1
|
Groulx-Boivin E, Oliveira-Carneiro A, Carlson H, Floer A, Kirton A, Mah J, Saint-Martin C, La Piana R, Oskoui M. Macrostructural Brain Abnormalities in Spinal Muscular Atrophy: A Case-Control Study. Neurol Genet 2024; 10:e200193. [PMID: 39308455 PMCID: PMC11415185 DOI: 10.1212/nxg.0000000000200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Background and Objectives Most individuals with spinal muscular atrophy (SMA) on disease-modifying therapies continue to have chronic motor impairment. Insights into brain involvement in SMA may open new pathways for adjunctive therapies to optimize outcomes. We aimed to characterize macrostructural brain abnormalities detected by MRI in individuals with SMA compared with peer controls. Methods We conducted a cross-sectional case-control study of children and adults with a confirmed genetic diagnosis of 5q SMA, and peer controls matched by age and sex. Brain MRIs acquired on a 3T MRI scanner through a standardized research protocol were reviewed to qualitatively assess the presence of macrostructural changes. The primary outcome was the presence of any structural brain anomaly on MRI. In addition, the total volume of each participant's lateral ventricles was quantified by volumetry using MRIcron. Genetic and clinical variables, including SMN2 copy number and motor function (Hammersmith Functional Motor Scale Expanded and Revised Upper Limb Module scores), were then correlated with neuroimaging findings. Results A total of 42 participants completed the study (mean age 17.4, range 7-40; 67% male). Of the 21 individuals with 5q SMA, 9 (43%) had macrostructural brain abnormalities identified on MRI compared with 2 of 21 (10%) peer controls (odds ratio 7.1, 95% confidence interval 1.4-34.0). In patients with SMA, the most common structural changes were widening of the arachnoid spaces (n = 4) and ventriculomegaly (n = 4). Individuals with SMA had larger median lateral ventricular volume than their normally developing peers (9.3 mL, interquartile range [IQR] 5.5-13.1 vs 5.3 mL, IQR 3.8-9.8; p = 0.034). Structural brain abnormalities were more frequent in those with 2 SMN2 copies (3/5, 60%) compared with 3 or 4 SMN2 copies (4/10, 40% and 2/6, 33% respectively), not reaching significance. We found no association between structural changes and motor function scores. Discussion Individuals with SMA have higher rates of macrostructural brain abnormalities than their neurotypical peers, suggesting CNS involvement in SMA. Understanding changes in the brain architecture of the SMA population can inform the development of adjunct therapies targeting the CNS and potentially guide rehabilitation strategies.
Collapse
Affiliation(s)
- Emilie Groulx-Boivin
- From the Departments of Pediatrics and Neurology and Neurosurgery (E.G.-B., M.O.), Montreal Children's Hospital, McGill University; Research Institute (A.O.-C., M.O.), McGill University Health Centre, Montreal, Quebec; Alberta Children's Hospital Research Institute (H.C., A.F., A.K., J.M.); Department of Pediatrics (H.C., A.F., A.K., J.M.), Cumming School of Medicine, University of Calgary, Alberta; Division of Pediatric Medical Imaging (C.S.-M.), Department of Radiology, Montreal Children's Hospital; Department of Neurology and Neurosurgery (R.L.P.), Montreal Neurological Institute; and Department of Diagnostic Radiology (R.L.P.), McGill University, Montreal, Quebec, Canada
| | - Andrea Oliveira-Carneiro
- From the Departments of Pediatrics and Neurology and Neurosurgery (E.G.-B., M.O.), Montreal Children's Hospital, McGill University; Research Institute (A.O.-C., M.O.), McGill University Health Centre, Montreal, Quebec; Alberta Children's Hospital Research Institute (H.C., A.F., A.K., J.M.); Department of Pediatrics (H.C., A.F., A.K., J.M.), Cumming School of Medicine, University of Calgary, Alberta; Division of Pediatric Medical Imaging (C.S.-M.), Department of Radiology, Montreal Children's Hospital; Department of Neurology and Neurosurgery (R.L.P.), Montreal Neurological Institute; and Department of Diagnostic Radiology (R.L.P.), McGill University, Montreal, Quebec, Canada
| | - Helen Carlson
- From the Departments of Pediatrics and Neurology and Neurosurgery (E.G.-B., M.O.), Montreal Children's Hospital, McGill University; Research Institute (A.O.-C., M.O.), McGill University Health Centre, Montreal, Quebec; Alberta Children's Hospital Research Institute (H.C., A.F., A.K., J.M.); Department of Pediatrics (H.C., A.F., A.K., J.M.), Cumming School of Medicine, University of Calgary, Alberta; Division of Pediatric Medical Imaging (C.S.-M.), Department of Radiology, Montreal Children's Hospital; Department of Neurology and Neurosurgery (R.L.P.), Montreal Neurological Institute; and Department of Diagnostic Radiology (R.L.P.), McGill University, Montreal, Quebec, Canada
| | - Amalia Floer
- From the Departments of Pediatrics and Neurology and Neurosurgery (E.G.-B., M.O.), Montreal Children's Hospital, McGill University; Research Institute (A.O.-C., M.O.), McGill University Health Centre, Montreal, Quebec; Alberta Children's Hospital Research Institute (H.C., A.F., A.K., J.M.); Department of Pediatrics (H.C., A.F., A.K., J.M.), Cumming School of Medicine, University of Calgary, Alberta; Division of Pediatric Medical Imaging (C.S.-M.), Department of Radiology, Montreal Children's Hospital; Department of Neurology and Neurosurgery (R.L.P.), Montreal Neurological Institute; and Department of Diagnostic Radiology (R.L.P.), McGill University, Montreal, Quebec, Canada
| | - Adam Kirton
- From the Departments of Pediatrics and Neurology and Neurosurgery (E.G.-B., M.O.), Montreal Children's Hospital, McGill University; Research Institute (A.O.-C., M.O.), McGill University Health Centre, Montreal, Quebec; Alberta Children's Hospital Research Institute (H.C., A.F., A.K., J.M.); Department of Pediatrics (H.C., A.F., A.K., J.M.), Cumming School of Medicine, University of Calgary, Alberta; Division of Pediatric Medical Imaging (C.S.-M.), Department of Radiology, Montreal Children's Hospital; Department of Neurology and Neurosurgery (R.L.P.), Montreal Neurological Institute; and Department of Diagnostic Radiology (R.L.P.), McGill University, Montreal, Quebec, Canada
| | - Jean Mah
- From the Departments of Pediatrics and Neurology and Neurosurgery (E.G.-B., M.O.), Montreal Children's Hospital, McGill University; Research Institute (A.O.-C., M.O.), McGill University Health Centre, Montreal, Quebec; Alberta Children's Hospital Research Institute (H.C., A.F., A.K., J.M.); Department of Pediatrics (H.C., A.F., A.K., J.M.), Cumming School of Medicine, University of Calgary, Alberta; Division of Pediatric Medical Imaging (C.S.-M.), Department of Radiology, Montreal Children's Hospital; Department of Neurology and Neurosurgery (R.L.P.), Montreal Neurological Institute; and Department of Diagnostic Radiology (R.L.P.), McGill University, Montreal, Quebec, Canada
| | - Christine Saint-Martin
- From the Departments of Pediatrics and Neurology and Neurosurgery (E.G.-B., M.O.), Montreal Children's Hospital, McGill University; Research Institute (A.O.-C., M.O.), McGill University Health Centre, Montreal, Quebec; Alberta Children's Hospital Research Institute (H.C., A.F., A.K., J.M.); Department of Pediatrics (H.C., A.F., A.K., J.M.), Cumming School of Medicine, University of Calgary, Alberta; Division of Pediatric Medical Imaging (C.S.-M.), Department of Radiology, Montreal Children's Hospital; Department of Neurology and Neurosurgery (R.L.P.), Montreal Neurological Institute; and Department of Diagnostic Radiology (R.L.P.), McGill University, Montreal, Quebec, Canada
| | - Roberta La Piana
- From the Departments of Pediatrics and Neurology and Neurosurgery (E.G.-B., M.O.), Montreal Children's Hospital, McGill University; Research Institute (A.O.-C., M.O.), McGill University Health Centre, Montreal, Quebec; Alberta Children's Hospital Research Institute (H.C., A.F., A.K., J.M.); Department of Pediatrics (H.C., A.F., A.K., J.M.), Cumming School of Medicine, University of Calgary, Alberta; Division of Pediatric Medical Imaging (C.S.-M.), Department of Radiology, Montreal Children's Hospital; Department of Neurology and Neurosurgery (R.L.P.), Montreal Neurological Institute; and Department of Diagnostic Radiology (R.L.P.), McGill University, Montreal, Quebec, Canada
| | - Maryam Oskoui
- From the Departments of Pediatrics and Neurology and Neurosurgery (E.G.-B., M.O.), Montreal Children's Hospital, McGill University; Research Institute (A.O.-C., M.O.), McGill University Health Centre, Montreal, Quebec; Alberta Children's Hospital Research Institute (H.C., A.F., A.K., J.M.); Department of Pediatrics (H.C., A.F., A.K., J.M.), Cumming School of Medicine, University of Calgary, Alberta; Division of Pediatric Medical Imaging (C.S.-M.), Department of Radiology, Montreal Children's Hospital; Department of Neurology and Neurosurgery (R.L.P.), Montreal Neurological Institute; and Department of Diagnostic Radiology (R.L.P.), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Virla F, Turano E, Scambi I, Schiaffino L, Boido M, Mariotti R. Administration of adipose-derived stem cells extracellular vesicles in a murine model of spinal muscular atrophy: effects of a new potential therapeutic strategy. Stem Cell Res Ther 2024; 15:94. [PMID: 38561840 PMCID: PMC10986013 DOI: 10.1186/s13287-024-03693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.
Collapse
Affiliation(s)
- Federica Virla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ermanna Turano
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Schiaffino
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
3
|
Koszewicz M, Ubysz J, Dziadkowiak E, Wieczorek M, Budrewicz S. Motor fiber function in spinal muscular atrophy-analysis of conduction velocity distribution. Front Neurol 2023; 14:1305497. [PMID: 38192575 PMCID: PMC10773903 DOI: 10.3389/fneur.2023.1305497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Objectives The motor neuron survival protein, which is deficient in spinal muscular atrophy (SMA), performs numerous cellular functions. Currently, SMA is believed to be a multi-organ disease, including lesion of various structures of the central and peripheral nervous systems. Motor nerve damage, especially in milder SMA types, is controversial. This prompted the conduct of the electrophysiological studies in adults with SMA types 2 and 3 presented in this paper. Methods The study group consisted of 44 adult patients with SMA types 2 and 3. All patients underwent neurological examination with Hammersmith Functional Motor Scale-Expanded (HFMSE) assessment. Standard electrophysiological studies in the ulnar nerve and conduction velocity distribution (CVD) tests were performed in all patients and controls. Results A prolongation of the distal latency and lowering of the motor potential amplitude with no changes in CVD were found in the whole patient group. There were no dependencies on the number of gene copies. Patients with low HFSME value had slower standard conduction velocity, CVD in upper and median quartiles, and narrower CVD spread; in milder SMA, CVD spread was greater than in controls. Interpretation The significant reduction in motor response amplitude in SMA seems to be primarily related to motor neuron loss and directly proportional to its severity. The coexisting rearrangement in the peripheral nerve structure is present in SMA, and this could be partially caused by a coexisting demyelinating process. Nerve remodeling mainly affects large fibers and occurs in more severe SMA types with significant disability.
Collapse
Affiliation(s)
| | - Jakub Ubysz
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Malgorzata Wieczorek
- Faculty of Earth Sciences and Environmental Management, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
4
|
Cottam NC, Bamfo T, Harrington MA, Charvet CJ, Hekmatyar K, Tulin N, Sun J. Cerebellar structural, astrocytic, and neuronal abnormalities in the SMNΔ7 mouse model of spinal muscular atrophy. Brain Pathol 2023; 33:e13162. [PMID: 37218083 PMCID: PMC10467044 DOI: 10.1111/bpa.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.
Collapse
Affiliation(s)
- Nicholas C. Cottam
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | - Tiffany Bamfo
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | | | - Christine J. Charvet
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
- Department of Anatomy, Physiology and PharmacologyAuburn UniversityAuburnAlabamaUSA
- Department of PsychologyDelaware State UniversityDoverDEUnited States
| | - Khan Hekmatyar
- Center for Biomedical and Brain ImagingUniversity of DelawareNewarkDelawareUSA
- Bioimaging Research Center for Biomedical and Brain ImagingUniversity of GeorgiaAthensGeorgiaUSA
| | - Nikita Tulin
- Department of NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Jianli Sun
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
| |
Collapse
|
5
|
Hirayama M, Ayaki T, Yoshii D, Yasuda K, Takahashi R. Utility of Skeletal Muscle CT in Diagnosing Spinal Muscular Atrophy Type 3 in a Patient Who Had Been Undiagnosed for 50 Years. Cureus 2023; 15:e38709. [PMID: 37292524 PMCID: PMC10246512 DOI: 10.7759/cureus.38709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
A 69-year-old woman presented with progressive limb weakness lasting 50 years. She denied any congenital disorders or a family history of neuromuscular disease. At ages 29, 46, and 58 years, she underwent hospitalization and evaluations including electromyogram (EMG) and muscle biopsy, but the results were inconclusive. As a result, she received a tentative diagnosis of myopathy of unknown etiology. However, at the age of 69 years, a computed tomography (CT) scan of her skeletal muscles revealed severe involvement of the triceps brachii, iliopsoas, and gastrocnemius muscles, along with preservation of the biceps brachii, gluteus maximus, and tibialis anterior muscles, which was consistent with spinal muscular atrophy (SMA). Finally, genetic testing revealed the deletion of the survival of the motor neuron 1 (SMN1) gene, confirming the diagnosis of SMA type 3. As our case suggests, SMA patients with prolonged disease duration could be underdiagnosed even after EMG and muscle biopsy. A skeletal CT scan could be useful for the diagnosis of SMA patients compared with MRI.
Collapse
Affiliation(s)
| | - Takashi Ayaki
- Neurology, Kyoto University Graduate School of Medicine, Kyoto, JPN
| | - Daisuke Yoshii
- Neurology, Kyoto University Graduate School of Medicine, Kyoto, JPN
| | - Ken Yasuda
- Neurology, Kyoto University Graduate School of Medicine, Kyoto, JPN
| | | |
Collapse
|
6
|
Agonist of growth hormone-releasing hormone improves the disease features of spinal muscular atrophy mice. Proc Natl Acad Sci U S A 2023; 120:e2216814120. [PMID: 36603028 PMCID: PMC9926281 DOI: 10.1073/pnas.2216814120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe autosomal recessive neuromuscular disease affecting children and young adults, caused by mutations of the survival motor neuron 1 gene (SMN1). SMA is characterized by the degeneration of spinal alpha motor neurons (αMNs), associated with muscle paralysis and atrophy, as well as other peripheral alterations. Both growth hormone-releasing hormone (GHRH) and its potent agonistic analog, MR-409, exert protective effects on muscle atrophy, cardiomyopathies, ischemic stroke, and inflammation. In this study, we aimed to assess the protective role of MR-409 in SMNΔ7 mice, a widely used model of SMA. Daily subcutaneous treatment with MR-409 (1 or 2 mg/kg), from postnatal day 2 (P2) to euthanization (P12), increased body weight and improved motor behavior in SMA mice, particularly at the highest dose tested. In addition, MR-409 reduced atrophy and ameliorated trophism in quadriceps and gastrocnemius muscles, as determined by an increase in fiber size, as well as upregulation of myogenic genes and inhibition of proteolytic pathways. MR-409 also promoted the maturation of neuromuscular junctions, by reducing multi-innervated endplates and increasing those mono-innervated. Finally, treatment with MR-409 delayed αMN death and blunted neuroinflammation in the spinal cord of SMA mice. In conclusion, the present study demonstrates that MR-409 has protective effects in SMNΔ7 mice, suggesting that GHRH agonists are promising agents for the treatment of SMA, possibly in combination with SMN-dependent strategies.
Collapse
|
7
|
Woschitz V, Mei I, Hedlund E, Murray LM. Mouse models of SMA show divergent patterns of neuronal vulnerability and resilience. Skelet Muscle 2022; 12:22. [PMID: 36089582 PMCID: PMC9465884 DOI: 10.1186/s13395-022-00305-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Spinal muscular atrophy (SMA) is a form of motor neuron disease affecting primarily children characterised by the loss of lower motor neurons (MNs). Breakdown of the neuromuscular junctions (NMJs) is an early pathological event in SMA. However, not all motor neurons are equally vulnerable, with some populations being lost early in the disease while others remain intact at the disease end-stage. A thorough understanding of the basis of this selective vulnerability will give critical insight into the factors which prohibit pathology in certain motor neuron populations and consequently help identify novel neuroprotective strategies. Methods To retrieve a comprehensive understanding of motor neuron susceptibility in SMA, we mapped NMJ pathology in 20 muscles from the Smn2B/- SMA mouse model and cross-compared these data with published data from three other commonly used mouse models. To gain insight into the molecular mechanisms regulating selective resilience and vulnerability, we analysed published RNA sequencing data acquired from differentially vulnerable motor neurons from two different SMA mouse models. Results In the Smn2B/- mouse model of SMA, we identified substantial NMJ loss in the muscles from the core, neck, proximal hind limbs and proximal forelimbs, with a marked reduction in denervation in the distal limbs and head. Motor neuron cell body loss was greater at T5 and T11 compared with L5. We subsequently show that although widespread denervation is observed in each SMA mouse model (with the notable exception of the Taiwanese model), all models have a distinct pattern of selective vulnerability. A comparison of previously published data sets reveals novel transcripts upregulated with a disease in selectively resistant motor neurons, including genes involved in axonal transport, RNA processing and mitochondrial bioenergetics. Conclusions Our work demonstrates that the Smn2B/- mouse model shows a pattern of selective vulnerability which bears resemblance to the regional pathology observed in SMA patients. We found drastic differences in patterns of selective vulnerability across the four SMA mouse models, which is critical to consider during experimental design. We also identified transcript groups that potentially contribute to the protection of certain motor neurons in SMA mouse models. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00305-9.
Collapse
|
8
|
Januel C, Menduti G, Mamchaoui K, Martinat C, Artero R, Konieczny P, Boido M. Moxifloxacin rescues SMA phenotypes in patient-derived cells and animal model. Cell Mol Life Sci 2022; 79:441. [PMID: 35864358 PMCID: PMC9304069 DOI: 10.1007/s00018-022-04450-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
Spinal muscular atrophy (SMA) is a genetic disease resulting in the loss of α-motoneurons followed by muscle atrophy. It is caused by knock-out mutations in the survival of motor neuron 1 (SMN1) gene, which has an unaffected, but due to preferential exon 7 skipping, only partially functional human-specific SMN2 copy. We previously described a Drosophila-based screening of FDA-approved drugs that led us to discover moxifloxacin. We showed its positive effect on the SMN2 exon 7 splicing in SMA patient-derived skin cells and its ability to increase the SMN protein level. Here, we focus on moxifloxacin's therapeutic potential in additional SMA cellular and animal models. We demonstrate that moxifloxacin rescues the SMA-related molecular and phenotypical defects in muscle cells and motoneurons by improving the SMN2 splicing. The consequent increase of SMN levels was higher than in case of risdiplam, a potent exon 7 splicing modifier, and exceeded the threshold necessary for a survival improvement. We also demonstrate that daily subcutaneous injections of moxifloxacin in a severe SMA murine model reduces its characteristic neuroinflammation and increases the SMN levels in various tissues, leading to improved motor skills and extended lifespan. We show that moxifloxacin, originally used as an antibiotic, can be potentially repositioned for the SMA treatment.
Collapse
Affiliation(s)
- Camille Januel
- INSERM/UEVE, UMR 861, Université Paris Saclay, I-STEM, AFM-Telethon, Rue Henri Desbruères, 91100, Corbeil-Essonnes, France
| | - Giovanna Menduti
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Regione Gonzole 10, Orbassano, 10043, Turin, TO, Italy
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Cecile Martinat
- INSERM/UEVE, UMR 861, Université Paris Saclay, I-STEM, AFM-Telethon, Rue Henri Desbruères, 91100, Corbeil-Essonnes, France.
| | - Ruben Artero
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Street Dr. Moliner, 50, 46100, Burjasot, Valencia, Spain.
- Translational Genomics Group, Incliva Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010, Valencia, Spain.
| | - Piotr Konieczny
- University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Street Dr. Moliner, 50, 46100, Burjasot, Valencia, Spain
- Translational Genomics Group, Incliva Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010, Valencia, Spain
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Regione Gonzole 10, Orbassano, 10043, Turin, TO, Italy
| |
Collapse
|
9
|
Activation of the Hepcidin-Ferroportin1 pathway in the brain and astrocytic-neuronal crosstalk to counteract iron dyshomeostasis during aging. Sci Rep 2022; 12:11724. [PMID: 35810203 PMCID: PMC9271044 DOI: 10.1038/s41598-022-15812-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
During physiological aging, iron accumulates in the brain with a preferential distribution in regions that are more vulnerable to age-dependent neurodegeneration such as the cerebral cortex and hippocampus. In the brain of aged wild-type mice, alteration of the Brain Blood Barrier integrity, together with a marked inflammatory and oxidative state lead to increased permeability and deregulation of brain-iron homeostasis. In this context, we found that iron accumulation drives Hepcidin upregulation in the brain and the inhibition of the iron exporter Ferroportin1. We also observed the transcription and the increase of NCOA4 levels in the aged brain together with the increase of light-chain enriched ferritin heteropolymers, more efficient as iron chelators. Interestingly, in cerebral cortex and hippocampus, Ferroportin1 is mainly expressed by astrocytes, while the iron storage protein ferritin light-chain by neurons. This differential distribution suggests that astrocytes mediate iron shuttling in the nervous tissue and that neurons are unable to metabolize it. Our findings highlight for the first time that Hepcidin/Ferroportin1 axis and NCOA4 are directly involved in iron metabolism in mice brain during physiological aging as a response to a higher brain iron influx.
Collapse
|
10
|
Bersani M, Rizzuti M, Pagliari E, Garbellini M, Saccomanno D, Moulton HM, Bresolin N, Comi GP, Corti S, Nizzardo M. Cell-penetrating peptide-conjugated Morpholino rescues SMA in a symptomatic preclinical model. Mol Ther 2022; 30:1288-1299. [PMID: 34808387 PMCID: PMC8899506 DOI: 10.1016/j.ymthe.2021.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/07/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. Recently approved SMA therapies have transformed a deadly disease into a survivable one, but these compounds show a wide spectrum of clinical response and effective rescue only in the early stages of the disease. Therefore, safe, symptomatic-suitable, non-invasive treatments with high clinical impact across different phenotypes are urgently needed. We conjugated antisense oligonucleotides with Morpholino (MO) chemistry, which increase SMN protein levels, to cell-penetrating peptides (CPPs) for better cellular distribution. Systemically administered MOs linked to r6 and (RXRRBR)2XB peptides crossed the blood-brain barrier and increased SMN protein levels remarkably, causing striking improvement of survival, neuromuscular function, and neuropathology, even in symptomatic SMA animals. Our study demonstrates that MO-CPP conjugates can significantly expand the therapeutic window through minimally invasive systemic administration, opening the path for clinical applications of this strategy.
Collapse
Affiliation(s)
- Margherita Bersani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Mafalda Rizzuti
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Elisa Pagliari
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Manuela Garbellini
- Healthcare Professionals Department - Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Domenica Saccomanno
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy,Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy,Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy,Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy,Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.
| |
Collapse
|
11
|
Boido M, De Amicis E, Mareschi K, Fagioli F, Vercelli A. Organotypic spinal cord cultures: An <em>in vitro</em> 3D model to preliminary screen treatments for spinal muscular atrophy. Eur J Histochem 2021; 65. [PMID: 34734684 PMCID: PMC8586821 DOI: 10.4081/ejh.2021.3294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease affecting children, due to mutation/deletion of survival motor neuron 1 (SMN1) gene. The lack of functional protein SMN determines motor neuron (MN) degeneration and skeletal muscle atrophy, leading to premature death due to respiratory failure. Nowadays, the Food and Drug Administration approved the administration of three drugs, aiming at increasing the SMN production: although assuring noteworthy results, all these therapies show some non-negligible limitations, making essential the identification of alternative/synergistic therapeutic strategies. To offer a valuable in vitro experimental model for easily performing preliminary screenings of alternative promising treatments, we optimized an organotypic spinal cord culture (derived from murine spinal cord slices), which well recapitulates the pathogenetic features of SMA. Then, to validate the model, we tested the effects of human mesenchymal stem cells (hMSCs) or murine C2C12 cells (a mouse skeletal myoblast cell line) conditioned media: 1/3 of conditioned medium (obtained from either hMSCs or C2C12 cells) was added to the conventional medium of the organotypic culture and maintained for 7 days. Then the slices were fixed and immunoreacted to evaluate the MN survival. In particular we observed that the C2C12 and hMSCs conditioned media positively influenced the MN soma size and the axonal length respectively, without modulating the glial activation. These data suggest that trophic factors released by MSCs or muscular cells can exert beneficial effects, by acting on different targets, and confirm the reliability of the model. Overall, we propose the organotypic spinal cord culture as an excellent tool to preliminarily screen molecules and drugs before moving to in vivo models, in this way partly reducing the use of animals and the costs.
Collapse
Affiliation(s)
- Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Turin.
| | - Elena De Amicis
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Turin.
| | - Katia Mareschi
- Department of Public Health and Paediatrics, University of Turin; Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin.
| | - Franca Fagioli
- Department of Public Health and Paediatrics, University of Turin; Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin.
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Turin.
| |
Collapse
|
12
|
Malacarne C, Galbiati M, Giagnorio E, Cavalcante P, Salerno F, Andreetta F, Cagnoli C, Taiana M, Nizzardo M, Corti S, Pensato V, Venerando A, Gellera C, Fenu S, Pareyson D, Masson R, Maggi L, Dalla Bella E, Lauria G, Mantegazza R, Bernasconi P, Poletti A, Bonanno S, Marcuzzo S. Dysregulation of Muscle-Specific MicroRNAs as Common Pathogenic Feature Associated with Muscle Atrophy in ALS, SMA and SBMA: Evidence from Animal Models and Human Patients. Int J Mol Sci 2021; 22:ijms22115673. [PMID: 34073630 PMCID: PMC8198536 DOI: 10.3390/ijms22115673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023] Open
Abstract
Motor neuron diseases (MNDs) are neurodegenerative disorders characterized by upper and/or lower MN loss. MNDs include amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). Despite variability in onset, progression, and genetics, they share a common skeletal muscle involvement, suggesting that it could be a primary site for MND pathogenesis. Due to the key role of muscle-specific microRNAs (myomiRs) in skeletal muscle development, by real-time PCR we investigated the expression of miR-206, miR-133a, miR-133b, and miR-1, and their target genes, in G93A-SOD1 ALS, Δ7SMA, and KI-SBMA mouse muscle during disease progression. Further, we analyzed their expression in serum of SOD1-mutated ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets, in ALS, SMA, and SBMA mice, revealing a common pathogenic feature associated with muscle impairment. A similar myomiR signature was observed in patients’ sera. In particular, an up-regulation of miR-206 was identified in both mouse muscle and serum of human patients. Our overall findings highlight the role of myomiRs as promising biomarkers in ALS, SMA, and SBMA. Further investigations are needed to explore the potential of myomiRs as therapeutic targets for MND treatment.
Collapse
Affiliation(s)
- Claudia Malacarne
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
- PhD Program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy;
| | - Eleonora Giagnorio
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
- PhD Program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Paola Cavalcante
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
| | - Franco Salerno
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
| | - Francesca Andreetta
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
| | - Cinza Cagnoli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; (M.T.); (S.C.)
| | - Monica Nizzardo
- Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; (M.T.); (S.C.)
- Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (V.P.); (A.V.); (C.G.)
| | - Anna Venerando
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (V.P.); (A.V.); (C.G.)
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (V.P.); (A.V.); (C.G.)
| | - Silvia Fenu
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.F.); (D.P.)
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.F.); (D.P.)
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Lorenzo Maggi
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
| | - Eleonora Dalla Bella
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (E.D.B.); (G.L.)
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (E.D.B.); (G.L.)
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Renato Mantegazza
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
| | - Pia Bernasconi
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy;
- Correspondence: (A.P.); (S.M.); Tel.: +39-02-5031-8215 (A.P.); Tel.: +39-02-2394-4511 (ext. 4651) (S.M.); Fax: +39-02-70633874 (S.M.)
| | - Silvia Bonanno
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
| | - Stefania Marcuzzo
- Neurology IV–Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (C.M.); (E.G.); (P.C.); (F.S.); (F.A.); (L.M.); (R.M.); (P.B.); (S.B.)
- Correspondence: (A.P.); (S.M.); Tel.: +39-02-5031-8215 (A.P.); Tel.: +39-02-2394-4511 (ext. 4651) (S.M.); Fax: +39-02-70633874 (S.M.)
| |
Collapse
|
13
|
Masson R, Brusa C, Scoto M, Baranello G. Brain, cognition, and language development in spinal muscular atrophy type 1: a scoping review. Dev Med Child Neurol 2021; 63:527-536. [PMID: 33452688 DOI: 10.1111/dmcn.14798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
AIM To summarize the current knowledge on brain involvement in spinal muscular atrophy (SMA) type 1, focusing on brain pathology, cognition, and speech/language development. METHOD A scoping review was performed using the methodology of the Joanna Briggs Institute. Five databases and references from relevant articles were searched up to December 2019. Articles were screened on the basis of titles and abstracts. Full-text papers published in peer-reviewed journals in English were selected. RESULTS Nineteen articles met eligibility criteria. Eight case series/reports on brain pathology showed abnormalities in few SMA type 0/1 cases, supported by findings in three post-mortem examinations in mice. Four studies (three case-control, one cross-sectional) on cognition reported contradictory results, with impaired cognitive performances in recent, small groups with SMA type 1. Four studies (three cross-sectional, one observational) on speech/language showed that untreated SMA type 1 patients rarely achieve functional and intelligible speech, with data limited to parent reports/non-formal evaluations. INTERPRETATION Brain involvement is an under-investigated aspect of SMA type 1, requiring further exploration in longitudinal studies. A deeper knowledge of brain involvement would improve the interpretation of clinical phenotypes and the personalization of rehabilitation programmes supporting patients' autonomies and quality of life. Additionally, it may help to define further outcome measures testing the efficacy of current and new developing drugs on this domain. WHAT THIS PAPER ADDS Brain involvement is under-investigated in spinal muscular atrophy (SMA) type 1. Neuropathological data suggest progressive brain involvement in severe forms of SMA. Impaired cognitive performances are reported in small groups with SMA type 1. Data on language in those with SMA type 1 are limited to parent reports and non-formal assessments.
Collapse
Affiliation(s)
- Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Brusa
- The Dubowitz Neuromuscular Centre, UCL NIHR GOSH Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy.,Department of Public Health and Paediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| | - Mariacristina Scoto
- The Dubowitz Neuromuscular Centre, UCL NIHR GOSH Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Giovanni Baranello
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,The Dubowitz Neuromuscular Centre, UCL NIHR GOSH Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
14
|
Oh B, Wu Y, Swaminathan V, Lam V, Ding J, George PM. Modulating the Electrical and Mechanical Microenvironment to Guide Neuronal Stem Cell Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002112. [PMID: 33854874 PMCID: PMC8025039 DOI: 10.1002/advs.202002112] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/08/2020] [Indexed: 05/27/2023]
Abstract
The application of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine can be limited by the prolonged times required for functional human neuronal differentiation and traditional 2D culture techniques. Here, a conductive graphene scaffold (CGS) to modulate mechanical and electrical signals to promote human iPSC-derived neurons is presented. The soft CGS with cortex-like stiffness (≈3 kPa) and electrical stimulation (±800 mV/100 Hz for 1 h) incurs a fivefold improvement in the rate (14d) of generating iPSC-derived neurons over some traditional protocols, with an increase in mature cellular markers and electrophysiological characteristics. Consistent with other culture conditions, it is found that the pro-neurogenic effects of mechanical and electrical stimuli rely on RhoA/ROCK signaling and de novo ciliary neurotrophic factor (CNTF) production respectively. Thus, the CGS system creates a combined physical and continuously modifiable, electrical niche to efficiently and quickly generate iPSC-derived neurons.
Collapse
Affiliation(s)
- Byeongtaek Oh
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCA94305USA
| | - Yu‐Wei Wu
- Department of NeurosurgeryStanford University School of MedicineStanfordCA94305USA
- Institute of Molecular BiologyAcademia SinicaTaiwan
| | - Vishal Swaminathan
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCA94305USA
| | - Vivek Lam
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCA94305USA
| | - Jun Ding
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCA94305USA
- Department of NeurosurgeryStanford University School of MedicineStanfordCA94305USA
| | - Paul M. George
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCA94305USA
| |
Collapse
|
15
|
Tharaneetharan A, Cole M, Norman B, Romero NC, Wooltorton JRA, Harrington MA, Sun J. Functional Abnormalities of Cerebellum and Motor Cortex in Spinal Muscular Atrophy Mice. Neuroscience 2020; 452:78-97. [PMID: 33212215 DOI: 10.1016/j.neuroscience.2020.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating genetic neuromuscular disease. Diffuse neuropathology has been reported in SMA patients and mouse models, however, functional changes in brain regions have not been studied. In the SMNΔ7 mouse model, we identified three types of differences in neuronal function in the cerebellum and motor cortex from two age groups: P7-9 (P7) and P11-14 (P11). Microelectrode array studies revealed significantly lower spontaneous firing and network activity in the cerebellum of SMA mice in both age groups, but it was more profound in the P11 group. In the motor cortex, however, neural activity was not different in either age group. Whole-cell patch-clamp was used to study the function of output neurons in both brain regions. In cerebellar Purkinje cells (PCs) of SMA mice, the input resistance was larger at P7, while capacitance was smaller at P11. In the motor cortex, no difference was observed in the passive membrane properties of layer V pyramidal neurons (PN5s). The action potential threshold of both types of output neurons was depolarized in the P11 group. We also observed lower spontaneous excitatory and inhibitory synaptic activity in PN5s and PCs respectively from P11 SMA mice. Overall, these differences suggest functional alterations in the neural network in these motor regions that change during development. Our results also suggest that neuronal dysfunction in these brain regions may contribute to the pathology of SMA. Comprehensive treatment strategies may consider motor regions outside of the spinal cord for better outcomes.
Collapse
Affiliation(s)
- Arumugarajah Tharaneetharan
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Madison Cole
- Department of Psychology, Washington College, Chestertown, MD, USA
| | - Brandon Norman
- Department of Biology, Salisbury University, Salisbury, MD, USA
| | - Nayeli C Romero
- Department of Agriculture and Natural Science, Delaware State University, Dover, DE, USA
| | - Julian R A Wooltorton
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Melissa A Harrington
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Jianli Sun
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA.
| |
Collapse
|
16
|
Das S, Nalini A, Laxmi TR, Raju TR. ALS-CSF-induced structural changes in spinal motor neurons of rat pups cause deficits in motor behaviour. Exp Brain Res 2020; 239:315-327. [PMID: 33170340 DOI: 10.1007/s00221-020-05969-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset, neurodegenerative disease associated with the loss of motor neurons in the spinal cord, brain stem and primary motor cortex. Deficit in the motor function is one of the clinical features of this disease. However, the association between adverse morphological alterations in the spinal motor neurons and motor deficit in sporadic ALS (SALS) is still debated. The present study has sought to investigate the effects of serial intrathecal injections of ALS-CSF into rat pups, at post-natal (P) days 3, 9 and 14, on the motor neuronal (MN) morphology at the cervical and lumbar levels of the spinal cord at P16 and P22. The present study used Cresyl violet and Golgi-Cox staining methods to determine the progressive changes in the morphology of spinal MNs in both cervical and lumbar extensions. The study found a loss of motor neurons in the spinal cord (36% for P16 in cervical and 41.7% in P16 lumbar and 49.57% for P22 cervical and 44.63% for P22 lumbar) and reduced choline acetyl transferase (ChAT) expression after repeated infusion of ALS-CSF. Significant increase in the soma area was also found in ALS-CSF rats (around 21% in P22 cervical and 26.4% in P22 lumbar). Soma hypertrophy was associated with increased dendritic arborization of MNs at both cervical and lumbar levels of the spinal cord. The data also showed a direct correlation between ALS-CSF induced changes in the MN number in the spinal cord and motor behavioral deficits. The loss of MNs, reduced ChAT, changes in soma and dendritic morphology with declined rotarod performance, thus, confirming the pathological phenotypes as seen in ALS patients.
Collapse
Affiliation(s)
- Sanjay Das
- Department of Neurophysiology, NIMHANS, Hosur Road, Bengaluru, Karnataka, 560 029, India
| | - A Nalini
- Department of Neurology, NIMHANS, Hosur Road, Bengaluru, Karnataka, India
| | - T R Laxmi
- Department of Neurophysiology, NIMHANS, Hosur Road, Bengaluru, Karnataka, 560 029, India.
| | - T R Raju
- Department of Neurophysiology, NIMHANS, Hosur Road, Bengaluru, Karnataka, 560 029, India
| |
Collapse
|
17
|
Pilato CM, Park JH, Kong L, d'Ydewalle C, Valdivia D, Chen KS, Griswold-Prenner I, Sumner CJ. Motor neuron loss in SMA is not associated with somal stress-activated JNK/c-Jun signaling. Hum Mol Genet 2020; 28:3282-3292. [PMID: 31272106 DOI: 10.1093/hmg/ddz150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023] Open
Abstract
A pathological hallmark of spinal muscular atrophy (SMA) is severe motor neuron (MN) loss, which results in muscle weakness and often infantile or childhood mortality. Although it is well established that deficient expression of survival motor neuron (SMN) protein causes SMA, the molecular pathways that execute MN cell death are poorly defined. The c-Jun NH2-terminal kinases (JNKs) are stress-activated kinases with multiple substrates including c-Jun, which can be activated during neuronal injury and neurodegenerative disease leading to neuronal apoptosis. Recently, increased JNK-c-Jun signaling was reported in SMA raising the possibility that JNK inhibitors could be a novel treatment for this disease. We examined JNK-c-Jun activity in SMA mouse and human cultured cells and tissues. Anisomycin treatment of human SMA fibroblasts and sciatic nerve ligation in SMA mice provoked robust phosphorylated-c-Jun (p-c-Jun) expression indicating that SMN-deficiency does not prevent activation of the stress-induced JNK-c-Jun signaling pathway. Despite retained capacity to activate JNK-c-Jun, we observed no basal increase of p-c-Jun levels in SMA compared to control cultured cells, human or mouse spinal cord tissues, or mouse MNs during the period of MN loss in severe SMA model mice. In both controls and SMA, ~50% of α-MN nuclei express p-c-Jun with decreasing expression during the early postnatal period. Together these studies reveal no evidence of stress-activated JNK-c-Jun signaling in MNs of SMA mice or human tissues, but do highlight the important role of JNK-c-Jun activity during normal MN development raising caution about JNK antagonism in this pediatric neuromuscular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Charlotte J Sumner
- Department of Neurology.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Nizzardo M, Taiana M, Rizzo F, Aguila Benitez J, Nijssen J, Allodi I, Melzi V, Bresolin N, Comi GP, Hedlund E, Corti S. Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta Neuropathol 2020; 139:837-853. [PMID: 32065260 PMCID: PMC7181443 DOI: 10.1007/s00401-020-02133-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
In amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), spinal and lower brainstem motor neurons degenerate, but some motor neuron subtypes are spared, including oculomotor neurons (OMNs). The mechanisms responsible for this selective degeneration are largely unknown, but the molecular signatures of resistant and vulnerable motor neurons are distinct and offer clues to neuronal resilience and susceptibility. Here, we demonstrate that healthy OMNs preferentially express Synaptotagmin 13 (SYT13) compared to spinal motor neurons. In end-stage ALS patients, SYT13 is enriched in both OMNs and the remaining relatively resilient spinal motor neurons compared to controls. Overexpression of SYT13 in ALS and SMA patient motor neurons in vitro improves their survival and increases axon lengths. Gene therapy with Syt13 prolongs the lifespan of ALS mice by 14% and SMA mice by 50% by preserving motor neurons and delaying muscle denervation. SYT13 decreases endoplasmic reticulum stress and apoptosis of motor neurons, both in vitro and in vivo. Thus, SYT13 is a resilience factor that can protect motor neurons and a candidate therapeutic target across motor neuron diseases.
Collapse
|
19
|
Valsecchi V, Anzilotti S, Serani A, Laudati G, Brancaccio P, Guida N, Cuomo O, Pignataro G, Annunziato L. miR-206 Reduces the Severity of Motor Neuron Degeneration in the Facial Nuclei of the Brainstem in a Mouse Model of SMA. Mol Ther 2020; 28:1154-1166. [PMID: 32075715 DOI: 10.1016/j.ymthe.2020.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease affecting infants caused by alterations of the survival motor neuron gene, which results in progressive degeneration of motor neurons (MNs). Although an effective treatment for SMA patients has been recently developed, the molecular pathway involved in selective MN degeneration has not been yet elucidated. In particular, miR-206 has been demonstrated to play a relevant role in the regeneration of neuromuscular junction in several MN diseases, and particularly it is upregulated in the quadriceps, tibialis anterior, spinal cord, and serum of SMA mice. In the present paper, we demonstrated that miR-206 was transiently upregulated also in the brainstem of the mouse model of SMA, SMAΔ7, in the early phase of the disease paralleling MN degeneration and was down-regulated in the late symptomatic phase. To prevent this downregulation, we intracerebroventricularly injected miR-206 in SMA pups, demonstrating that miR-206 reduced the severity of SMA pathology, slowing down disease progression, increasing survival rate, and improving behavioral performance of mice. Interestingly, exogenous miRNA-206-induced upregulation caused a reduction of the predicted target sodium calcium exchanger isoform 2, NCX2, one of the main regulators of intracellular [Ca2+] and [Na+]. Therefore, we hypothesized that miR-206 might exert part of its neuroprotective effect modulating NCX2 expression in SMA disease.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy.
| | | | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | | | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy.
| | | |
Collapse
|
20
|
Quinlan KA, Reedich EJ, Arnold WD, Puritz AC, Cavarsan CF, Heckman CJ, DiDonato CJ. Hyperexcitability precedes motoneuron loss in the Smn2B/- mouse model of spinal muscular atrophy. J Neurophysiol 2019; 122:1297-1311. [PMID: 31365319 DOI: 10.1152/jn.00652.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal motoneuron dysfunction and loss are pathological hallmarks of the neuromuscular disease spinal muscular atrophy (SMA). Changes in motoneuron physiological function precede cell death, but how these alterations vary with disease severity and motoneuron maturational state is unknown. To address this question, we assessed the electrophysiology and morphology of spinal motoneurons of presymptomatic Smn2B/- mice older than 1 wk of age and tracked the timing of motor unit loss in this model using motor unit number estimation (MUNE). In contrast to other commonly used SMA mouse models, Smn2B/- mice exhibit more typical postnatal development until postnatal day (P)11 or 12 and have longer survival (~3 wk of age). We demonstrate that Smn2B/- motoneuron hyperexcitability, marked by hyperpolarization of the threshold voltage for action potential firing, was present at P9-10 and preceded the loss of motor units. Using MUNE studies, we determined that motor unit loss in this mouse model occurred 2 wk after birth. Smn2B/- motoneurons were also larger in size, which may reflect compensatory changes taking place during postnatal development. This work suggests that motoneuron hyperexcitability, marked by a reduced threshold for action potential firing, is a pathological change preceding motoneuron loss that is common to multiple models of severe SMA with different motoneuron maturational states. Our results indicate voltage-gated sodium channel activity may be altered in the disease process.NEW & NOTEWORTHY Changes in spinal motoneuron physiologic function precede cell death in spinal muscular atrophy (SMA), but how they vary with maturational state and disease severity remains unknown. This study characterized motoneuron and neuromuscular electrophysiology from the Smn2B/- model of SMA. Motoneurons were hyperexcitable at postnatal day (P)9-10, and specific electrophysiological changes in Smn2B/- motoneurons preceded functional motor unit loss at P14, as determined by motor unit number estimation studies.
Collapse
Affiliation(s)
- K A Quinlan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - E J Reedich
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - W D Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - A C Puritz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C F Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C J DiDonato
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| |
Collapse
|
21
|
Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death Dis 2018; 9:1100. [PMID: 30368521 PMCID: PMC6204135 DOI: 10.1038/s41419-018-1081-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 11/25/2022]
Abstract
Spinal Muscular Atrophy (SMA) is caused by genetic mutations in the SMN1 gene, resulting in drastically reduced levels of Survival of Motor Neuron (SMN) protein. Although SMN is ubiquitously expressed, spinal motor neurons are one of the most affected cell types. Previous studies have identified pathways uniquely activated in SMA motor neurons, including a hyperactivated ER stress pathway, neuronal hyperexcitability, and defective spliceosomes. To investigate why motor neurons are more affected than other neural types, we developed a spinal organoid model of SMA. We demonstrate overt motor neuron degeneration in SMA spinal organoids, and this degeneration can be prevented using a small molecule inhibitor of CDK4/6, indicating that spinal organoids are an ideal platform for therapeutic discovery.
Collapse
|
22
|
Schellino R, Boido M, Borsello T, Vercelli A. Pharmacological c-Jun NH 2-Terminal Kinase (JNK) Pathway Inhibition Reduces Severity of Spinal Muscular Atrophy Disease in Mice. Front Mol Neurosci 2018; 11:308. [PMID: 30233310 PMCID: PMC6131195 DOI: 10.3389/fnmol.2018.00308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neurodegenerative disorder that occurs in early childhood. The disease is caused by the deletion/mutation of the survival motor neuron 1 (SMN1) gene resulting in progressive skeletal muscle atrophy and paralysis, due to the degeneration of spinal motor neurons (MNs). Currently, the cellular and molecular mechanisms underlying MN death are only partly known, although recently it has been shown that the c-Jun NH2-terminal kinase (JNK)-signaling pathway might be involved in the SMA pathogenesis. After confirming the activation of JNK in our SMA mouse model (SMN2+/+; SMNΔ7+/+; Smn−/−), we tested a specific JNK-inhibitor peptide (D-JNKI1) on these mice, by chronic administration from postnatal day 1 to 10, and histologically analyzed the spinal cord and quadriceps muscle at age P12. We observed that D-JNKI1 administration delayed MN death and decreased inflammation in spinal cord. Moreover, the inhibition of JNK pathway improved the trophism of SMA muscular fibers and the size of the neuromuscular junctions (NMJs), leading to an ameliorated innervation of the muscles that resulted in improved motor performances and hind-limb muscular tone. Finally, D-JNKI1 treatment slightly, but significantly increased lifespan in SMA mice. Thus, our results identify JNK as a promising target to reduce MN cell death and progressive skeletal muscle atrophy, providing insight into the role of JNK-pathway for developing alternative pharmacological strategies for the treatment of SMA.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| |
Collapse
|
23
|
Pletto D, Capra S, Finardi A, Colciaghi F, Nobili P, Battaglia GS, Locatelli D, Cagnoli C. Axon outgrowth and neuronal differentiation defects after a-SMN and FL-SMN silencing in primary hippocampal cultures. PLoS One 2018; 13:e0199105. [PMID: 29902268 PMCID: PMC6001960 DOI: 10.1371/journal.pone.0199105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/31/2018] [Indexed: 12/30/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a severe autosomal recessive disease characterized by selective motor neuron degeneration, caused by disruptions of the Survival of Motor Neuron 1 (Smn1) gene. The main product of SMN1 is the full-length SMN protein (FL-SMN), that plays an established role in mRNA splicing. FL-SMN is also involved in neurite outgrowth and axonal transport. A shorter SMN isoform, axonal-SMN or a-SMN, displays a more specific axonal localization and has remarkable axonogenic properties in NSC-34. Introduction of known SMA mutations into the a-SMN transcript leads to impairment of axon growth and morphological defects similar to those observed in SMA patients and animal models. Although there is increasing evidence for the relevance of SMN axonal functions in SMA pathogenesis, the specific contributions of FL-SMN and a-SMN are not known yet. This work aimed to analyze the differential roles of FL-SMN and a-SMN in axon outgrowth and in neuronal homeostasis during differentiation of neurons into a mature phenotype. We employed primary cultures of hippocampal neurons as a well-defined model of polarization and differentiation. By analyzing subcellular localization, we showed that a-SMN is preferentially localized in the growing axonal compartment. By specifically silencing FL-SMN or a-SMN proteins, we demonstrated that both proteins play a role in axon growth, as their selective down-regulation reduces axon length without affecting dendritic arborization. a-SMN silencing, and in minor extent FL-SMN silencing, resulted in the growth of multi-neuritic neurons, impaired in the differentiation process of selecting a single axon out of multiple neurites. In these neurons, neurites often display mixed axonal and dendritic markers and abnormal distribution of the axonal initial segment protein Ankirin G, suggesting loss of neuronal polarity. Our results indicate that a-SMN and FL-SMN are needed for neuronal polarization and organization of axonal and dendritic compartments, processes that are fundamental for neuronal function and survival.
Collapse
Affiliation(s)
- Daniela Pletto
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Silvia Capra
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Paola Nobili
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Cinzia Cagnoli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
24
|
Rodriguez-Muela N, Litterman NK, Norabuena EM, Mull JL, Galazo MJ, Sun C, Ng SY, Makhortova NR, White A, Lynes MM, Chung WK, Davidow LS, Macklis JD, Rubin LL. Single-Cell Analysis of SMN Reveals Its Broader Role in Neuromuscular Disease. Cell Rep 2017; 18:1484-1498. [PMID: 28178525 DOI: 10.1016/j.celrep.2017.01.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 11/09/2016] [Accepted: 01/15/2017] [Indexed: 12/29/2022] Open
Abstract
The mechanism underlying selective motor neuron (MN) death remains an essential question in the MN disease field. The MN disease spinal muscular atrophy (SMA) is attributable to reduced levels of the ubiquitous protein SMN. Here, we report that SMN levels are widely variable in MNs within a single genetic background and that this heterogeneity is seen not only in SMA MNs but also in MNs derived from controls and amyotrophic lateral sclerosis (ALS) patients. Furthermore, cells with low SMN are more susceptible to cell death. These findings raise the important clinical implication that some SMN-elevating therapeutics might be effective in MN diseases besides SMA. Supporting this, we found that increasing SMN across all MN populations using an Nedd8-activating enzyme inhibitor promotes survival in both SMA and ALS-derived MNs. Altogether, our work demonstrates that examination of human neurons at the single-cell level can reveal alternative strategies to be explored in the treatment of degenerative diseases.
Collapse
Affiliation(s)
- Natalia Rodriguez-Muela
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Nadia K Litterman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Erika M Norabuena
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jesse L Mull
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Maria José Galazo
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Chicheng Sun
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Shi-Yan Ng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nina R Makhortova
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Andrew White
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Maureen M Lynes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Lance S Davidow
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
El Oussini H, Scekic-Zahirovic J, Vercruysse P, Marques C, Dirrig-Grosch S, Dieterlé S, Picchiarelli G, Sinniger J, Rouaux C, Dupuis L. Degeneration of serotonin neurons triggers spasticity in amyotrophic lateral sclerosis. Ann Neurol 2017; 82:444-456. [PMID: 28856708 DOI: 10.1002/ana.25030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Spasticity occurs in a wide range of neurological diseases, including neurodegenerative diseases, after trauma, and after stroke, and is characterized by increased reflexes leading to muscle hypertonia. Spasticity is a painful symptom and can severely restrict everyday life, but might also participate in maintaining a low level of motor function in severely impaired patients. Constitutive activity of the serotonin receptors 5-HT2B/C is required for the development of spasticity after spinal cord injury and during amyotrophic lateral sclerosis (ALS). We sought here to provide direct evidence for a role of brainstem serotonin neurons in spasticity. METHODS SOD1(G37R) mice expressing a conditional allele of an ALS-linked SOD1 mutation were crossed with Tph2-Cre mice expressing Cre in serotonergic neurons. Measurement of long-lasting reflex using electromyography, behavioral follow-up, and histological techniques was used to characterize spasticity and motor phenotype. RESULTS Deleting mutant SOD1 expression selectively in brainstem serotonin neurons was sufficient to rescue loss of TPH2 immunoreactivity and largely preserve serotonin innervation of motor neurons in the spinal cord. Furthermore, this abrogated constitutive activity of 5-HT2B/C receptors and abolished spasticity in end-stage mice. Consistent with spasticity mitigating motor symptoms, selective deletion worsened motor function and accelerated the onset of paralysis. INTERPRETATION Degeneration of serotonin neurons is necessary to trigger spasticity through the 5-HT2B/C receptor. The wide range of drugs targeting the serotonergic system could be useful to treat spasticity in neurological diseases. Ann Neurol 2017;82:444-456.
Collapse
Affiliation(s)
- Hajer El Oussini
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France
| | - Jelena Scekic-Zahirovic
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France
| | - Pauline Vercruysse
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France.,Department of Neurology, University of Ulm, Ulm, Germany
| | - Christine Marques
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France
| | - Sylvie Dirrig-Grosch
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France
| | - Stéphane Dieterlé
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France
| | - Gina Picchiarelli
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France
| | - Jérôme Sinniger
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France
| | - Caroline Rouaux
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France
| | - Luc Dupuis
- Faculty of medicine, Inserm UMR-S1118, France.,Fédération de médecine translationnelle, Université de Strasbourg, France
| |
Collapse
|
26
|
Dominguez CE, Cunningham D, Chandler DS. SMN regulation in SMA and in response to stress: new paradigms and therapeutic possibilities. Hum Genet 2017; 136:1173-1191. [PMID: 28852871 PMCID: PMC6201753 DOI: 10.1007/s00439-017-1835-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Low levels of the survival of motor neuron (SMN) protein cause the neurodegenerative disease spinal muscular atrophy (SMA). SMA is a pediatric disease characterized by spinal motor neuron degeneration. SMA exhibits several levels of severity ranging from early antenatal fatality to only mild muscular weakness, and disease prognosis is related directly to the amount of functional SMN protein that a patient is able to express. Current therapies are being developed to increase the production of functional SMN protein; however, understanding the effect that natural stresses have on the production and function of SMN is of critical importance to ensuring that these therapies will have the greatest possible effect for patients. Research has shown that SMN, both on the mRNA and protein level, is highly affected by cellular stress. In this review we will summarize the research that highlights the roles of SMN in the disease process and the response of SMN to various environmental stresses.
Collapse
Affiliation(s)
- Catherine E Dominguez
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - David Cunningham
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Dawn S Chandler
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
27
|
Abera MB, Xiao J, Nofziger J, Titus S, Southall N, Zheng W, Moritz KE, Ferrer M, Cherry JJ, Androphy EJ, Wang A, Xu X, Austin C, Fischbeck KH, Marugan JJ, Burnett BG. ML372 blocks SMN ubiquitination and improves spinal muscular atrophy pathology in mice. JCI Insight 2016; 1:e88427. [PMID: 27882347 DOI: 10.1172/jci.insight.88427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease and one of the leading inherited causes of infant mortality. SMA results from insufficient levels of the survival motor neuron (SMN) protein, and studies in animal models of the disease have shown that increasing SMN protein levels ameliorates the disease phenotype. Our group previously identified and optimized a new series of small molecules, with good potency and toxicity profiles and reasonable pharmacokinetics, that were able to increase SMN protein levels in SMA patient-derived cells. We show here that ML372, a representative of this series, almost doubles the half-life of residual SMN protein expressed from the SMN2 locus by blocking its ubiquitination and subsequent degradation by the proteasome. ML372 increased SMN protein levels in muscle, spinal cord, and brain tissue of SMA mice. Importantly, ML372 treatment improved the righting reflex and extended survival of a severe mouse model of SMA. These results demonstrate that slowing SMN degradation by selectively inhibiting its ubiquitination can improve the motor phenotype and lifespan of SMA model mice.
Collapse
Affiliation(s)
- Mahlet B Abera
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, Maryland, USA
| | - Jingbo Xiao
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jonathan Nofziger
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Steve Titus
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Noel Southall
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Wei Zheng
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kasey E Moritz
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, Maryland, USA
| | - Marc Ferrer
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jonathan J Cherry
- Department of Dermatology,, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Elliot J Androphy
- Department of Dermatology,, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Amy Wang
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Xin Xu
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Christopher Austin
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan J Marugan
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Armbruster N, Lattanzi A, Jeavons M, Van Wittenberghe L, Gjata B, Marais T, Martin S, Vignaud A, Voit T, Mavilio F, Barkats M, Buj-Bello A. Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16060. [PMID: 27652289 PMCID: PMC5022869 DOI: 10.1038/mtm.2016.60] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Thibaut Marais
- Center of Research in Myology, INSERM UMRS 974, CNRS FRE 3617, Institut de Myologie, Université Pierre et Marie Curie Paris 6 , Paris, France
| | | | | | - Thomas Voit
- Center of Research in Myology, INSERM UMRS 974, CNRS FRE 3617, Institut de Myologie, Université Pierre et Marie Curie Paris 6 , Paris, France
| | | | - Martine Barkats
- Center of Research in Myology, INSERM UMRS 974, CNRS FRE 3617, Institut de Myologie, Université Pierre et Marie Curie Paris 6 , Paris, France
| | - Ana Buj-Bello
- INSERM UMR 951, Evry, France; Genethon, Evry, France
| |
Collapse
|
29
|
Yang CW, Chen CL, Chou WC, Lin HC, Jong YJ, Tsai LK, Chuang CY. An Integrative Transcriptomic Analysis for Identifying Novel Target Genes Corresponding to Severity Spectrum in Spinal Muscular Atrophy. PLoS One 2016; 11:e0157426. [PMID: 27331400 PMCID: PMC4917114 DOI: 10.1371/journal.pone.0157426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease resulting from a recessive mutation in the SMN1 gene. This disease affects multiple organ systems with varying degrees of severity. Exploration of the molecular pathological changes occurring in different cell types in SMA is crucial for developing new therapies. This study collected 39 human microarray datasets from ArrayExpress and GEO databases to build an integrative transcriptomic analysis for recognizing novel SMA targets. The transcriptomic analysis was conducted through combining weighted correlation network analysis (WGCNA) for gene module detection, gene set enrichment analysis (GSEA) for functional categorization and filtration, and Cytoscape (visual interaction gene network analysis) for target gene identification. Seven novel target genes (Bmp4, Serpine1, Gata6, Ptgs2, Bcl2, IL6 and Cntn1) of SMA were revealed, and are all known in the regulation of TNFα for controlling neural, cardiac and bone development. Sequentially, the differentially expressed patterns of these 7 target genes in mouse tissues (e.g., spinal cord, heart, muscles and bone) were validated in SMA mice of different severities (pre-symptomatic, mildly symptomatic, and severely symptomatic). In severely symptomatic SMA mice, TNFα was up-regulated with attenuation of Bmp4 and increase of Serpine1 and Gata6 (a pathway in neural and cardiac development), but not in pre-symptomatic and mildly symptomatic SMA mice. The severely symptomatic SMA mice also had the elevated levels of Ptgs2 and Bcl2 (a pathway in skeletal development) as well as IL6 and Cntn1 (a pathway in nervous system development). Thus, the 7 genes identified in this study might serve as potential target genes for future investigations of disease pathogenesis and SMA therapy.
Collapse
Affiliation(s)
- Chung-Wei Yang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Lin Chen
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chun Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Chen Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuh-Jyh Jong
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Departments of Pediatrics and Clinical Laboratory, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Li-Kai Tsai
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (LKT); (CYC)
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (LKT); (CYC)
| |
Collapse
|
30
|
Scekic-Zahirovic J, Sendscheid O, El Oussini H, Jambeau M, Sun Y, Mersmann S, Wagner M, Dieterlé S, Sinniger J, Dirrig-Grosch S, Drenner K, Birling MC, Qiu J, Zhou Y, Li H, Fu XD, Rouaux C, Shelkovnikova T, Witting A, Ludolph AC, Kiefer F, Storkebaum E, Lagier-Tourenne C, Dupuis L. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J 2016; 35:1077-97. [PMID: 26951610 PMCID: PMC4868956 DOI: 10.15252/embj.201592559] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons.
Collapse
Affiliation(s)
- Jelena Scekic-Zahirovic
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Oliver Sendscheid
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Hajer El Oussini
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Mélanie Jambeau
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Ying Sun
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Sina Mersmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marina Wagner
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Stéphane Dieterlé
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Jérome Sinniger
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Kevin Drenner
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | | | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Caroline Rouaux
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | | | - Anke Witting
- Department of Neurology University of Ulm, Ulm, Germany
| | | | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Clotilde Lagier-Tourenne
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Luc Dupuis
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| |
Collapse
|
31
|
El Mendili MM, Lenglet T, Stojkovic T, Behin A, Guimarães-Costa R, Salachas F, Meininger V, Bruneteau G, Le Forestier N, Laforêt P, Lehéricy S, Benali H, Pradat PF. Cervical Spinal Cord Atrophy Profile in Adult SMN1-Linked SMA. PLoS One 2016; 11:e0152439. [PMID: 27089520 PMCID: PMC4835076 DOI: 10.1371/journal.pone.0152439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The mechanisms underlying the topography of motor deficits in spinal muscular atrophy (SMA) remain unknown. We investigated the profile of spinal cord atrophy (SCA) in SMN1-linked SMA, and its correlation with the topography of muscle weakness. MATERIALS AND METHODS Eighteen SMN1-linked SMA patients type III/V and 18 age/gender-matched healthy volunteers were included. Patients were scored on manual muscle testing and functional scales. Spinal cord was imaged using 3T MRI system. Radial distance (RD) and cord cross-sectional area (CSA) measurements in SMA patients were compared to those in controls and correlated with strength and disability scores. RESULTS CSA measurements revealed a significant cord atrophy gradient mainly located between C3 and C6 vertebral levels with a SCA rate ranging from 5.4% to 23% in SMA patients compared to controls. RD was significantly lower in SMA patients compared to controls in the anterior-posterior direction with a maximum along C4 and C5 vertebral levels (p-values < 10-5). There were no correlations between atrophy measurements, strength and disability scores. CONCLUSIONS Spinal cord atrophy in adult SMN1-linked SMA predominates in the segments innervating the proximal muscles. Additional factors such as neuromuscular junction or intrinsic skeletal muscle defects may play a role in more complex mechanisms underlying weakness in these patients.
Collapse
Affiliation(s)
- Mohamed-Mounir El Mendili
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, F-75013, Paris, France
| | - Timothée Lenglet
- APHP, Hôpital Pitié-Salpêtriere, Département des Maladies du Système Nerveux, Centre référent SLA, Paris, France
- APHP, Hôpital Pitié-Salpêtriere, Service d’Explorations Fonctionnelles, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Paris, France
| | - Anthony Behin
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Paris, France
| | - Raquel Guimarães-Costa
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Paris, France
| | - François Salachas
- APHP, Hôpital Pitié-Salpêtriere, Département des Maladies du Système Nerveux, Centre référent SLA, Paris, France
| | - Vincent Meininger
- APHP, Hôpital Pitié-Salpêtriere, Département des Maladies du Système Nerveux, Centre référent SLA, Paris, France
| | - Gaelle Bruneteau
- APHP, Hôpital Pitié-Salpêtriere, Département des Maladies du Système Nerveux, Centre référent SLA, Paris, France
| | - Nadine Le Forestier
- APHP, Hôpital Pitié-Salpêtriere, Département des Maladies du Système Nerveux, Centre référent SLA, Paris, France
| | - Pascal Laforêt
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Paris, France
| | - Stéphane Lehéricy
- APHP, Hôpital Pitié-Salpêtriere, Service de Neuroradiologie, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S975, Inserm U975, CNRS UMR7225, Centre de recherche de l’Institut du Cerveau et de la Moelle épinière–CRICM, Centre de Neuroimagerie de Recherche–CENIR, Paris, France
| | - Habib Benali
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, F-75013, Paris, France
| | - Pierre-François Pradat
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, F-75013, Paris, France
- APHP, Hôpital Pitié-Salpêtriere, Département des Maladies du Système Nerveux, Centre référent SLA, Paris, France
| |
Collapse
|
32
|
El Oussini H, Bayer H, Scekic-Zahirovic J, Vercruysse P, Sinniger J, Dirrig-Grosch S, Dieterlé S, Echaniz-Laguna A, Larmet Y, Müller K, Weishaupt JH, Thal DR, van Rheenen W, van Eijk K, Lawson R, Monassier L, Maroteaux L, Roumier A, Wong PC, van den Berg LH, Ludolph AC, Veldink JH, Witting A, Dupuis L. Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis. Acta Neuropathol 2016; 131:465-80. [PMID: 26744351 DOI: 10.1007/s00401-016-1534-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/17/2015] [Accepted: 01/01/2016] [Indexed: 12/17/2022]
Abstract
Microglia are the resident mononuclear phagocytes of the central nervous system and have been implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). During neurodegeneration, microglial activation is accompanied by infiltration of circulating monocytes, leading to production of multiple inflammatory mediators in the spinal cord. Degenerative alterations in mononuclear phagocytes are commonly observed during neurodegenerative diseases, yet little is known concerning the mechanisms leading to their degeneration, or the consequences on disease progression. Here we observed that the serotonin 2B receptor (5-HT2B), a serotonin receptor expressed in microglia, is upregulated in the spinal cord of three different transgenic mouse models of ALS. In mutant SOD1 mice, this upregulation was restricted to cells positive for CD11b, a marker of mononuclear phagocytes. Ablation of 5-HT2B receptor in transgenic ALS mice expressing mutant SOD1 resulted in increased degeneration of mononuclear phagocytes, as evidenced by fragmentation of Iba1-positive cellular processes. This was accompanied by decreased expression of key neuroinflammatory genes but also loss of expression of homeostatic microglial genes. Importantly, the dramatic effect of 5-HT2B receptor ablation on mononuclear phagocytes was associated with acceleration of disease progression. To determine the translational relevance of these results, we studied polymorphisms in the human HTR2B gene, which encodes the 5-HT2B receptor, in a large cohort of ALS patients. In this cohort, the C allele of SNP rs10199752 in HTR2B was associated with longer survival. Moreover, patients carrying one copy of the C allele of SNP rs10199752 showed increased 5-HT2B mRNA in spinal cord and displayed less pronounced degeneration of Iba1 positive cells than patients carrying two copies of the more common A allele. Thus, the 5-HT2B receptor limits degeneration of spinal cord mononuclear phagocytes, most likely microglia, and slows disease progression in ALS. Targeting this receptor might be therapeutically useful.
Collapse
Affiliation(s)
- Hajer El Oussini
- INSERM UMR-S1118, Faculté de Médecine, bat 3, 8e etage, 11 rue Humann, 67085, Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Hanna Bayer
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jelena Scekic-Zahirovic
- INSERM UMR-S1118, Faculté de Médecine, bat 3, 8e etage, 11 rue Humann, 67085, Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Pauline Vercruysse
- INSERM UMR-S1118, Faculté de Médecine, bat 3, 8e etage, 11 rue Humann, 67085, Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jérôme Sinniger
- INSERM UMR-S1118, Faculté de Médecine, bat 3, 8e etage, 11 rue Humann, 67085, Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- INSERM UMR-S1118, Faculté de Médecine, bat 3, 8e etage, 11 rue Humann, 67085, Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Stéphane Dieterlé
- INSERM UMR-S1118, Faculté de Médecine, bat 3, 8e etage, 11 rue Humann, 67085, Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Andoni Echaniz-Laguna
- INSERM UMR-S1118, Faculté de Médecine, bat 3, 8e etage, 11 rue Humann, 67085, Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
- Neurology Department, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Yves Larmet
- INSERM UMR-S1118, Faculté de Médecine, bat 3, 8e etage, 11 rue Humann, 67085, Strasbourg Cedex, France
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
| | - Kathrin Müller
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Dietmar R Thal
- Laboratory of Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
- Laboratory of Neuropathology, Department of Neuroscience, KU-Leuven, Leuven, Belgium
| | - Wouter van Rheenen
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristel van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roland Lawson
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
- Neurology Department, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Monassier
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France
- Neurology Department, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Luc Maroteaux
- Inserm, UMR-S839, Paris, 75005, France
- Sorbonne Universités, UPMC University Paris 06, UMR-S839, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Anne Roumier
- Inserm, UMR-S839, Paris, 75005, France
- Sorbonne Universités, UPMC University Paris 06, UMR-S839, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Philip C Wong
- Division of Neuropathology, Department of Pathology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anke Witting
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Luc Dupuis
- INSERM UMR-S1118, Faculté de Médecine, bat 3, 8e etage, 11 rue Humann, 67085, Strasbourg Cedex, France.
- Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France.
| |
Collapse
|
33
|
Boido M, Vercelli A. Neuromuscular Junctions as Key Contributors and Therapeutic Targets in Spinal Muscular Atrophy. Front Neuroanat 2016; 10:6. [PMID: 26869891 PMCID: PMC4737916 DOI: 10.3389/fnana.2016.00006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/13/2016] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive autosomal neuromuscular disease, representing the most common fatal pediatric pathology. Even though, classically and in a simplistic way, it is categorized as a motor neuron (MN) disease, there is an increasing general consensus that its pathogenesis is more complex than expected. In particular, neuromuscular junctions (NMJs) are affected by dramatic alterations, including immaturity, denervation and neurofilament accumulation, associated to impaired synaptic functions: these abnormalities may in turn have a detrimental effect on MN survival. Here, we provide a description of NMJ development/maintenance/maturation in physiological conditions and in SMA, focusing on pivotal molecules and on the time-course of pathological events. Moreover, since NMJs could represent an important target to be exploited for counteracting the pathology progression, we also describe several therapeutic strategies that, directly or indirectly, aim at NMJs.
Collapse
Affiliation(s)
- Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino Torino, Italy
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino Torino, Italy
| |
Collapse
|
34
|
Powis RA, Gillingwater TH. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy. J Anat 2015; 228:443-51. [PMID: 26576026 DOI: 10.1111/joa.12419] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 02/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease characterised primarily by loss of lower motor neurons from the ventral grey horn of the spinal cord and proximal muscle atrophy. Recent experiments utilising mouse models of SMA have demonstrated that not all motor neurons are equally susceptible to the disease, revealing that other populations of neurons can also be affected. Here, we have extended investigations of selective vulnerability of neuronal populations in the spinal cord of SMA mice to include comparative assessments of alpha motor neuron (α-MN) and gamma motor neuron (γ-MN) pools, as well as other populations of cholinergic neurons. Immunohistochemical analyses of late-symptomatic SMA mouse spinal cord revealed that numbers of α-MNs were significantly reduced at all levels of the spinal cord compared with controls, whereas numbers of γ-MNs remained stable. Likewise, the average size of α-MN cell somata was decreased in SMA mice with no change occurring in γ-MNs. Evaluation of other pools of spinal cord cholinergic neurons revealed that pre-ganglionic sympathetic neurons, central canal cluster interneurons, partition interneurons and preganglionic autonomic dorsal commissural nucleus neuron numbers all remained unaffected in SMA mice. Taken together, these findings indicate that α-MNs are uniquely vulnerable among cholinergic neuron populations in the SMA mouse spinal cord, with γ-MNs and other cholinergic neuronal populations being largely spared.
Collapse
Affiliation(s)
- Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Ng SY, Soh BS, Rodriguez-Muela N, Hendrickson DG, Price F, Rinn JL, Rubin LL. Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular Atrophy. Cell Stem Cell 2015; 17:569-84. [PMID: 26321202 DOI: 10.1016/j.stem.2015.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/30/2015] [Accepted: 08/04/2015] [Indexed: 01/13/2023]
Abstract
Spinal muscular atrophy (SMA) is caused by mutations in the SMN1 gene. Because this gene is expressed ubiquitously, it remains poorly understood why motor neurons (MNs) are one of the most affected cell types. To address this question, we carried out RNA sequencing studies using fixed, antibody-labeled, and purified MNs produced from control and SMA patient-derived induced pluripotent stem cells (iPSCs). We found SMA-specific changes in MNs, including hyper-activation of the ER stress pathway. Functional studies demonstrated that inhibition of ER stress improves MN survival in vitro even in MNs expressing low SMN. In SMA mice, systemic delivery of an ER stress inhibitor that crosses the blood-brain barrier led to the preservation of spinal cord MNs. Therefore, our study implies that selective activation of ER stress underlies MN death in SMA. Moreover, the approach we have taken would be broadly applicable to the study of disease-prone human cells in heterogeneous cultures.
Collapse
Affiliation(s)
- Shi-Yan Ng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Boon Seng Soh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Natalia Rodriguez-Muela
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David G Hendrickson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Feodor Price
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Valsecchi V, Boido M, De Amicis E, Piras A, Vercelli A. Expression of Muscle-Specific MiRNA 206 in the Progression of Disease in a Murine SMA Model. PLoS One 2015; 10:e0128560. [PMID: 26030275 PMCID: PMC4450876 DOI: 10.1371/journal.pone.0128560] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease, the most common in infancy, and the third one among young people under 18 years. The major pathological landmark of SMA is a selective degeneration of lower motor neurons, resulting in progressive skeletal muscle denervation, atrophy, and paralysis. Recently, it has been shown that specific or general changes in the activity of ribonucleoprotein containing micro RNAs (miRNAs) play a role in the development of SMA. Additionally miRNA-206 has been shown to be required for efficient regeneration of neuromuscular synapses after acute nerve injury in an ALS mouse model. Therefore, we correlated the morphology and the architecture of the neuromuscular junctions (NMJs) of quadriceps, a muscle affected in the early stage of the disease, with the expression levels of miRNA-206 in a mouse model of intermediate SMA (SMAII), one of the most frequently used experimental model. Our results showed a decrease in the percentage of type II fibers, an increase in atrophic muscle fibers and a remarkable accumulation of neurofilament (NF) in the pre-synaptic terminal of the NMJs in the quadriceps of SMAII mice. Furthermore, molecular investigation showed a direct link between miRNA-206-HDAC4-FGFBP1, and in particular, a strong up-regulation of this pathway in the late phase of the disease. We propose that miRNA-206 is activated as survival endogenous mechanism, although not sufficient to rescue the integrity of motor neurons. We speculate that early modulation of miRNA-206 expression might delay SMA neurodegenerative pathway and that miRNA-206 could be an innovative, still relatively unexplored, therapeutic target for SMA.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Elena De Amicis
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Piras
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
37
|
Iascone DM, Henderson CE, Lee JC. Spinal muscular atrophy: from tissue specificity to therapeutic strategies. F1000PRIME REPORTS 2015; 7:04. [PMID: 25705387 PMCID: PMC4311279 DOI: 10.12703/p7-04] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein, and so SMN upregulation is a focus of many preclinical and clinical studies. We examine four issues that may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNΔ7 mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for patients whose disease progression is slowed, but who retain significant motor dysfunction, additional approaches used to enhance regeneration of the neuromuscular system may be of value.
Collapse
Affiliation(s)
- Daniel M Iascone
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Christopher E Henderson
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| | - Justin C Lee
- Department of Rehabilitation and Regenerative Medicine, Center for Motor Neuron Biology and Disease, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA ; Department of Neuroscience, Columbia Translational Neuroscience Initiative, Columbia University Medical Center 630 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
38
|
Jara JH, Genç B, Klessner JL, Ozdinler PH. Retrograde labeling, transduction, and genetic targeting allow cellular analysis of corticospinal motor neurons: implications in health and disease. Front Neuroanat 2014; 8:16. [PMID: 24723858 PMCID: PMC3972458 DOI: 10.3389/fnana.2014.00016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/10/2014] [Indexed: 12/11/2022] Open
Abstract
Corticospinal motor neurons (CSMN) have a unique ability to receive, integrate, translate, and transmit the cerebral cortex's input toward spinal cord targets and therefore act as a “spokesperson” for the initiation and modulation of voluntary movements that require cortical input. CSMN degeneration has an immense impact on motor neuron circuitry and is one of the underlying causes of numerous neurodegenerative diseases, such as primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS). In addition, CSMN death results in long-term paralysis in spinal cord injury patients. Detailed cellular analyses are crucial to gain a better understanding of the pathologies underlying CSMN degeneration. However, visualizing and identifying these vulnerable neuron populations in the complex and heterogeneous environment of the cerebral cortex have proved challenging. Here, we will review recent developments and current applications of novel strategies that reveal the cellular and molecular basis of CSMN health and vulnerability. Such studies hold promise for building long-term effective treatment solutions in the near future.
Collapse
Affiliation(s)
- Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Jodi L Klessner
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - P Hande Ozdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Robert H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University Chicago IL, USA
| |
Collapse
|
39
|
Swoboda KJ. SMN-targeted therapeutics for spinal muscular atrophy: are we SMArt enough yet? J Clin Invest 2014; 124:487-90. [PMID: 24463455 DOI: 10.1172/jci74142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) remains one of the most common and lethal autosomal recessive diseases. Homozygous deletion of survival of motor neuron 1 (SMN1) and resulting SMN protein deficiency manifests predominantly with motor neuron degeneration; however, a wealth of emerging data supports a broader influence of SMN deficiency in disease pathogenesis. In this issue of the JCI, Kariya and colleagues demonstrate the relatively selective impact of SMN depletion on the distal motor unit using a series of SMN2-expressing transgenic mice in which constitutive SMN knockdown follows variable periods of normal development. Their observations provide further insights regarding the temporal requirements for SMN in mice, renewing speculation about when and where repletion of SMN is necessary for optimal outcomes in SMA patients.
Collapse
|