1
|
Shi Z, Luo K, Jani S, February M, Fernandes N, Venkatesh N, Sharif N, Tan S. Mimicking partial to total placental insufficiency in a rabbit model of cerebral palsy. J Neurosci Res 2022; 100:2138-2153. [PMID: 34173261 PMCID: PMC8709884 DOI: 10.1002/jnr.24901] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
All placental abruptions begin as partial abruptions, which sometimes manifest as fetal bradycardia. The progression from partial to total abruption was mimicked by a new rabbit model of placental insufficiency, and we compared it, with sufficient statistical power, with the previous model mimicking total placental abruption. The previous model uses total uterine ischemia at E22 or E25 (70% or 79% term, respectively), in pregnant New Zealand white rabbits for 40 min (Full H-I). The new model, Partial+Full H-I, added a 30-min partial ischemia before the 40-min total ischemia. Fetuses were delivered either at E31.5 (full term) vaginally for neurobehavior testing, or by C-section at E25 for ex vivo brain cell viability evaluation. The onset of fetal bradycardia was within the first 2 min of either H-I protocol. There was no difference between Full H-I (n = 442 for E22, 312 for E25) and Partial+Full H-I (n = 154 and 80) groups in death or severely affected kits at E22 (76% vs. 79%) or at E25 (66% vs. 64%), or normal kits at E22 or E25, or any of the individual newborn neurobehavioral tests at any age. No sex differences were found. Partial+Full H-I (n = 6) showed less cell viability than Full H-I (n = 8) at 72-hr ex vivo in the brain regions studied. Partial+Full H-I insult produced similar cerebral palsy phenotype as our previous Full H-I model in a sufficiently powered study and may be more suitable for testing of potential neuroprotectants.
Collapse
Affiliation(s)
- Zhongjie Shi
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Kehuan Luo
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Sanket Jani
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Melissa February
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Nithi Fernandes
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | | | | | - Sidhartha Tan
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| |
Collapse
|
2
|
Braz CU, Rowan TN, Schnabel RD, Decker JE. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle. Sci Rep 2021; 11:13335. [PMID: 34172761 PMCID: PMC8233360 DOI: 10.1038/s41598-021-92455-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding genotype-by-environment interactions (G × E) is crucial to understand environmental adaptation in mammals and improve the sustainability of agricultural production. Here, we present an extensive study investigating the interaction of genome-wide SNP markers with a vast assortment of environmental variables and searching for SNPs controlling phenotypic variance (vQTL) using a large beef cattle dataset. We showed that G × E contribute 10.1%, 3.8%, and 2.8% of the phenotypic variance of birth weight, weaning weight, and yearling weight, respectively. G × E genome-wide association analysis (GWAA) detected a large number of G × E loci affecting growth traits, which the traditional GWAA did not detect, showing that functional loci may have non-additive genetic effects regardless of differences in genotypic means. Further, variance-heterogeneity GWAA detected loci enriched with G × E effects without requiring prior knowledge of the interacting environmental factors. Functional annotation and pathway analysis of G × E genes revealed biological mechanisms by which cattle respond to changes in their environment, such as neurotransmitter activity, hypoxia-induced processes, keratinization, hormone, thermogenic and immune pathways. We unraveled the relevance and complexity of the genetic basis of G × E underlying growth traits, providing new insights into how different environmental conditions interact with specific genes influencing adaptation and productivity in beef cattle and potentially across mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Ghoreishifar SM, Eriksson S, Johansson AM, Khansefid M, Moghaddaszadeh-Ahrabi S, Parna N, Davoudi P, Javanmard A. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genet Sel Evol 2020; 52:52. [PMID: 32887549 PMCID: PMC7487911 DOI: 10.1186/s12711-020-00571-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Background Thousands of years of natural and artificial selection have resulted in indigenous cattle breeds that are well-adapted to the environmental challenges of their local habitat and thereby are considered as valuable genetic resources. Understanding the genetic background of such adaptation processes can help us design effective breeding objectives to preserve local breeds and improve commercial cattle. To identify regions under putative selection, GGP HD 150 K single nucleotide polymorphism (SNP) arrays were used to genotype 106 individuals representing five Swedish breeds i.e. native to different regions and covering areas with a subarctic cold climate in the north and mountainous west, to those with a continental climate in the more densely populated south regions. Results Five statistics were incorporated within a framework, known as de-correlated composite of multiple signals (DCMS) to detect signatures of selection. The obtained p-values were adjusted for multiple testing (FDR < 5%), and significant genomic regions were identified. Annotation of genes in these regions revealed various verified and novel candidate genes that are associated with a diverse range of traits, including e.g. high altitude adaptation and response to hypoxia (DCAF8, PPP1R12A, SLC16A3, UCP2, UCP3, TIGAR), cold acclimation (AQP3, AQP7, HSPB8), body size and stature (PLAG1, KCNA6, NDUFA9, AKAP3, C5H12orf4, RAD51AP1, FGF6, TIGAR, CCND2, CSMD3), resistance to disease and bacterial infection (CHI3L2, GBP6, PPFIBP1, REP15, CYP4F2, TIGD2, PYURF, SLC10A2, FCHSD2, ARHGEF17, RELT, PRDM2, KDM5B), reproduction (PPP1R12A, ZFP36L2, CSPP1), milk yield and components (NPC1L1, NUDCD3, ACSS1, FCHSD2), growth and feed efficiency (TMEM68, TGS1, LYN, XKR4, FOXA2, GBP2, GBP5, FGD6), and polled phenotype (URB1, EVA1C). Conclusions We identified genomic regions that may provide background knowledge to understand the mechanisms that are involved in economic traits and adaptation to cold climate in cattle. Incorporating p-values of different statistics in a single DCMS framework may help select and prioritize candidate genes for further analyses.
Collapse
Affiliation(s)
- Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden.
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Majid Khansefid
- AgriBio Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Nahid Parna
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, B2N5E3, Canada
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Chabrun F, Huetz N, Dieu X, Rousseau G, Bouzillé G, Chao de la Barca JM, Procaccio V, Lenaers G, Blanchet O, Legendre G, Mirebeau-Prunier D, Cuggia M, Guardiola P, Reynier P, Gascoin G. Data-Mining Approach on Transcriptomics and Methylomics Placental Analysis Highlights Genes in Fetal Growth Restriction. Front Genet 2020; 10:1292. [PMID: 31998361 PMCID: PMC6962302 DOI: 10.3389/fgene.2019.01292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
Intrauterine Growth Restriction (IUGR) affects 8% of newborns and increases morbidity and mortality for the offspring even during later stages of life. Single omics studies have evidenced epigenetic, genetic, and metabolic alterations in IUGR, but pathogenic mechanisms as a whole are not being fully understood. An in-depth strategy combining methylomics and transcriptomics analyses was performed on 36 placenta samples in a case-control study. Data-mining algorithms were used to combine the analysis of more than 1,200 genes found to be significantly expressed and/or methylated. We used an automated text-mining approach, using the bulk textual gene annotations of the discriminant genes. Machine learning models were then used to explore the phenotypic subgroups (premature birth, birth weight, and head circumference) associated with IUGR. Gene annotation clustering highlighted the alteration of cell signaling and proliferation, cytoskeleton and cellular structures, oxidative stress, protein turnover, muscle development, energy, and lipid metabolism with insulin resistance. Machine learning models showed a high capacity for predicting the sub-phenotypes associated with IUGR, allowing a better description of the IUGR pathophysiology as well as key genes involved.
Collapse
Affiliation(s)
- Floris Chabrun
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France
| | - Noémie Huetz
- Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France.,Réanimation et Médecine Néonatales, Centre Hospitalier Universitaire, Angers, France
| | - Xavier Dieu
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France
| | - Guillaume Rousseau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France
| | - Guillaume Bouzillé
- Laboratoire du Traitement de l'Image et du Signal, INSERM, UMR 1099, Université Rennes 1, Rennes, France.,Département d'Information médicale et dossiers médicaux, Centre Hospitalier Universitaire, Rennes, France
| | - Juan Manuel Chao de la Barca
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France
| | - Vincent Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France
| | - Guy Lenaers
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, Centre Hospitalier Universitaire, Angers, France
| | - Guillaume Legendre
- Département de Gynécologie Obstétrique, Centre Hospitalier Universitaire, Angers, France
| | - Delphine Mirebeau-Prunier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France
| | - Marc Cuggia
- Laboratoire du Traitement de l'Image et du Signal, INSERM, UMR 1099, Université Rennes 1, Rennes, France.,Département d'Information médicale et dossiers médicaux, Centre Hospitalier Universitaire, Rennes, France
| | - Philippe Guardiola
- Service de Génomique Onco-Hématologique, Centre Hospitalier Universitaire, Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France
| | - Geraldine Gascoin
- Unité Mixte de Recherche (UMR) MITOVASC, Équipe Mitolab, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, Angers, France.,Réanimation et Médecine Néonatales, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
5
|
Goyal D, Goyal R. Angiogenic Transformation in Human Brain Micro Endothelial Cells: Whole Genome DNA Methylation and Transcriptomic Analysis. Front Physiol 2019; 10:1502. [PMID: 31920707 PMCID: PMC6917667 DOI: 10.3389/fphys.2019.01502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/26/2019] [Indexed: 01/22/2023] Open
Abstract
We tested the hypothesis that endothelial capillary tube formation in 3D cultures in basement membrane extract (BME) is secondary to the altered DNA promoter methylation and mRNA expression in human brain micro endothelial cells (HBMECs). We conducted a whole-genome transcriptomic and methylation microarray and CRISPR/Cas9-mediated gene knockdown to test our hypothesis. The data demonstrated that with angiogenic transformation 1318 and 1490 genes were significantly (p < 0.05) upregulated and downregulated, respectively. We compared our gene expression data with the published databases on GEO and found several genes in common. PTGS2, SELE, ID2, HSPA6, DLX2, HEY2, FOSB, SMAD6, SMAD7, and SMAD9 showed a very high level of expression during capillary tube formation. Among downregulated gene were ITGB4, TNNT1, PRSS35, TXNIP, IGFBP5. The most affected canonical pathways were ATM signaling and cell cycle G2/M DNA damage checkpoint regulation. The top upstream regulators of angiogenic transformation were identified to be VEGF, TP53, HGF, ESR1, and CDKN1A. We compared the changes in gene expression with the change in gene methylation and found hypomethylation of the CpG sites was associated with upregulation of 515 genes and hypermethylation was associated with the downregulation of 31 genes. Furthermore, the silencing of FOSB, FZD7, HEY2, HSPA6, NR4A3, SELE, PTGS2, SMAD6, SMAD7, and SMAD9 significantly inhibited angiogenic transformation as well as cell migration of HBMECs. We conclude that the angiogenic transformation is associated with altered DNA methylation and gene expression changes.
Collapse
Affiliation(s)
- Dipali Goyal
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Ravi Goyal
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
6
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
7
|
Goyal D, Goyal R. Developmental Maturation and Alpha-1 Adrenergic Receptors-Mediated Gene Expression Changes in Ovine Middle Cerebral Arteries. Sci Rep 2018; 8:1772. [PMID: 29379105 PMCID: PMC5789090 DOI: 10.1038/s41598-018-20210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/15/2018] [Indexed: 11/23/2022] Open
Abstract
The Alpha Adrenergic Signaling Pathway is one of the chief regulators of cerebrovascular tone and cerebral blood flow (CBF), mediating its effects in the arteries through alpha1-adrenergic receptors (Alpha1AR). In the ovine middle cerebral artery (MCA), with development from a fetus to an adult, others and we have shown that Alpha1AR play a key role in contractile responses, vascular development, remodeling, and angiogenesis. Importantly, Alpha1AR play a significant role in CBF autoregulation, which is incompletely developed in a premature fetus as compared to a near-term fetus. However, the mechanistic pathways are not completely known. Thus, we tested the hypothesis that as a function of maturation and in response to Alpha1AR stimulation there is a differential gene expression in the ovine MCA. We conducted microarray analysis on transcripts from MCAs of premature fetuses (96-day), near-term fetuses (145-day), newborn lambs, and non-pregnant adult sheep (2-year) following stimulation of Alpha1AR with phenylephrine (a specific agonist). We observed several genes which belonged to pro-inflammatory and vascular development/angiogenesis pathway significantly altered in all of the four age groups. We also observed age-specific changes in gene expression–mediated by Alpha1AR stimulation in the different developmental age groups. These findings imply complex regulatory mechanisms of cerebrovascular development.
Collapse
Affiliation(s)
- Dipali Goyal
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ravi Goyal
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
8
|
Mata-Greenwood E, Goyal D, Goyal R. Comparative and Experimental Studies on the Genes Altered by Chronic Hypoxia in Human Brain Microendothelial Cells. Front Physiol 2017; 8:365. [PMID: 28620317 PMCID: PMC5450043 DOI: 10.3389/fphys.2017.00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/17/2017] [Indexed: 12/27/2022] Open
Abstract
Background : Hypoxia inducible factor 1 alpha (HIF1A) is a master regulator of acute hypoxia; however, with chronic hypoxia, HIF1A levels return to the normoxic levels. Importantly, the genes that are involved in the cell survival and viability under chronic hypoxia are not known. Therefore, we tested the hypothesis that chronic hypoxia leads to the upregulation of a core group of genes with associated changes in the promoter DNA methylation that mediates the cell survival under hypoxia. Results : We examined the effect of chronic hypoxia (3 days; 0.5% oxygen) on human brain micro endothelial cells (HBMEC) viability and apoptosis. Hypoxia caused a significant reduction in cell viability and an increase in apoptosis. Next, we examined chronic hypoxia associated changes in transcriptome and genome-wide promoter methylation. The data obtained was compared with 16 other microarray studies on chronic hypoxia. Nine genes were altered in response to chronic hypoxia in all 17 studies. Interestingly, HIF1A was not altered with chronic hypoxia in any of the studies. Furthermore, we compared our data to three other studies that identified HIF-responsive genes by various approaches. Only two genes were found to be HIF dependent. We silenced each of these 9 genes using CRISPR/Cas9 system. Downregulation of EGLN3 significantly increased the cell death under chronic hypoxia, whereas downregulation of ERO1L, ENO2, adrenomedullin, and spag4 reduced the cell death under hypoxia. Conclusions : We provide a core group of genes that regulates cellular acclimatization under chronic hypoxic stress, and most of them are HIF independent.
Collapse
Affiliation(s)
- Eugenia Mata-Greenwood
- Center for Perinatal Biology, School of Medicine, Loma Linda UniversityLoma Linda, CA, United States
| | - Dipali Goyal
- Center for Perinatal Biology, School of Medicine, Loma Linda UniversityLoma Linda, CA, United States.,Epigenuity LLCLoma Linda, CA, United States
| | - Ravi Goyal
- Center for Perinatal Biology, School of Medicine, Loma Linda UniversityLoma Linda, CA, United States.,Epigenuity LLCLoma Linda, CA, United States
| |
Collapse
|
9
|
Goyal R, Goyal D, Longo LD, Clyman RI. Microarray gene expression analysis in ovine ductus arteriosus during fetal development and birth transition. Pediatr Res 2016; 80:610-8. [PMID: 27356085 PMCID: PMC5638653 DOI: 10.1038/pr.2016.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patent ductus arteriosus (PDA) in the newborn is the most common congenital heart anomaly and is significantly more common in preterm infants. Contemporary pharmacological treatment is effective in only 70-80% of the cases. Moreover, indomethacin or ibuprofen, which are used to close a PDA may be accompanied by serious side effects in premature infants. To explore the novel molecular pathways, which may be involved in the maturation and closure of the ductus arteriosus (DA), we used fetal and neonatal sheep to test the hypothesis that maturational development of DA is associated with significant alterations in specific mRNA expression. METHODS We conducted oligonucleotide microarray experiments on the isolated mRNA from DA and ascending aorta from three study groups (premature fetus-97 ± 0 d, near-term fetus-136 ± 0.8 d, and newborn lamb-12 ± 0 h). We compared the alterations in mRNA expression in DA and aorta to identify genes specifically involved in DA maturation. RESULTS Results demonstrate significant changes in wingless-integrin1, thrombospondin 1, receptor activator of nuclear factor-kappa B, nitric oxide synthase, and retinoic acid receptor activation signaling pathways. CONCLUSION We conclude that these pathways may play an important role during both development and postnatal DA closure and warrant further investigation.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Division of Basic Sciences, Loma Linda University, Loma Linda, California
| | - Dipali Goyal
- Center for Perinatal Biology, Division of Basic Sciences, Loma Linda University, Loma Linda, California
| | - Lawrence D. Longo
- Center for Perinatal Biology, Division of Basic Sciences, Loma Linda University, Loma Linda, California
| | - Ronald I. Clyman
- Department of Pediatrics and Cardiovascular Research Institute, University of California, San Francisco, California
| |
Collapse
|
10
|
Zhao J, Li H, Liu K, Zhang B, Li P, He J, Cheng M, De W, Liu J, Zhao Y, Yang L, Liu N. Identification of differentially expressed genes affecting hair and cashmere growth in the Laiwu black goat by microarray. Mol Med Rep 2016; 14:3823-31. [DOI: 10.3892/mmr.2016.5728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/30/2016] [Indexed: 11/05/2022] Open
|
11
|
Goyal R, Billings TL, Mansour T, Martin C, Baylink DJ, Longo LD, Pearce WJ, Mata-Greenwood E. Vitamin D status and metabolism in an ovine pregnancy model: effect of long-term, high-altitude hypoxia. Am J Physiol Endocrinol Metab 2016; 310:E1062-71. [PMID: 27143557 PMCID: PMC4935137 DOI: 10.1152/ajpendo.00494.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
Vitamin D status increases during healthy mammalian pregnancy, but the molecular determinants remain uncharacterized. The first objective of this study was to determine the effects of pregnancy, and the second objective was to examine the role of chronic hypoxia on vitamin D status and metabolism in an ovine model. We analyzed the plasma levels of cholecalciferol, 25-OH-D, and 1α,25-(OH)2D in nonpregnant ewes, near-term pregnant ewes, and their fetuses exposed to normoxia (low altitude) or hypoxia (high-altitude) for 100 days. Hypoxic sheep had increased circulating levels of 25-OH-D and 1α,25-(OH)2D compared with normoxic sheep. Hypoxia increases in 25-OH-D were associated with increased expression of renal 25-hydroxylases CYP2R1 and CYP2J. Pregnancy did not increase further the plasma levels of 25-OH-D, but it significantly increased those of the active metabolite, 1α,25-(OH)2D, in both normoxic and hypoxic ewes. Increased bioactivation of vitamin D correlated with increased expression of the vitamin D-activating enzyme CYP27b1 and decreased expression of the inactivating enzyme CYP24a1 in maternal kidneys and placentas. Hypoxia increased parathyroid hormone levels and further increased renal CYP27b1. Pregnancy and hypoxia decreased the expression of vitamin D receptor (VDR) in maternal kidney and lung, with opposite effects on placental VDR. We conclude that ovine pregnancy is a model of increased vitamin D status, and long-term hypoxia further improves vitamin D status due to pregnancy- and hypoxia-specific regulation of VDR and metabolic enzymes.
Collapse
Affiliation(s)
| | | | | | | | - David J Baylink
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California
| | | | | | | |
Collapse
|
12
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
13
|
Shi XF, Wang H, Xiao FJ, Yin Y, Xu QQ, Ge RL, Wang LS. MiRNA-486 regulates angiogenic activity and survival of mesenchymal stem cells under hypoxia through modulating Akt signal. Biochem Biophys Res Commun 2016; 470:670-677. [PMID: 26801559 DOI: 10.1016/j.bbrc.2016.01.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
MicroRNA-486 (miR-486) was first identified from human fetal liver cDNA library and validated as a regulator of hematopoiesis. Its roles in regulating the biological function of bone marrow-derived mesnechymal stem cells (BM-MSCs) under hypoxia have not been explored yet. In this study, we demonstrated that exposure to hypoxia upregulates miR-486 expression in BM-MSCs. Lentivirus-mediated overexpression of miR-486 resulted in increase of hepatocyte growth factor (HGF) and vascular endothelial growth factor(VEGF) in both mRNA and protein levels. MiR-486 expression also promotes proliferation and reduces apoptosis of BM-MSCs. Whereas MiR-486 knockdown downregulated the secretion of HGF and VEGF and induced apoptosis of BM-MSCs. Furthermore, PTEN-PI3K/AKT signaling was validated to be involved in changes of BM-MSC biological functions regulated by miR-486. These results suggested that MiR-486 mediated the hypoxia-induced angiogenic activity and promoted the proliferation and survival of BM-MSCs through regulating PTEN-PI3K/AKT signaling. These findings might provide a novel understanding of effective therapeutic strategy for hypoxic-ischemic diseases.
Collapse
Affiliation(s)
- Xue-Feng Shi
- High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001, PR China; Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China; Department of Respiration, Qinghai Provincial People's Hospital, Xining, PR China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Feng-Jun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yue Yin
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China; Department of Hematology, Peking University First Hospital, Beijing, PR China
| | - Qin-Qin Xu
- High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001, PR China; Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Ri-Li Ge
- High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001, PR China.
| | - Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
14
|
Goyal R, Longo LD. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia. PLoS One 2015; 10:e0130739. [PMID: 26110419 PMCID: PMC4482414 DOI: 10.1371/journal.pone.0130739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/23/2015] [Indexed: 02/01/2023] Open
Abstract
Background Long-term hypoxia (LTH) is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death. Aim LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups. Results Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Lawrence D. Longo
- Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| |
Collapse
|
15
|
Pearce WJ. The fetal cerebral circulation: three decades of exploration by the LLU Center for Perinatal Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:177-91. [PMID: 25015811 DOI: 10.1007/978-1-4939-1031-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
For more than three decades, research programs in the Center of Perinatal Biology have focused on the vascular biology of the fetal cerebral circulation. In the 1980s, research in the Center demonstrated that cerebral autoregulation operated over a narrower pressure range, and was more vulnerable to insults, in fetuses than in adults. Other studies were among the first to establish that compared to adult cerebral arteries, fetal cerebral arteries were more hydrated, contained smaller smooth muscle cells and less connective tissue, and had endothelium less capable of producing NO. Work in the 1990s revealed that pregnancy depressed reactivity to NO in extra-cerebral arteries, but elevated it in cerebral arteries through effects involving changes in cGMP metabolism. Comparative studies verified that fetal lamb cerebral arteries were an excellent model for cerebral arteries from human infants. Biochemical studies demonstrated that cGMP metabolism was dramatically upregulated, but that contraction was far more dependent on calcium influx, in fetal compared to adult cerebral arteries. Further studies established that chronic hypoxia accelerates functional maturation of fetal cerebral arteries, as indicated by increased contractile responses to adrenergic agonists and perivascular adrenergic nerves. In the 2000s, studies of signal transduction established age-dependent roles for PKG, PKC, PKA, ERK, ODC, IP3, myofilament calcium sensitivity, and many other mechanisms. These diverse studies clearly demonstrated that fetal cerebral arteries were functionally quite distinct compared to adult cerebral arteries. In the current decade, research in the Center has expanded to a more molecular focus on epigenetic mechanisms and their role in fetal vascular adaptation to chronic hypoxia, maternal drug abuse, and nutrient deprivation. Overall, the past three decades have transformed thinking about, and understanding of, the fetal cerebral circulation due in no small part to the sustained research efforts by faculty and staff in the Center for Perinatal Biology.
Collapse
Affiliation(s)
- William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, 92350, Loma Linda, CA, USA,
| |
Collapse
|
16
|
Goyal R, Goyal D, Chu N, Van Wickle J, Longo LD. Cerebral artery alpha-1 AR subtypes: high altitude long-term acclimatization responses. PLoS One 2014; 9:e112784. [PMID: 25393740 PMCID: PMC4231100 DOI: 10.1371/journal.pone.0112784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
In response to hypoxia and other stress, the sympathetic (adrenergic) nervous system regulates arterial contractility and blood flow, partly through differential activities of the alpha1 (α1) - adrenergic receptor (AR) subtypes (α1A-, α1B-, and α1D-AR). Thus, we tested the hypothesis that with acclimatization to long-term hypoxia (LTH), contractility of middle cerebral arteries (MCA) is regulated by changes in expression and activation of the specific α1-AR subtypes. We conducted experiments in MCA from adult normoxic sheep maintained near sea level (300 m) and those exposed to LTH (110 days at 3801 m). Following acclimatization to LTH, ovine MCA showed a 20% reduction (n = 5; P<0.05) in the maximum tension achieved by 10-5 M phenylephrine (PHE). LTH-acclimatized cerebral arteries also demonstrated a statistically significant (P<0.05) inhibition of PHE-induced contractility in the presence of specific α1-AR subtype antagonists. Importantly, compared to normoxic vessels, there was significantly greater (P<0.05) α1B-AR subtype mRNA and protein levels in LTH acclimatized MCA. Also, our results demonstrate that extracellular regulated kinase 1 and 2 (ERK1/2)-mediated negative feedback regulation of PHE-induced contractility is modulated by α1B-AR subtype. Overall, in ovine MCA, LTH produces profound effects on α1-AR subtype expression and function.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Epigenuity LLC, Loma Linda, California, United States of America
| | - Dipali Goyal
- Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Epigenuity LLC, Loma Linda, California, United States of America
| | - Nina Chu
- Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Epigenuity LLC, Loma Linda, California, United States of America
| | - Jonathan Van Wickle
- Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Epigenuity LLC, Loma Linda, California, United States of America
| | - Lawrence D. Longo
- Center for Perinatal Biology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Epigenuity LLC, Loma Linda, California, United States of America
| |
Collapse
|
17
|
Herrera EA, Macchiavello R, Montt C, Ebensperger G, Díaz M, Ramírez S, Parer JT, Serón-Ferré M, Reyes RV, Llanos AJ. Melatonin improves cerebrovascular function and decreases oxidative stress in chronically hypoxic lambs. J Pineal Res 2014; 57:33-42. [PMID: 24811332 DOI: 10.1111/jpi.12141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
Abstract
Chronic hypoxia during gestation and delivery results in oxidative stress and cerebrovascular dysfunction in the neonate. We assessed whether melatonin, a potent antioxidant and potential vasodilator, improves the cerebral vascular function in chronically hypoxic neonatal lambs gestated and born in the highlands (3600 m). Six lambs received melatonin (1 mg/kg per day oral) and six received vehicle, once a day for 8 days. During treatment, biometry and hemodynamic variables were recorded. After treatment, lambs were submitted to a graded FiO2 protocol to assess cardiovascular responses to oxygenation changes. At 12 days old, middle cerebral arteries (MCA) were collected for vascular reactivity, morphostructural, and immunostaining evaluation. Melatonin increased fractional growth at the beginning and improved carotid blood flow at all arterial PO2 levels by the end of the treatment (P < 0.05). Further, melatonin treatment improved vascular responses to potassium, serotonin, methacholine, and melatonin itself (P < 0.05). In addition, melatonin enhanced the endothelial response via nitric oxide-independent mechanisms in isolated arteries (162 ± 26 versus 266 ± 34 AUC, P < 0.05). Finally, nitrotyrosine staining as an oxidative stress marker decreased in the MCA media layer of melatonin-treated animals (0.01357 ± 0.00089 versus 0.00837 ± 0.00164 pixels/μm2 , P < 0.05). All the melatonin-induced changes were associated with no systemic cardiovascular alterations in vivo. In conclusion, oral treatment with melatonin modulates cerebral vascular function, resulting in a better cerebral perfusion and reduced oxidative stress in the neonatal period in chronically hypoxic lambs. Melatonin is a potential therapeutic agent for treating cerebrovascular dysfunction associated with oxidative stress and developmental hypoxia in neonates.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Putre, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Goyal R, Longo LD. Acclimatization to long-term hypoxia: gene expression in ovine carotid arteries. Physiol Genomics 2014; 46:725-34. [PMID: 25052263 DOI: 10.1152/physiolgenomics.00073.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to acute high-altitude hypoxia is associated with an increase in cerebral blood flow (CBF) as a consequence of low arterial O2 tension. However, in response to high altitude acclimatization, CBF returns to levels similar to those at sea level, and tissue blood flow is maintained by an increase in angiogenesis. Of consequence, dysregulation of the acclimatization responses and CBF can result in acute mountain sickness, acute cerebral and/or pulmonary edema. To elucidate the signal transduction pathways involved in successful acclimatization to high altitude, in ovine carotid arteries, we tested the hypothesis that high altitude-associated long-term hypoxia results in changes in gene expression of critical signaling pathways. We acclimatized nonpregnant adult sheep to 3,801 m altitude for ∼110 days and conducted oligonucleotide microarray experiments on carotid arteries. Of a total of 116 regulated genes, 58 genes were significantly upregulated and 58 genes were significantly downregulated (each >2-fold, P < 0.05). Major upregulated genes included suprabasin and myelin basic protein, whereas downregulated genes included BAG2. Several of these genes are known to activate the ERK canonical signal transduction pathway and the process of angiogenesis. We conclude that among other changes, the altered signal transduction molecules involved in high-altitude acclimatization are associated ERK activation and angiogenesis.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California; and Epigenuity LLC, Loma Linda, California
| | - Lawrence D Longo
- Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, California; and Epigenuity LLC, Loma Linda, California
| |
Collapse
|