two more genes, CYP81A15 and CYP81A24, decreased Arabidopsis susceptibility to clomazone. Differences in substrate preference between clomazone and a herbicide that inhibits acetolactate synthase were suggested among the four CYP81A P450s. This study provides insights into clomazone metabolism in plants.
Collapse
Affiliation(s)
- Feng Guo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Takuya Yamaguchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Akira Uchino
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsu, 514-2392, Japan
| | - Yukari Sunohara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Matsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| |
Collapse
|
10
|
Liu X, Bi B, Xu X, Li B, Tian S, Wang J, Zhang H, Wang G, Han Y, McElroy JS. Rapid identification of a candidate nicosulfuron sensitivity gene (Nss) in maize (Zea mays L.) via combining bulked segregant analysis and RNA-seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1351-1361. [PMID: 30652203 DOI: 10.1007/s00122-019-03282-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/07/2019] [Indexed: 05/24/2023]
Abstract
A candidate nicosulfuron sensitivity gene Nss was identified by combining bulked segregant analysis and RNA-seq. Multiple mutations of this gene were discovered in nicosulfuron-sensitive maize compared with the tolerant. It has been demonstrated that variabilities exist in maize response to nicosulfuron. Two nicosulfuron-sensitive inbred lines (HB39, HB41) and two tolerant inbred lines (HB05, HB09) were identified via greenhouse and field trials. Genetic analysis indicated that the sensitivity to nicosulfuron in maize was controlled by a single, recessive gene. To precisely and rapidly map the nicosulfuron sensitivity gene (Nss), two independent F2 segregating populations, Population A (HB41 × HB09) and Population B (HB39 × HB05), were constructed. By applying bulked segregant RNA-Seq (BSR-Seq), the Nss gene was, respectively, mapped on the short arm of chromosome 5 (chr5: 1.1-15.3 Mb) and (chr5: 0.5-18.2 Mb) using two populations, with 14.2 Mb region in common. Further analysis revealed that there were 43 and 119 differentially expressed genes in the mapping intervals, with 18 genes in common. Gene annotation results showed that a cytochrome P450 gene (CYP81A9) appeared to be the candidate gene of Nss associated with nicosulfuron sensitivity in maize. Sequence analysis demonstrated that two common deletion mutations existed in the sensitive maize, which might lead to the nicosulfuron sensitivity in maize. The results will make valuable contributions to the understanding of molecular mechanism of herbicide sensitivity in maize.
Collapse
Affiliation(s)
- Xiaomin Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Bo Bi
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, 36849, USA
| | - Xian Xu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Binghua Li
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Shengmin Tian
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Jianping Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Hui Zhang
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, 36849, USA
| | - Guiqi Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China.
| | - Yujun Han
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China.
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
11
|
Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making. SUSTAINABILITY 2016. [DOI: 10.3390/su8050495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
ZHAO QC, LIU MH, ZHANG XW, LIN CY, ZHANG Q, SHEN ZC. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene. J Zhejiang Univ Sci B 2015; 16:824-31. [PMID: 26465130 PMCID: PMC4609534 DOI: 10.1631/jzus.b1500056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/09/2015] [Indexed: 01/11/2023]
Abstract
Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, Cry1Ac and Cry1Ig, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice.
Collapse
|
13
|
Abstract
Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology.
Collapse
Affiliation(s)
- Gerhart U Ryffel
- a Institut für Zellbiologie (Tumorforschung); Universitätsklinikum Essen ; Essen , Germany
| |
Collapse
|
14
|
RNA-Seq transcriptome analysis of maize inbred carrying nicosulfuron-tolerant and nicosulfuron-susceptible alleles. Int J Mol Sci 2015; 16:5975-89. [PMID: 25782159 PMCID: PMC4394515 DOI: 10.3390/ijms16035975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 01/28/2023] Open
Abstract
Postemergence applications of nicosulfuron can cause great damage to certain maize inbred lines and hybrids. Variation among different responses to nicosulfuron may be attributed to differential rates of herbicide metabolism. We employed RNA-Seq analysis to compare transcriptome responses between nicosulfuron-treated and untreated in both tolerant and susceptible maize plants. A total of 71.8 million paired end Illumina RNA-Seq reads were generated, representing the transcription of around 40,441 unique reads. About 345,171 gene ontology (GO) term assignments were conducted for the annotation in terms of biological process, cellular component and molecular function categories, and 6413 sequences with 108 enzyme commission numbers were assigned to 134 predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Digital gene expression profile (DGE) analysis using Solexa sequencing was performed within the susceptible and tolerant maize between the nicosulfuron-treated and untreated conditions, 13 genes were selected as the candidates most likely involved in herbicide metabolism, and quantitative RT-PCR validated the RNA-Seq results for eight genes. This transcriptome data may provide opportunities for the study of sulfonylurea herbicides susceptibility emergence of Zea mays.
Collapse
|
15
|
Lombardo L. Genetic use restriction technologies: a review. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:995-1005. [PMID: 25185773 DOI: 10.1111/pbi.12242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 05/23/2023]
Abstract
Genetic use restriction technologies (GURTs), developed to secure return on investments through protection of plant varieties, are among the most controversial and opposed genetic engineering biotechnologies as they are perceived as a tool to force farmers to depend on multinational corporations' seed monopolies. In this work, the currently proposed strategies are described and compared with some of the principal techniques implemented for preventing transgene flow and/or seed saving, with a simultaneous analysis of the future perspectives of GURTs taking into account potential benefits, possible impacts on farmers and local plant genetic resources (PGR), hypothetical negative environmental issues and ethical concerns related to intellectual property that have led to the ban of this technology.
Collapse
Affiliation(s)
- Luca Lombardo
- Department of Crop Systems, Forestry and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
16
|
Renault H, Bassard JE, Hamberger B, Werck-Reichhart D. Cytochrome P450-mediated metabolic engineering: current progress and future challenges. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:27-34. [PMID: 24709279 DOI: 10.1016/j.pbi.2014.03.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/25/2014] [Accepted: 03/09/2014] [Indexed: 05/20/2023]
Abstract
Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes.
Collapse
Affiliation(s)
- Hugues Renault
- Institute of Plant Molecular Biology of CNRS UPR2357, University of Strasbourg, F-67084 Strasbourg, France; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Germany
| | - Jean-Etienne Bassard
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Björn Hamberger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology of CNRS UPR2357, University of Strasbourg, F-67084 Strasbourg, France; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Germany; University of Strasbourg Institute for Advanced Study (USIAS), France.
| |
Collapse
|