1
|
Agarwal R, Althoff DM. Extreme specificity in obligate mutualism-A role for competition? Ecol Evol 2024; 14:e11628. [PMID: 38911491 PMCID: PMC11190587 DOI: 10.1002/ece3.11628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Obligate mutualisms, reciprocally obligate beneficial interactions, are some of the most important mutualisms on the planet, providing the basis for the evolution of the eukaryotic cell, the formation and persistence of terrestrial ecosystems and the establishment and expansion of coral reefs. In addition, these mutualisms can also lead to the diversification of interacting partner species. Accompanying this diversification is a general pattern of a high degree of specificity among interacting partner species. A survey of obligate mutualisms demonstrates that greater than half of these systems have only one or two mutualist species on each side of the interaction. This is in stark contrast to facultative mutualisms that can have dozens of interacting mutualist species. We posit that the high degree of specificity in obligate mutualisms is driven by competition within obligate mutualist guilds that limits species richness. Competition may be particularly potent in these mutualisms because mutualistic partners are totally dependent on each other's fitness gains, which may fuel interspecific competition. Theory and the limited number of empirical studies testing for the role of competition in determining specificity suggest that competition may be an important force that fuels the high degree of specificity. Further empirical research is needed to dissect the relative roles of trait complementarity, mutualism regulation, and competition among mutualist guild members in determining mutualism specificity at local scales.
Collapse
Affiliation(s)
- Renuka Agarwal
- Department of BiologySyracuse UniversitySyracuseNew YorkUSA
| | | |
Collapse
|
2
|
Montoya Q, Martiarena M, Rodrigues A. Taxonomy and systematics of the fungus-growing ant associate Escovopsis ( Hypocreaceae). Stud Mycol 2023; 106:349-397. [PMID: 38298572 PMCID: PMC10825746 DOI: 10.3114/sim.2023.106.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/15/2023] [Indexed: 02/02/2024] Open
Abstract
Escovopsis is a symbiont of fungus-growing ant colonies. Unstandardised taxonomy prevented the evaluation of the morphological diversity of Escovopsis for more than a century. The aim of this study is to create a standardised taxonomic framework to assess the morphological and phylogenetic diversity of Escovopsis. Therefore, to set the foundation for Escovopsis taxonomy and allow interspecific comparisons within the genus, we redescribe the ex-type cultures of Escovopsis aspergilloides, E. clavata, E. lentecrescens, E. microspora, E. moelleri, E. multiformis, and E. weberi. Thus, based on the parameters adopted in this study combined with phylogenetic analyses using five molecular markers, we synonymize E. microspora with E. weberi, and introduce 13 new species isolated from attine nests collected in Argentina, Brazil, Costa Rica, Mexico, and Panama: E. breviramosa, E. chlamydosporosa, E. diminuta, E. elongatistipitata, E. gracilis, E. maculosa, E. papillata, E. peniculiformis, E. phialicopiosa, E. pseudocylindrica, E. rectangula, E. rosisimilis, and E. spicaticlavata. Our results revealed a great interspecific morphological diversity throughout Escovopsis. Notwithstanding, colony growth rates at different temperatures, as well as vesicle shape, appear to be the most outstanding features distinguishing species in the genus. This study fills an important gap in the systematics of Escovopsis that will allow future researchers to unravel the genetic and morphological diversity and species diversification of these attine ant symbionts. Taxonomic novelties: New species: Escovopsis breviramosa Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. chlamydosporosa Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. diminuta Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. elongatistipitata Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. gracilis Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. maculosa Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. papillata Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. peniculiformis Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. phialicopiosa Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. pseudocylindrica Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. rectangula Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. rosisimilis Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues, E. spicaticlavata Q.V. Montoya, M.J.S. Martiarena & A. Rodrigues. Citation: Montoya QV, Martiarena MJS, Rodrigues A (2023). Taxonomy and systematics of the fungus-growing ant associate Escovopsis (Hypocreaceae). Studies in Mycology 106: 349-397. doi: 10.3114/sim.2023.106.06.
Collapse
Affiliation(s)
- Q.V Montoya
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - M.J.S. Martiarena
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - A. Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
3
|
Fladerer JP, Grollitsch S, Bucar F. Three cuticular amides in the tripartite symbiosis of leafcutter ants. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-13. [PMID: 37518892 DOI: 10.1002/arch.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Cuticular hydrocarbons (CHCs) play various roles in insects' chemical ecology. As leafcutter ants live in a specific symbiosis with fungi, they harvest and with different bacteria, some of these CHCs might be associated with a mutualistic function within this symbiosis. To obtain a more precise picture in that respect we compared the CHC profiles of the leafcutter ants, Atta sexdens, Atta cephalotes, and Acromyrmex octospinosus inhabited by mutualistic bacteria with the profiles of Polyrhachis dives and Messor aciculatus by GC-EI-MS analysis and 28 other ant species by data from the literature. We were able to identify three alkyl amides (hexadecanamide, hexadecenamide, and tetradecanamide), occurring only in the CHC profiles of leafcutter ants inhabited by symbiotic bacteria. Our results lead to the conclusion that those alkyl amides could have a function in the tripartite symbiosis of leafcutter ants.
Collapse
Affiliation(s)
| | | | - Franz Bucar
- Karl-Franzens-Universitat Graz Pharmacognosy, Graz, Austria
| |
Collapse
|
4
|
Gotting K, May DS, Sosa-Calvo J, Khadempour L, Francoeur CB, Berasategui A, Thairu MW, Sandstrom S, Carlson CM, Chevrette MG, Pupo MT, Bugni TS, Schultz TR, Johnston JS, Gerardo NM, Currie CR. Genomic diversification of the specialized parasite of the fungus-growing ant symbiosis. Proc Natl Acad Sci U S A 2022; 119:e2213096119. [PMID: 36508678 PMCID: PMC9907069 DOI: 10.1073/pnas.2213096119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis, a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis.
Collapse
Affiliation(s)
- Kirsten Gotting
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI53706
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Jeffrey Sosa-Calvo
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | - Lily Khadempour
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ07102
| | | | | | - Margaret W. Thairu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Shelby Sandstrom
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Caitlin M. Carlson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Marc G. Chevrette
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53705
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53705
| | - Mônica T. Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP14040-903, Brazil
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - Ted R. Schultz
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | | | | | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Pietrobon TDC, Kooij PW, Montoya QV, Rodrigues A. Escovopsioides nivea is a non-specific antagonistic symbiont of ant-fungal crops. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Interactions among Escovopsis, Antagonistic Microfungi Associated with the Fungus-Growing Ant Symbiosis. J Fungi (Basel) 2021; 7:jof7121007. [PMID: 34946990 PMCID: PMC8703566 DOI: 10.3390/jof7121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Fungi in the genus Escovopsis (Ascomycota: Hypocreales) are prevalent associates of the complex symbiosis between fungus-growing ants (Tribe Attini), the ants' cultivated basidiomycete fungi and a consortium of both beneficial and harmful microbes found within the ants' garden communities. Some Escovopsis spp. have been shown to attack the ants' cultivated fungi, and co-infections by multiple Escovopsis spp. are common in gardens in nature. Yet, little is known about how Escovopsis strains impact each other. Since microbe-microbe interactions play a central role in microbial ecology and evolution, we conducted experiments to assay the types of interactions that govern Escovopsis-Escovopsis relationships. We isolated Escovopsis strains from the gardens of 10 attine ant genera representing basal (lower) and derived groups in the attine ant phylogeny. We conducted in vitro experiments to determine the outcome of both intraclonal and interclonal Escovopsis confrontations. When paired with self (intraclonal interactions), Escovopsis isolated from lower attine colonies exhibited antagonistic (inhibitory) responses, while strains isolated from derived attine colonies exhibited neutral or mutualistic interactions, leading to a clear phylogenetic pattern of interaction outcome. Interclonal interactions were more varied, exhibiting less phylogenetic signal. These results can serve as the basis for future studies on the costs and benefits of Escovopsis coinfection, and on the genetic and chemical mechanisms that regulate the compatibility and incompatibility observed here.
Collapse
|
7
|
Montoya QV, Martiarena MJS, Bizarria R, Gerardo NM, Rodrigues A. Fungi inhabiting attine ant colonies: reassessment of the genus Escovopsis and description of Luteomyces and Sympodiorosea gens. nov. IMA Fungus 2021; 12:23. [PMID: 34429165 PMCID: PMC8383443 DOI: 10.1186/s43008-021-00078-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/10/2021] [Indexed: 11/15/2022] Open
Abstract
Escovopsis is a diverse group of fungi, which are considered specialized parasites of the fungal cultivars of fungus-growing ants. The lack of a suitable taxonomic framework and phylogenetic inconsistencies have long hampered Escovopsis research. The aim of this study is to reassess the genus Escovopsis using a taxonomic approach and a comprehensive multilocus phylogenetic analysis, in order to set the basis of the genus systematics and the stage for future Escovopsis research. Our results support the separation of Escovopsis into three distinct genera. In light of this, we redefine Escovopsis as a monophyletic clade whose main feature is to form terminal vesicles on conidiophores. Consequently, E. kreiselii and E. trichodermoides were recombined into two new genera, Sympodiorosea and Luteomyces, as S. kreiselii and L. trichodermoides, respectively. This study expands our understanding of the systematics of Escovopsis and related genera, thereby facilitating future research on the evolutionary history, taxonomic diversity, and ecological roles of these inhabitants of the attine ant colonies.
Collapse
Affiliation(s)
- Quimi Vidaurre Montoya
- Department of General and Applied Biology, São Paulo State University (UNESP), Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, 13.506-900, Brazil. .,Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| | - Maria Jesus Sutta Martiarena
- Department of General and Applied Biology, São Paulo State University (UNESP), Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, 13.506-900, Brazil.,Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Rodolfo Bizarria
- Department of General and Applied Biology, São Paulo State University (UNESP), Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, 13.506-900, Brazil.,Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Nicole Marie Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, USA
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, 13.506-900, Brazil. .,Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
8
|
de Mendonça DMF, Caixeta MCS, Martins GL, Moreira CC, Kloss TG, Elliot SL. Low Virulence of the Fungi Escovopsis and Escovopsioides to a Leaf-Cutting Ant-Fungus Symbiosis. Front Microbiol 2021; 12:673445. [PMID: 34394025 PMCID: PMC8358438 DOI: 10.3389/fmicb.2021.673445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
Eusocial insects interact with a diversity of parasites that can threaten their survival and reproduction. The amount of harm these parasites cause to their hosts (i.e., their virulence) can be influenced by numerous factors, such as the ecological context in which the parasite and its host are inserted. Leaf-cutting ants (genera Atta, Acromyrmex and Amoimyrmex, Attini: Formicidae) are an example of a eusocial insect whose colonies are constantly threatened by parasites. The fungi Escovopsis and Escovopsioides (Ascomycota: Hypocreales) are considered a highly virulent parasite and an antagonist, respectively, to the leaf-cutting ants' fungal cultivar, Leucoagaricus gongylophorus (Basidiomycota: Agaricales). Since Escovopsis and Escovopsioides are common inhabitants of healthy colonies that can live for years, we expect them to have low levels of virulence. However, this virulence could vary depending on ecological context. We therefore tested two hypotheses: (i) Escovopsis and Escovopsioides are of low virulence to colonies; (ii) virulence increases as colony complexity decreases. For this, we used three levels of complexity: queenright colonies (fungus garden with queen and workers), queenless colonies (fungus garden and workers, without queen) and fungus gardens (without any ants). Each was inoculated with extremely high concentrations of conidia of Escovopsis moelleri, Escovopsioides nivea, the mycoparasitic fungus Trichoderma longibrachiatum or a blank control. We found that these fungi were of low virulence to queenright colonies. The survival of queenless colonies was decreased by E. moelleri and fungus gardens were suppressed by all treatments. Moreover, E. nivea and T. longibrachiatum seemed to be less aggressive than E. moelleri, observed both in vivo and in vitro. The results highlight the importance of each element (queen, workers and fungus garden) in the leaf-cutting ant-fungus symbiosis. Most importantly, we showed that Escovopsis may not be virulent to healthy colonies, despite commonly being described as such, with the reported virulence of Escovopsis being due to poor colony conditions in the field or in laboratory experiments.
Collapse
Affiliation(s)
| | | | | | - Camila Costa Moreira
- Department of Entomology, Federal University of Viçosa, Viçosa, Brazil.,Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Thiago Gechel Kloss
- Department of Biological Sciences, Minas Gerais State University, Ubá, Brazil
| | - Simon Luke Elliot
- Department of Entomology, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
9
|
Christopher Y, Wcislo WT, Martínez‐Luis S, Hughes WO, Gerardo NM, Fernández‐Marín H. Disease management in two sympatric Apterostigma fungus-growing ants for controlling the parasitic fungus Escovopsis. Ecol Evol 2021; 11:6041-6052. [PMID: 34141201 PMCID: PMC8207340 DOI: 10.1002/ece3.7379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/31/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
Antagonistic interactions between host and parasites are often embedded in networks of interacting species, in which hosts may be attacked by competing parasites species, and parasites may infect more than one host species. To better understand the evolution of host defenses and parasite counterdefenses in the context of a multihost, multiparasite system, we studied two sympatric species, of congeneric fungus-growing ants (Attini) species and their symbiotic fungal cultivars, which are attacked by multiple morphotypes of parasitic fungi in the genus, Escovopsis. To assess whether closely related ant species and their cultured fungi are evolving defenses against the same or different parasitic strains, we characterized Escovopsis that were isolated from colonies of sympatric Apterostigma dentigerum and A. pilosum. We assessed in vitro and in vivo interactions of these parasites with their hosts. While the ant cultivars are parasitized by similar Escovopsis spp., the frequency of infection by these pathogens differs between the two ant species. The ability of the host fungi to suppress Escovopsis growth, as well as ant defensive responses toward the parasites, differs depending on the parasite strain and on the host ant species.
Collapse
Affiliation(s)
- Yuliana Christopher
- Centro de Biodiversidad y Descubrimiento de DrogasInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP)ClaytonRepública de Panamá
- Department of BiotechnologyAcharya Nagarjuna UniversityGunturIndia
- Smithsonian Tropical Research InstitutePanamaRepública de Panamá
| | | | - Sergio Martínez‐Luis
- Centro de Biodiversidad y Descubrimiento de DrogasInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP)ClaytonRepública de Panamá
| | | | | | - Hermógenes Fernández‐Marín
- Centro de Biodiversidad y Descubrimiento de DrogasInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP)ClaytonRepública de Panamá
| |
Collapse
|
10
|
Bich GÁ, Randon DN, Castrillo ML, Villalba LL, Zapata PD. Aislamiento y caracterización morfológica y molecular de cepas de Escovopsis aisladas de nidos de hormigas cortadoras de hojas de Argentina. REV MEX BIODIVERS 2020. [DOI: 10.22201/ib.20078706e.2020.91.2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Moreira AA, Forti LC, Camargo RDS, Nagamoto NS, Caldato N, Castellani MA, Ramos VM. Variation in nest morphology, queen oviposition rates, and fungal species present in incipient colonies of the leaf-cutter ant Atta sexdens. TROPICAL ZOOLOGY 2019. [DOI: 10.1080/03946975.2019.1603622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Aldenise Alves Moreira
- Laboratory of Entomology, Department of Phytotechny and Zootechny, State University of Southwestern Bahia [Universidade Estadual do Sudoeste da Bahia] (UESB), Vitória da Conquista, Brazil
| | - Luiz Carlos Forti
- Laboratory of Social Insects-Pests, Department of Vegetal Protection, School of Agricultural Sciences, São Paulo State University [Universidade Estadual Paulista] (UNESP), Postal Code 237, Botucatu, SP 18610-034, Brazil
| | - Roberto da Silva Camargo
- Laboratory of Social Insects-Pests, Department of Vegetal Protection, School of Agricultural Sciences, São Paulo State University [Universidade Estadual Paulista] (UNESP), Postal Code 237, Botucatu, SP 18610-034, Brazil
| | - Nilson Satoru Nagamoto
- Laboratory of Social Insects-Pests, Department of Vegetal Protection, School of Agricultural Sciences, São Paulo State University [Universidade Estadual Paulista] (UNESP), Postal Code 237, Botucatu, SP 18610-034, Brazil
| | - Nadia Caldato
- Laboratory of Social Insects-Pests, Department of Vegetal Protection, School of Agricultural Sciences, São Paulo State University [Universidade Estadual Paulista] (UNESP), Postal Code 237, Botucatu, SP 18610-034, Brazil
| | - Maria Aparecida Castellani
- Laboratory of Entomology, Department of Phytotechny and Zootechny, State University of Southwestern Bahia [Universidade Estadual do Sudoeste da Bahia] (UESB), Vitória da Conquista, Brazil
| | - Vania Maria Ramos
- Laboratory of Agricultural Entomology, Agronomy Department, College of Agricultural Sciences, University of Western São Paulo [Universidade do Oeste Paulista] (UNOESTE), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
12
|
Montoya QV, Martiarena MJS, Danilo Augusto Polezel, Akazu S, Rodrigues A. More pieces to a huge puzzle: Two new Escovopsis species from fungus gardens of attine ants. MycoKeys 2019:97-118. [PMID: 30814906 PMCID: PMC6389644 DOI: 10.3897/mycokeys.46.30951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 11/12/2022] Open
Abstract
Escovopsis (Ascomycota: Hypocreales, Hypocreaceae) is the only known parasite of the mutualistic fungi cultivated by fungus-growing ants (Formicidae: Myrmicinae: Attini: Attina, the "attines"). Despite its ecological role, the taxonomy and systematics of Escovopsis have been poorly addressed. Here, based on morphological and phylogenetic analyses with three molecular markers (internal transcribed spacer, large subunit ribosomal RNA and the translation elongation factor 1-alpha), we describe Escovopsisclavatus and E.multiformis as new species isolated from fungus gardens of Apterostigma ant species. Our analysis shows that E.clavatus and E.multiformis belong to the most derived Escovopsis clade, whose main character is the presence of conidiophores with vesicles. Nevertheless, the most outstanding feature of both new species is the presence of a swollen region in the central hypha of the conidiophore named swollen cell, which is absent in all previously described Escovopsis species. The less derived Escovopsis clades lack vesicles and their phylogenetic position within the Hypocreaceae still remains unclear. Considering the high genetic diversity in Escovopsis, the description of these new species adds barely two pieces to a huge taxonomic puzzle; however, this discovery is an important piece for building the systematics of this group of fungi.
Collapse
Affiliation(s)
- Quimi Vidaurre Montoya
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil São Paulo State University Rio Claro Brazil
| | - Maria Jesus Sutta Martiarena
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil São Paulo State University Rio Claro Brazil
| | - Danilo Augusto Polezel
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil São Paulo State University Rio Claro Brazil
| | - Sérgio Akazu
- Center for the Studies of Social Insects, UNESP - São Paulo State University, Rio Claro, SP, Brazil São Paulo State University Rio Claro Brazil
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, SP, Brazil São Paulo State University Rio Claro Brazil.,Center for the Studies of Social Insects, UNESP - São Paulo State University, Rio Claro, SP, Brazil São Paulo State University Rio Claro Brazil
| |
Collapse
|
13
|
Osti JF, Rodrigues A. Escovopsioides as a fungal antagonist of the fungus cultivated by leafcutter ants. BMC Microbiol 2018; 18:130. [PMID: 30305028 PMCID: PMC6180628 DOI: 10.1186/s12866-018-1265-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 09/26/2018] [Indexed: 12/04/2022] Open
Abstract
Background Fungus gardens of fungus-growing (attine) ants harbor complex microbiomes in addition to the mutualistic fungus they cultivate for food. Fungi in the genus Escovopsioides were recently described as members of this microbiome but their role in the ant-fungus symbiosis is poorly known. In this study, we assessed the phylogenetic diversity of 21 Escovopsioides isolates obtained from fungus gardens of leafcutter ants (genera Atta and Acromyrmex) and non-leafcutter ants (genera Trachymyrmex and Apterostigma) sampled from several regions in Brazil. Results Regardless of the sample locality or ant genera, phylogenetic analysis showed low genetic diversity among the 20 Escovopsisoides isolates examined, which prompted the identification as Escovopsioides nivea (the only described species in the genus). In contrast, one Escovopsioides isolate obtained from a fungus garden of Apterostigma megacephala was considered a new phylogenetic species. Dual-culture plate assays showed that Escovopsioides isolates inhibited the mycelium growth of Leucoagaricus gongylophorus, the mutualistic fungus cultivated by somes species of leafcutter ants. In addition, Escovopsioides growth experiments in fungus gardens with and without ant workers showed this fungus is detrimental to the ant-fungus symbiosis. Conclusions Here, we provide clues for the antagonism of Escovopsioides towards the mutualistic fungus of leafcutter ants. Electronic supplementary material The online version of this article (10.1186/s12866-018-1265-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julio Flavio Osti
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, São Paulo State University (UNESP), Rio Claro, Brazil. .,Center for the Studies of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil.
| |
Collapse
|
14
|
Kellner K, Kardish MR, Seal JN, Linksvayer TA, Mueller UG. Symbiont-Mediated Host-Parasite Dynamics in a Fungus-Gardening Ant. MICROBIAL ECOLOGY 2018; 76:530-543. [PMID: 29285550 DOI: 10.1007/s00248-017-1124-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Group-living can promote the evolution of adaptive strategies to prevent and control disease. Fungus-gardening ants must cope with two sets of pathogens, those that afflict the ants themselves and those of their symbiotic fungal gardens. While much research has demonstrated the impact of specialized fungal pathogens that infect ant fungus gardens, most of these studies focused on the so-called higher attine ants, which are thought to coevolve diffusely with two clades of leucocoprinaceous fungi. Relatively few studies have addressed disease ecology of lower Attini, which are thought to occasionally recruit (domesticate) novel leucocoprinaceous fungi from free-living populations; coevolution between lower-attine ants and their fungi is therefore likely weaker (or even absent) than in the higher Attini, which generally have many derived modifications. Toward understanding the disease ecology of lower-attine ants, this study (a) describes the diversity in the microfungal genus Escovopsis that naturally infect fungus gardens of the lower-attine ant Mycocepurus smithii and (b) experimentally determines the relative contributions of Escovopsis strain (a possible garden disease), M. smithii ant genotype, and fungal cultivar lineage to disease susceptibility and colony fitness. In controlled in-vivo infection laboratory experiments, we demonstrate that the susceptibility to Escovopsis infection was an outcome of ant-cultivar-Escovopsis interaction, rather than solely due to ant genotype or fungal cultivar lineage. The role of complex ant-cultivar-Escovopsis interactions suggests that switching M. smithii farmers onto novel fungus types might be a strategy to generate novel ant-fungus combinations resistant to most, but perhaps not all, Escovopsis strains circulating in a local population of this and other lower-attine ants.
Collapse
Affiliation(s)
- Katrin Kellner
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA.
| | - M R Kardish
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Deptartment of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - J N Seal
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA
| | - T A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - U G Mueller
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
15
|
Mueller UG, Kardish MR, Ishak HD, Wright AM, Solomon SE, Bruschi SM, Carlson AL, Bacci M. Phylogenetic patterns of ant-fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. Mol Ecol 2018; 27:2414-2434. [PMID: 29740906 DOI: 10.1111/mec.14588] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/18/2023]
Abstract
To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus-growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher-attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower-attine lineages. Higher-attine fungi form two clades, Clade-A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade-B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade-A fungi because some leafcutter species ranging across South America cultivate Clade-B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade-B fungi because some Trachymyrmex species cultivate Clade-A fungi and other Trachymyrmex species cultivate fungi known so far only from lower-attine ants; (iii) in some locations, single higher-attine ant species or closely related cryptic species cultivate both Clade-A and Clade-B fungi; and (iv) ant-fungus co-evolution among higher-attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade-A or Clade-B fungi, sustaining with either cultivar-type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade-A or Clade-B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade-A), but must derive from ant-fungus synergisms and unique ant adaptations.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| | - Melissa R Kardish
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Center for Population Biology, University of California, Davis, California
| | - Heather D Ishak
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Department of Medicine, Stanford University, Stanford, California
| | - April M Wright
- Department of Biological Science, Southeastern Louisiana University, Hammond, Louisiana
| | - Scott E Solomon
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas.,Department of Entomology, Smithsonian Institution, Washington, District of Columbia
| | - Sofia M Bruschi
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Alexis L Carlson
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| |
Collapse
|
16
|
Farji-Brener AG, Elizalde L, Fernández-Marín H, Amador-Vargas S. Social life and sanitary risks: evolutionary and current ecological conditions determine waste management in leaf-cutting ants. Proc Biol Sci 2017; 283:rspb.2016.0625. [PMID: 27226469 DOI: 10.1098/rspb.2016.0625] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/04/2016] [Indexed: 11/12/2022] Open
Abstract
Adequate waste management is vital for the success of social life, because waste accumulation increases sanitary risks in dense societies. We explored why different leaf-cutting ants (LCA) species locate their waste in internal nest chambers or external piles, including ecological context and accounting for phylogenetic relations. We propose that waste location depends on whether the environmental conditions enhance or reduce the risk of infection. We obtained the geographical range, habitat and refuse location of LCA from published literature, and experimentally determined whether pathogens on ant waste survived to the high soil temperatures typical of xeric habitats. The habitat of the LCA determined waste location after phylogenetic correction: species with external waste piles mainly occur in xeric environments, whereas those with internal waste chambers mainly inhabit more humid habitats. The ancestral reconstruction suggests that dumping waste externally is less derived than digging waste nest chambers. Empirical results showed that high soil surface temperatures reduce pathogen prevalence from LCA waste. We proposed that LCA living in environments unfavourable for pathogens (i.e. xeric habitats) avoid digging costs by dumping the refuse above ground. Conversely, in environments suitable for pathogens, LCA species prevent the spread of diseases by storing waste underground, presumably, a behaviour that contributed to the colonization of humid habitats. These results highlight the adaptation of organisms to the hygienic challenges of social living, and illustrate how sanitary behaviours can result from a combination of evolutionary history and current environmental conditions.
Collapse
Affiliation(s)
| | - Luciana Elizalde
- Laboratorio Ecotono, INIBIOMA-CONICET, Pasaje Gutiérrez 1125, 8400 Bariloche, Argentina
| | - Hermógenes Fernández-Marín
- Centro de Biodiversidad y Descrubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Cuidad del Saber, Panamá, Panama
| | | |
Collapse
|
17
|
|
18
|
Augustin JO, Simões TG, Dijksterhuis J, Elliot SL, Evans HC. Putting the waste out: a proposed mechanism for transmission of the mycoparasite Escovopsis between leafcutter ant colonies. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161013. [PMID: 28572992 PMCID: PMC5451793 DOI: 10.1098/rsos.161013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/18/2017] [Indexed: 05/24/2023]
Abstract
The attine ant system is a remarkable example of symbiosis. An antagonistic partner within this system is the fungal parasite Escovopsis, a genus specific to the fungal gardens of the Attini. Escovopsis parasitizes the Leucoagaricus symbiont that leaf-cutting ants (Acromyrmex, Atta) have been farming over the past 8-12 Myr. However, it has been a puzzle how Escovopsis reaches its host. During a seasonal survey of nests of Acromyrmex subterraneus subterraneus in Atlantic rainforest in Brazil, Escovopsis was detected in all the sampled fungal garden waste tips or middens (n = 111). Middens were built strategically; always below the nest entrances. Here, we report the first evidence of a putative mechanism for horizontal transmission of Escovopsis between attine colonies. It is posited that leaf-cutting ants pick up the spores from soil and litter during foraging and vector the mycoparasite between attine colonies. Field and laboratory experiments, using At. laevigata and Ac. subterraneus subterraneus, confirm that Escovopsis spores are phoretic, and have an inbuilt dormancy, broken by the presence of their Leucoagaricus host. However, in the coevolutionary arms race, Atta ants may lose out-despite most species in the genus investing in a more advanced waste disposal system-due to the insanitary habits of their Acromyrmex neighbours.
Collapse
Affiliation(s)
- Juliana O. Augustin
- Department of Entomology, Universidade Federal de Viçosa, CEP 36.570-900, Viçosa, MG, Brazil
| | - Talitta G. Simões
- Department of Entomology, Universidade Federal de Viçosa, CEP 36.570-900, Viçosa, MG, Brazil
| | - Jan Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, PO Box 85167.3508 AD, Utrecht, The Netherlands
| | - Simon L. Elliot
- Department of Entomology, Universidade Federal de Viçosa, CEP 36.570-900, Viçosa, MG, Brazil
| | - Harry C. Evans
- Department of Entomology, Universidade Federal de Viçosa, CEP 36.570-900, Viçosa, MG, Brazil
- CAB International, E-UK Centre, Egham, Surrey TW20 9TY, UK
| |
Collapse
|
19
|
Varanda-Haifig SS, Albarici TR, Nunes PH, Haifig I, Vieira PC, Rodrigues A. Nature of the interactions between hypocrealean fungi and the mutualistic fungus of leaf-cutter ants. Antonie van Leeuwenhoek 2016; 110:593-605. [PMID: 28040855 DOI: 10.1007/s10482-016-0826-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Leaf-cutter ants cultivate and feed on the mutualistic fungus, Leucoagaricus gongylophorus, which is threatened by parasitic fungi of the genus Escovopsis. The mechanism of Escovopsis parasitism is poorly understood. Here, we assessed the nature of the antagonism of different Escovopsis species against its host. We also evaluated the potential antagonism of Escovopsioides, a recently described fungal genus from the attine ant environment whose role in the colonies of these insects is unknown. We performed dual-culture assays to assess the interactions between L. gongylophorus and both fungi. We also evaluated the antifungal activity of compounds secreted by the latter on L. gongylophorus growth using crude extracts of Escovopsis spp. and Escovopsioides nivea obtained either in (1) absence or (2) presence of the mutualistic fungus. The physical interaction between these fungi and the mutualistic fungus was examined under scanning electron microscopy (SEM). Escovopsis spp. and E. nivea negatively affected the growth of L. gongylophorus, which was also significantly inhibited by both types of crude extract. These results indicate that Escovopsis spp. and E. nivea produce antifungal metabolites against the mutualistic fungus. SEM showed that Escovopsis spp. and E. nivea maintained physical contact with the mutualistic fungus, though no specialised structures related to mycoparasitism were observed. These results showed that Escovopsis is a destructive mycoparasite that needs physical contact for the death of the mutualistic fungus to occur. Also, our findings suggest that E. nivea is an antagonist of the ant fungal cultivar.
Collapse
Affiliation(s)
- Sadala Schmidt Varanda-Haifig
- Departamento de Bioquímica e Microbiologia, Universidade Estadual Paulista (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Tatiane Regina Albarici
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
| | - Pablo Henrique Nunes
- Centro Interdisciplinar de Ciências da Vida, Universidade Federal da Integração Latino-Americana, Av. Tancredo Neves, 6731 - Bloco 6, Caixa Postal 2044, Foz do Iguaçu, PR, 85867-970, Brazil
| | - Ives Haifig
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Campus Monte Carmelo. Rodovia LMG-746, km 1, Monte Carmelo, MG, 38500-000, Brazil
| | - Paulo Cezar Vieira
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP, 13565-905, Brazil
| | - Andre Rodrigues
- Departamento de Bioquímica e Microbiologia, Universidade Estadual Paulista (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
20
|
Riding with the ants. Persoonia - Molecular Phylogeny and Evolution of Fungi 2016; 38:81-99. [PMID: 29151628 PMCID: PMC5645189 DOI: 10.3767/003158517x693417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022]
Abstract
Isolates of Teratosphaeriaceae have frequently been found in the integument of attine ants, proving to be common and diverse in this microenvironment. The LSU phylogeny of the ant-isolated strains studied revealed that they cluster in two main lineages. The first was associated with the genus Xenopenidiella whereas the other represented two ant-isolated lineages sister to the taxa Penidiella aggregata and P. drakensbergensis, which are allocated to the new genus Penidiellomyces. The genus Penidiella is limited to the lineage containing P. columbiana, which is not congeneric with Penidiellomyces or Penidiellopsis, nor with Simplicidiella, a novel genus introduced here to accommodate a strain isolated from ants. For species level analysis, the final 26 aligned sequences of the ITS (498 characters), cmdA (389 characters), tef1 (342 characters) and tub2 (446 characters) gene regions lead to the introduction of six new species in Xenopenidiella, and one in respectively Penidiellopsis and Simplicidiella. The species described in this study were distinguished by the combination of morphological and phylogenetic data. Novelties on the integument of leaf-cutting ants from Brazil include: Penidiellopsis ramosus, Xenopenidiella clavata, X. formica, X. inflata, X. laevigata, X. nigrescens, X. tarda spp. nov., and Simplicidiella nigra gen. & sp. nov. Beta-tubulin is recommended as primary barcode for the distinction of species in Penidiellopsis, whereas ITS was sufficient to distinguish species of Xenopenidiella.
Collapse
|
21
|
Birnbaum SSL, Gerardo NM. Patterns of Specificity of the Pathogen Escovopsis across the Fungus-Growing Ant Symbiosis. Am Nat 2016; 188:52-65. [PMID: 27322121 DOI: 10.1086/686911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parasites evolve within complex abiotic and biotic environments. Because of this, it is often challenging to ascertain how evolutionary and ecological processes together affect parasite specialization. Here, we use the fungus-growing ant system, which consists of ancient, likely coevolved, complex communities, to explore the ecological and evolutionary forces shaping host-parasite specificity. We use a comparative phylogenetic framework to determine whether patterns of specificity between the fungal parasite Escovopsis and its host fungi at fine phylogenetic scales reflect patterns of specificity at broader phylogenetic levels. In other words, we ask whether parasite specificity across broad host phylogenetic relationships is maintained by specificity toward more closely related hosts. We couple this exploration with manipulations of the community context within which host-parasite interactions are taking place to evaluate how community complexity alters parasite specificity. Regardless of host community complexity, parasites displayed a consistent pattern of specialization on native hosts, that is, those that they are found attacking in nature, with the potential for occasional switching to hosts distantly related to their native hosts. These results suggest that, even within a complex community context, pairwise host and parasite adaptation and coadaptation can be the primary drivers of the evolution and maintenance of parasite specificity.
Collapse
|
22
|
Montoya QV, Meirelles LA, Chaverri P, Rodrigues A. Unraveling Trichoderma species in the attine ant environment: description of three new taxa. Antonie Van Leeuwenhoek 2016; 109:633-51. [PMID: 26885975 DOI: 10.1007/s10482-016-0666-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Abstract
Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science.
Collapse
Affiliation(s)
- Quimi Vidaurre Montoya
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, CEP: 13.506-900, Brazil
| | - Lucas Andrade Meirelles
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, CEP: 13.506-900, Brazil.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, 2112 Plant Sciences Building, College Park, MD, 20742, USA.,Escuela de Biología, Universidad de Costa Rica, Apartado 11501-2060, San Pedro, San José, Costa Rica
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, CEP: 13.506-900, Brazil.
| |
Collapse
|
23
|
Reis BMDS, Silva A, Alvarez MR, Oliveira TBD, Rodrigues A. Fungal communities in gardens of the leafcutter ant Atta cephalotes in forest and cabruca agrosystems of southern Bahia State (Brazil). Fungal Biol 2015; 119:1170-1178. [PMID: 26615740 DOI: 10.1016/j.funbio.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 01/28/2023]
Abstract
Leaf-cutting ants interact with several fungi in addition to the fungal symbiont they cultivate for food. Here, we assessed alien fungal communities in colonies of Atta cephalotes. Fungus garden fragments were sampled from colonies in the Atlantic Rainforest and in a cabruca agrosystem in the state of Bahia (Brazil) in two distinct periods to evaluate whether differences in nest habitat influence the diversity of fungi in the ant colonies. We recovered a total of 403 alien fungi isolates from 628 garden fragments. The prevalent taxa found in these samples were Escovopsis sp. (26 %), Escovopsioides nivea (24 %), and Trichoderma spirale (10.9 %). Fungal diversity was similar between the colonies sampled in both areas suggesting that ants focus on reducing loads of alien fungi in the fungus gardens instead of avoiding specific fungi. However, fungal taxa composition differed between colonies sampled in the two areas and between the sampling periods. These differences are likely explained by the availability of plant substrates available for foraging over habitats and periods. Ordination analysis further supported that sampling period was the main attribute for community structuring but also revealed that additional factors may explain the structuring of fungal communities in colonies of A. cephalotes.
Collapse
Affiliation(s)
| | - Aline Silva
- UESC - Santa Cruz State University, Department of Biological Sciences, Ilhéus, BA 45662-900, Brazil
| | - Martín Roberto Alvarez
- UESC - Santa Cruz State University, Department of Biological Sciences, Ilhéus, BA 45662-900, Brazil
| | - Tássio Brito de Oliveira
- UNESP - São Paulo State University, Department of Biochemistry and Microbiology, Rio Claro, SP 13560-900, Brazil
| | - Andre Rodrigues
- UNESP - São Paulo State University, Department of Biochemistry and Microbiology, Rio Claro, SP 13560-900, Brazil; UNESP - São Paulo State University, Center for the Study of Social Insects, Rio Claro, SP 13560-900, Brazil.
| |
Collapse
|
24
|
Meirelles LA, Solomon SE, Bacci M, Wright AM, Mueller UG, Rodrigues A. Shared Escovopsis parasites between leaf-cutting and non-leaf-cutting ants in the higher attine fungus-growing ant symbiosis. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150257. [PMID: 26473050 PMCID: PMC4593684 DOI: 10.1098/rsos.150257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/07/2015] [Indexed: 05/31/2023]
Abstract
Fungus-gardening (attine) ants grow fungus for food in protected gardens, which contain beneficial, auxiliary microbes, but also microbes harmful to gardens. Among these potentially pathogenic microorganisms, the most consistently isolated are fungi in the genus Escovopsis, which are thought to co-evolve with ants and their cultivar in a tripartite model. To test clade-to-clade correspondence between Escovopsis and ants in the higher attine symbiosis (including leaf-cutting and non-leaf-cutting ants), we amassed a geographically comprehensive collection of Escovopsis from Mexico to southern Brazil, and reconstructed the corresponding Escovopsis phylogeny. Contrary to previous analyses reporting phylogenetic divergence between Escovopsis from leafcutters and Trachymyrmex ants (non-leafcutter), we found no evidence for such specialization; rather, gardens from leafcutters and non-leafcutters genera can sometimes be infected by closely related strains of Escovopsis, suggesting switches at higher phylogenetic levels than previously reported within the higher attine symbiosis. Analyses identified rare Escovopsis strains that might represent biogeographically restricted endemic species. Phylogenetic patterns correspond to morphological variation of vesicle type (hyphal structures supporting spore-bearing cells), separating Escovopsis with phylogenetically derived cylindrical vesicles from ancestral Escovopsis with globose vesicles. The new phylogenetic insights provide an improved basis for future taxonomic and ecological studies of Escovopsis.
Collapse
Affiliation(s)
- Lucas A. Meirelles
- Department of Biochemistry and Microbiology, UNESP—São Paulo State University, Rio Claro, São Paulo, Brazil
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Mauricio Bacci
- Center for the Study of Social Insects, UNESP—São Paulo State University, Rio Claro, São Paulo, Brazil
| | - April M. Wright
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Ulrich G. Mueller
- Department of Biochemistry and Microbiology, UNESP—São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP—São Paulo State University, Rio Claro, São Paulo, Brazil
| |
Collapse
|
25
|
Goffré D, Folgarait PJ. Purpureocillium lilacinum, potential agent for biological control of the leaf-cutting ant Acromyrmex lundii. J Invertebr Pathol 2015. [PMID: 26205173 DOI: 10.1016/j.jip.2015.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many leaf-cutter ant species are well known pests in Latin America, including species of the genera Acromyrmex and Atta. An environmentally friendly strategy to reduce the number of leafcutter ants and avoid indiscriminate use of chemical pesticides is biological control. In this work we evaluated the effectiveness of a strain of the entomopathogen Purpureocillium lilacinum, against worker ants from six Acromyrmex lundii field colonies, after immersions in pure suspensions at a concentration of 1×10(6)conidiaml(-1). Survival of ants treated with P. lilacinum was significantly lower than that recorded in controls, and median lethal time (LT50) was 6-7days. P. lilacinum was responsible for 85.6% (80.6-89.7) of the mortality in inoculated ants, in which we found that the percentage of other entomopathogens that naturally infected ants decreased also, suggesting a good competitive capability of the fungus. Horizontal transmission to non-inoculated ants was also evidenced, given that 58.5% (41.9-64.2) of them died because of P. lilacinum. Moreover, we tested pathogenicity for three concentrations of this strain (1.0×10(4), 10(6) and 10(8)conidiaml(-1)) and found a significantly faster mortality of ants and greater median percentage of infection at 10(8)conidiaml(-1) of P. lilacinum. CL50 value was 2.8×10(5)conidiaml(-1). We thus propose the use of P. lilacinum as a biological control agent of leafcutter ants in crops and plantations.
Collapse
Affiliation(s)
- D Goffré
- Laboratorio de Hormigas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina.
| | - P J Folgarait
- Laboratorio de Hormigas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
26
|
|
27
|
Meirelles LA, Montoya QV, Solomon SE, Rodrigues A. New light on the systematics of fungi associated with attine ant gardens and the description of Escovopsis kreiselii sp. nov. PLoS One 2015; 10:e0112067. [PMID: 25617836 PMCID: PMC4305282 DOI: 10.1371/journal.pone.0112067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022] Open
Abstract
Since the formal description of fungi in the genus Escovopsis in 1990, only a few studies have focused on the systematics of this group. For more than two decades, only two Escovopsis species were described; however, in 2013, three additional Escovopsis species were formally described along with the genus Escovopsioides, both found exclusively in attine ant gardens. During a survey for Escovopsis species in gardens of the lower attine ant Mycetophylax morschi in Brazil, we found four strains belonging to the pink-colored Escovopsis clade. Careful examination of these strains revealed significant morphological differences when compared to previously described species of Escovopsis and Escovopsioides. Based on the type of conidiogenesis (sympodial), as well as morphology of conidiogenous cells (percurrent), non-vesiculated conidiophores, and DNA sequences, we describe the four new strains as a new species, Escovopsis kreiselii sp. nov. Phylogenetic analyses using three nuclear markers (Large subunit RNA; translation elongation factor 1-alpha; and internal transcribed spacer) from the new strains as well as available sequences in public databases confirmed that all known fungi infecting attine ant gardens comprise a monophyletic group within the Hypocreaceae family, with very diverse morphological characteristics. Specifically, Escovopsis kreiselii is likely associated with gardens of lower-attine ants and its pathogenicity remains uncertain.
Collapse
Affiliation(s)
- Lucas A. Meirelles
- Department of Biochemistry and Microbiology, UNESP Univ Estadual Paulista, Rio Claro, SP, Brazil
| | - Quimi V. Montoya
- Department of Biochemistry and Microbiology, UNESP Univ Estadual Paulista, Rio Claro, SP, Brazil
| | - Scott E. Solomon
- Department of Biosciences, Rice University, Houston, TX, United States of America
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP Univ Estadual Paulista, Rio Claro, SP, Brazil
- * E-mail:
| |
Collapse
|
28
|
Masiulionis VE, Cabello MN, Seifert KA, Rodrigues A, Pagnocca FC. Escovopsis trichodermoides sp. nov., isolated from a nest of the lower attine ant Mycocepurus goeldii. Antonie van Leeuwenhoek 2015; 107:731-40. [PMID: 25576160 DOI: 10.1007/s10482-014-0367-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
Currently, five species are formally described in Escovopsis, a specialized mycoparasitic genus of fungus gardens of attine ants (Hymenoptera: Formicidae: tribe Attini). Four species were isolated from leaf-cutting ants in Brazil, including Escovopsis moelleri and Escovopsis microspora from nests of Acromyrmex subterraneus molestans, Escovopsis weberi from a nest of Atta sp. and Escovopsis lentecrescens from a nest of Acromyrmex subterraneus subterraneus. The fifth species, Escovopsis aspergilloides was isolated from a nest of the higher attine ant Trachymyrmex ruthae from Trinidad. Here, we describe a new species, Escovopsis trichodermoides isolated from a fungus garden of the lower attine ant Mycocepurus goeldii, which differs from the five other species by highly branched, trichoderma-like conidiophores lacking swollen vesicles, with reduced conidiogenous cells and distinctive conidia morphology. Phylogenetic analyses based on partial tef1 gene sequences support the distinctiveness of this species. A portion of the internal transcribed spacers of the nuclear rDNA was sequenced to serve as a DNA barcode. Future molecular and morphological studies in this group of fungi will certainly unravel the taxonomic diversity of Escovopsis associated with fungus-growing ants.
Collapse
Affiliation(s)
- Virginia E Masiulionis
- Centro de Estudos de Insetos Sociais, Instituto de Biociências, UNESP - Univ Estadual Paulista, Campus de Rio Claro, Rio Claro, SP, 13506-900, Brazil,
| | | | | | | | | |
Collapse
|