1
|
Huang QR, Jiang Q, Tan JY, Nong RB, Yan J, Yang XW, Mo LG, Ling GY, Deng T, Gong YZ. The prognostic and immunological role of MCM3 in pan-cancer and validation of prognosis in a clinical lower-grade glioma cohort. Front Pharmacol 2024; 15:1390615. [PMID: 38698811 PMCID: PMC11063780 DOI: 10.3389/fphar.2024.1390615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Background: Previous studies have shown that MCM3 plays a key role in initiating DNA replication. However, the mechanism of MCM3 function in most cancers is still unknown. The aim of our study was to explore the expression, prognostic role, and immunological characteristics of MCM3 across cancers. Methods: We explored the expression pattern of MCM3 across cancers. We subsequently explored the prognostic value of MCM3 expression by using univariate Cox regression analysis. Spearman correlation analysis was performed to determine the correlations between MCM3 and immune-related characteristics, mismatching repair (MMR) signatures, RNA modulator genes, cancer stemness, programmed cell death (PCD) gene expression, tumour mutation burden (TMB), microsatellite instability (MSI), and neoantigen levels. The role of MCM3 in predicting the response to immune checkpoint blockade (ICB) therapy was further evaluated in four immunotherapy cohorts. Single-cell data from CancerSEA were analysed to assess the biological functions associated with MCM3 in 14 cancers. The clinical correlation and independent prognostic significance of MCM3 were further analysed in the TCGA and CGGA lower-grade glioma (LGG) cohorts, and a prognostic nomogram was constructed. Immunohistochemistry in a clinical cohort was utilized to validate the prognostic utility of MCM3 expression in LGG. Results: MCM3 expression was upregulated in most tumours and strongly associated with patient outcomes in many cancers. Correlation analyses demonstrated that MCM3 expression was closely linked to immune cell infiltration, immune checkpoints, MMR genes, RNA modulator genes, cancer stemness, PCD genes and the TMB in most tumours. There was an obvious difference in outcomes between patients with high MCM3 expression and those with low MCM3 expression in the 4 ICB treatment cohorts. Single-cell analysis indicated that MCM3 was mainly linked to the cell cycle, DNA damage and DNA repair. The expression of MCM3 was associated with the clinical features of LGG patients and was an independent prognostic indicator. Finally, the prognostic significance of MCM3 in LGG was validated in a clinical cohort. Conclusion: Our study suggested that MCM3 can be used as a potential prognostic marker for cancers and may be associated with tumour immunity. In addition, MCM3 is a promising predictor of immunotherapy responses.
Collapse
Affiliation(s)
- Qian-Rong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qian Jiang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ju-Yuan Tan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren-Bao Nong
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | | | - Li-Gen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guo-Yuan Ling
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yi-Zhen Gong
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
2
|
Biatta CM, Paudice M, Greppi M, Parrella V, Parodi A, De Luca G, Cerruti GM, Mammoliti S, Caroti C, Menichini P, Fronza G, Pesce S, Marcenaro E, Vellone VG. The fading guardian: clinical relevance of TP53 null mutation in high-grade serous ovarian cancers. Front Immunol 2023; 14:1221605. [PMID: 37680633 PMCID: PMC10480567 DOI: 10.3389/fimmu.2023.1221605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Background we evaluated the concordance between immunohistochemical p53 staining and TP53 mutations in a series of HGSOC. Moreover, we searched for prognostic differences between p53 overexpression and null expression groups. Methods patients affected by HGSOC were included. For each case p53 immunohistochemical staining and molecular assay (Sanger sequencing) were performed. Kaplan-Meier survival analyses were undertaken to determine whether the type of TP53 mutation, or p53 staining pattern influenced overall survival (OS) and progression free survival (PFS). Results 34 HGSOC were considered. All cases with a null immunohistochemical p53 expression (n=16) showed TP53 mutations (n=9 nonsense, n=4 in-frame deletion, n=2 splice, n=1 in-frame insertion). 16 out of 18 cases with p53 overexpression showed TP53 missense mutation. Follow up data were available for 33 out of 34 cases (median follow up time 15 month). We observed a significant reduction of OS in p53 null group [HR = 3.64, 95% CI 1.01-13.16]. Conclusion immunohistochemical assay is a reliable surrogate for TP53 mutations in most cases. Despite the small cohort and the limited median follow up, we can infer that HGSOC harboring p53 null mutations are a more aggressive subgroup.
Collapse
Affiliation(s)
- Chiara M. Biatta
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Michele Paudice
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Pathology University Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Veronica Parrella
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Alessia Parodi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | | | | | - Cinzia Caroti
- Oncology University Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico S.Martino, Genoa, Italy
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico S.Martino, Genoa, Italy
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Valerio G. Vellone
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
3
|
Liu Y, Xu G, Fu H, Li P, Li D, Deng K, Gao W, Shang Y, Wu M. Membrane-bound transcription factor LRRC4 inhibits glioblastoma cell motility. Int J Biol Macromol 2023; 246:125590. [PMID: 37385320 DOI: 10.1016/j.ijbiomac.2023.125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Membrane-bound transcription factors (MTFs) have been observed in many types of organisms, such as plants, animals and microorganisms. However, the routes of MTF nuclear translocation are not well understood. Here, we reported that LRRC4 is a novel MTF that translocates to the nucleus as a full-length protein via endoplasmic reticulum-Golgi transport, which is different from the previously described nuclear entry mechanism. A ChIP-seq assay showed that LRRC4 target genes were mainly involved in cell motility. We confirmed that LRRC4 bound to the enhancer element of the RAP1GAP gene to activate its transcription and inhibited glioblastoma cell movement by affecting cell contraction and polarization. Furthermore, atomic force microscopy (AFM) confirmed that LRRC4 or RAP1GAP altered cellular biophysical properties, such as the surface morphology, adhesion force and cell stiffness. Thus, we propose that LRRC4 is an MTF with a novel route of nuclear translocation. Our observations demonstrate that LRRC4-null glioblastoma led to disordered RAP1GAP gene expression, which increased cellular movement. Re-expression of LRRC4 enabled it to suppress tumors, and this is a potential for targeted treatment in glioblastoma.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Gang Xu
- Diagnostics Department, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haijuan Fu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Peiyao Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Danyang Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Kun Deng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Wei Gao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Yujie Shang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
4
|
Duan W, Yu M, Chen J. BRD4: New Hope in the Battle Against Glioblastoma. Pharmacol Res 2023; 191:106767. [PMID: 37061146 DOI: 10.1016/j.phrs.2023.106767] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.
Collapse
Affiliation(s)
- Weichen Duan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
5
|
Schneider B, William D, Lamp N, Zimpfer A, Henker C, Classen CF, Erbersdobler A. The miR-183/96/182 cluster is upregulated in glioblastoma carrying EGFR amplification. Mol Cell Biochem 2022; 477:2297-2307. [PMID: 35486213 PMCID: PMC9395473 DOI: 10.1007/s11010-022-04435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GBM) is one of the most frequent primary brain tumors. Limited therapeutic options and high recurrency rates lead to a dismal prognosis. One frequent, putative driver mutation is the genomic amplification of the oncogenic receptor tyrosine kinase EGFR. Often accompanied by variants like EGFRvIII, heterogenous expression and ligand independent signaling render this tumor subtype even more difficult to treat, as EGFR-directed therapeutics show only weak effects at best. So EGFR-amplified GBM is considered to have an even worse prognosis, and therefore, deeper understanding of molecular mechanisms and detection of potential targets for novel therapeutic strategies is urgently needed. In this study, we looked at the level of microRNAs (miRs), small non-coding RNAs frequently deregulated in cancer, both acting as oncogenes and tumor suppressors. Comparative analysis of GBM with and without EGFR amplification should give insight into the expression profiles of miRs, which are considered both as potential targets for directed therapies or as therapeutic reagents. Comparison of miR profiles of EGFR-amplified and EGFR-normal GBM revealed an upregulation of the miR-183/96/182 cluster, which is associated with oncogenic properties in several tumor entities. One prominent target of this miR cluster is FOXO1, a pro-apoptotic factor. By observing FOXO1 downregulation in EGFR-amplified tumors, we can see a significant correlation of EGFR amplification, miR-183/96/182 cluster upregulation, and repression of FOXO1. Although no significant difference in overall survival is shown, these data may contribute to the molecular understanding of this tumor subtype and offer potential targets for miR-based therapies.
Collapse
Affiliation(s)
- Björn Schneider
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Doreen William
- Children and Adolescents Hospital, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
- Present Address: ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Nora Lamp
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Annette Zimpfer
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| | - Christian Henker
- Department of Neurosurgery, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Carl Friedrich Classen
- Children and Adolescents Hospital, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Andreas Erbersdobler
- Institute of Pathology, University Medicine Rostock, Strempelstr. 14, 18057 Rostock, Germany
| |
Collapse
|
6
|
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel) 2022; 14:3217. [PMID: 35804989 PMCID: PMC9265057 DOI: 10.3390/cancers14133217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that develops from neuroglial stem cells and represents a highly heterogeneous group of neoplasms. These tumors are predominantly correlated with a dismal prognosis and poor quality of life. In spite of major advances in developing novel and effective therapeutic strategies for patients with glioblastoma, multidrug resistance (MDR) is considered to be the major reason for treatment failure. Several mechanisms contribute to MDR in GBM, including upregulation of MDR transporters, alterations in the metabolism of drugs, dysregulation of apoptosis, defects in DNA repair, cancer stem cells, and epithelial-mesenchymal transition. MicroRNAs (miRNAs) are a large class of endogenous RNAs that participate in various cell events, including the mechanisms causing MDR in glioblastoma. In this review, we discuss the role of miRNAs in the regulation of the underlying mechanisms in MDR glioblastoma which will open up new avenues of inquiry for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Sha H, Gan Y, Xu F, Zhu Y, Zou R, Peng W, Wu Z, Ma R, Wu J, Feng J. MicroRNA-381 in human cancer: Its involvement in tumour biology and clinical applications potential. J Cell Mol Med 2022; 26:977-989. [PMID: 35014178 PMCID: PMC8831973 DOI: 10.1111/jcmm.17161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/14/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small non‐coding RNAs that regulate gene expression at the post‐transcriptional level. MiRNAs are involved in the development and progression of a wide range of cancers. Among such cancer‐associated miRNAs, miR‐381 has been a major focus of research. The expression pattern and role of miR‐381 vary among different cancer types. MiR‐381 modulates various cellular behaviours in cancer, including proliferation, apoptosis, cell cycle progression, migration and invasion. MiR‐381 is also involved in angiogenesis and lymphangiogenesis, as well as in the resistance to chemotherapy and radiotherapy. MiR‐381 itself is regulated by several factors, such as long noncoding RNAs, circular RNAs and cytokines. Aberrant expression of miR‐381 in blood samples indicates that it can be used as a diagnostic marker in cancer. Tissue miR‐381 expression may serve as a prognostic factor for the clinicopathological characteristics of cancers and survival of patients. Metformin and icaritin regulate miR‐381 expression and present anticancer properties. This review comprehensively summarizes the effect of miR‐381 on tumour biological behaviours, as well as the clinical application potential of miR‐381 for the treatment of cancer.
Collapse
Affiliation(s)
- Huanhuan Sha
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yujie Gan
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yue Zhu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Renrui Zou
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Peng
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiya Wu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Ma
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianzhong Wu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Feng
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Zeng X, Cao Z, Luo W, Zheng L, Zhang T. MicroRNA-381-A Key Transcriptional Regulator: Its Biological Function and Clinical Application Prospects in Cancer. Front Oncol 2020; 10:535665. [PMID: 33324542 PMCID: PMC7726430 DOI: 10.3389/fonc.2020.535665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that function by regulating messenger RNAs. Recent studies have shown that miRNAs play important roles in multiple processes of cancer development. MiR-381 is one of the most important miRNAs in cancer progression. MiR-381 is downregulated in some cancers and upregulated in other cancers, including glioma, epithelial sarcoma, and osteosarcoma. MiR-381 regulates epithelial-mesenchymal transition (EMT), chemotherapeutic resistance, radioresistance, and immune responses. Thus, miR-381 participates in tumor initiation, progression, and metastasis. Moreover, miR-381 functions in various oncogenic pathways, including the Wnt/β-catenin, AKT, and p53 pathways. Clinical studies have shown that miR-381 could be considered a biomarker or a novel prognostic factor. Here, we summarize the present studies on the role of miR-381 in cancer development, including its biogenesis and various affected signaling pathways, and its clinical application prospects. MiR-381 expression is associated with tumor stage and survival time, making miR-381 a novel prognostic factor.
Collapse
Affiliation(s)
- Xue Zeng
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Lu H, Hailin T, Yi X, Wang J. Three-Dimensional DNA Nanomachine Combined with Toehold-Mediated Strand Displacement Reaction for Sensitive Electrochemical Detection of MiRNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10708-10714. [PMID: 32804511 DOI: 10.1021/acs.langmuir.0c01415] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MicroRNA (miRNA) serves as an ideal biomarker for diagnosis, prognosis, and therapy of various human cancers. The rationally designed three-dimensional (3D) DNA nanomachine was constructed on the matrixes of magnetic beads, and the high density of gold nanoparticles (AuNPs) on each magnetic bead and further enlargement of the AuNPs lead to the anchoring of numerous DNA walkers and signal probes on the AuNPs. With the combination of toehold-mediated strand displacement reaction (SDR), amplified electrochemical detection of miRNA is performed. The existence of miRNA triggers the toehold-mediated SDR and the released DNA walker probe is hybridized with the ferrocene (Fc)-tagged signal probe. The cleavage of the duplex by the nicking endonuclease detaches the signal probe from the magnetic nanocomposites. The oxidation current of Fc moieties was found to be inversely proportional to the concentrations of miRNA-182 between 1.0 fM and 2 pM. The assay is highly selective for discrimination of miRNAs with similar sequences. The feasibility of the method for sensitive detection of the expression levels of miRNA-182 from serum samples of glioma patients at different stages was demonstrated. The sensing protocol holds great promise for early diagnosis and prognosis of the cancer cases with abnormal miRNA expression.
Collapse
Affiliation(s)
- Hanwen Lu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan P. R. China 410083
| | - Tang Hailin
- SunYat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong P. R. China 510060
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan P. R. China 410083
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan P. R. China 410083
| |
Collapse
|
10
|
Identification of circRNA-lncRNA-miRNA-mRNA Competitive Endogenous RNA Network as Novel Prognostic Markers for Acute Myeloid Leukemia. Genes (Basel) 2020; 11:genes11080868. [PMID: 32751923 PMCID: PMC7465400 DOI: 10.3390/genes11080868] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is one of the most common malignant and aggressive hematologic tumors, and its pathogenesis is associated with abnormal post-transcriptional regulation. Unbalanced competitive endogenous RNA (ceRNA) promotes tumorigenesis and progression, and greatly contributes to tumor risk classification and prognosis. However, the comprehensive analysis of the circular RNA (circRNA)-long non-coding RNA (lncRNA)-miRNA-mRNA ceRNA network in the prognosis of AML is still rarely reported. Method: We obtained transcriptome data of AML and normal samples from The Cancer Genome Atlas (TCGA), Genotype-tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, and identified differentially expressed (DE) mRNAs, lncRNAs, and circRNAs. Then, the targeting relationships among lncRNA-miRNA, circRNA-miRNA, and miRNA-mRNA were predicted, and the survival related hub mRNAs were further screened by univariate and multivariate Cox proportional hazard regression. Finally, the AML prognostic circRNA-lncRNA-miRNA-mRNA ceRNA regulatory network was established. Results: We identified prognostic 6 hub mRNAs (TM6SF1, ZMAT1, MANSC1, PYCARD, SLC38A1, and LRRC4) through Cox regression model, and divided the AML samples into high and low risk groups according to the risk score obtained by multivariate Cox regression. Survival analysis verified that the survival rate of the high-risk group was significantly reduced (p < 0.0001). The prognostic ceRNA network of 6 circRNAs, 32 lncRNAs, 8 miRNAs, and 6 mRNAs was established according to the targeting relationship between 6 hub mRNAs and other RNAs. Conclusion: In this study, ceRNA network jointly participated by circRNAs and lncRNAs was established for the first time. It comprehensively elucidated the post-transcriptional regulatory mechanism of AML, and identified novel AML prognostic biomarkers, which has important guiding significance for the clinical diagnosis, treatment, and further scientific research of AML.
Collapse
|
11
|
Yin Y, Li X, Guo Z, Zhou F. MicroRNA‑381 regulates the growth of gastric cancer cell by targeting TWIST1. Mol Med Rep 2019; 20:4376-4382. [PMID: 31545430 DOI: 10.3892/mmr.2019.10651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/29/2019] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) has one of the highest mortality rates among all types of cancer in the world. At present, an efficient treatment for GC remains elusive. Studies have demonstrated that microRNAs (miRs) are abnormally expressed in cancer, and that these serve important roles in the development and metastasis of various human tumors, including GC. It has been suggested that regulation of miRs may bring about new developments in GC therapy. miR‑381 has been reported to be downregulated in human cancer, and it regulates cancer cell growth in numerous types of cancer. The present study reports that miR‑381 was downregulated in GC cells, and upregulation of miR‑381 may inhibit GC cell growth, which may be attributed to the inhibition of cell proliferation and the promotion of apoptosis. Furthermore, Twist‑related protein 1 (TWIST1) was predicted and confirmed to be a direct target of miR‑381 by dual‑luciferase assay in GC. Upregulation of miR‑381 caused a decrease in the expression of TWIST1 at the mRNA and protein levels in GC cells. Taken together, the present study demonstrated that miR‑381 is downregulated in GC cells, and that miR‑381 may inhibit GC cell growth. Therefore, miR‑381 may serve as a novel target for the clinical treatment of GC in the future.
Collapse
Affiliation(s)
- Yongling Yin
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiaoyun Li
- Department of Internal Medicine‑Oncology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Zongquan Guo
- Digestive Department, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
12
|
Fricke F, Mussack V, Buschmann D, Hausser I, Pfaffl MW, Kopitz J, Gebert J. TGFBR2‑dependent alterations of microRNA profiles in extracellular vesicles and parental colorectal cancer cells. Int J Oncol 2019; 55:925-937. [PMID: 31432155 DOI: 10.3892/ijo.2019.4859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
In colorectal cancer (CRC) with microsatellite instability (MSI), >90% of cases are affected by inactivating frameshift mutations of transforming growth factor β receptor type 2 (TGFBR2). TGFBR2 deficiency is considered to drive MSI tumor progression by abrogating downstream TGF‑β signaling. This pathway can alter the expression of coding and non‑coding RNAs, including microRNAs (miRNAs), which are also present in extracellular vesicles (EVs) as post‑transcriptional modulators of gene expression. In our previous study, it was shown that TGFBR2 deficiency alters the protein composition and function of EVs in MSI tumors. To investigate whether mutant TGFBR2 may also affect the miRNA cargo of EVs, the present study characterized miRNAs in EVs and their parental MSI tumor cells that differed only in TGFBR2 expression status. The HCT116‑TGFBR2 MSI cell line model enables the doxycycline (dox)‑inducible reconstituted expression of TGFBR2 in an isogenic background (‑dox, TGFBR2 deficient; +dox, TGFBR2 proficient). Small RNA sequencing of cellular and EV miRNAs showed that the majority of the miRNAs (263/471; 56%) were shared between MSI tumor cells and their EVs. Exploratory data analysis revealed the TGBFR2‑dependent cluster separation of miRNA profiles in EVs and MSI tumor cells. This segregation appeared to result from two subsets of miRNAs, the expression of which were regulated in a TGFBR2‑dependent manner (EVs: n=10; MSI cells: n=15). In the EV subset, 7/10 miRNAs were downregulated and 3/10 were upregulated by TGFBR2 deficiency. In the cellular subset, 13/15 miRNAs were downregulated and 2/15 miRNAs were upregulated in the TGFBR2‑deficient cells. The present study emphasizes the general overlap of miRNA profiles in MSI tumor cells and their EVs, but also highlights the impact of a single tumor driver mutation on the expression of individual miRNAs, as exemplified by the downregulation of miR‑381‑3p in TGFBR2‑deficient MSI tumor cells and their secreted EVs.
Collapse
Affiliation(s)
- Fabia Fricke
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, D‑85354 Freising, Germany
| | - Dominik Buschmann
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, D‑85354 Freising, Germany
| | - Ingrid Hausser
- EM‑Lab, Institute of Pathology, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, D‑85354 Freising, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, D‑69120 Heidelberg, Germany
| |
Collapse
|
13
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|
14
|
Mohammadi-Yeganeh S, Hosseini V, Paryan M. Wnt pathway targeting reduces triple-negative breast cancer aggressiveness through miRNA regulation in vitro and in vivo. J Cell Physiol 2019; 234:18317-18328. [PMID: 30945294 DOI: 10.1002/jcp.28465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/10/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
Triple-negative breast cancer, devoid of estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER-2) expression, is deprived of commonly used targeted therapies. MicroRNAs (miRNAs) are undergoing a revolution in terms of potentially diagnostic or therapeutic elements. Combining computational approaches, we enriched miRNA binding motifs of Wnt pathway-associated upregulated genes. Our in-depth bioinformatics, in vitro and in vivo analyses indicated that miR-381 targets main genes of the Wnt signaling pathway including CTNNB1, RhoA, ROCK1, and c-MYC genes. The expression level of miR-381 and target genes was assessed by quantitative real-time polymerase chain reaction (RT-qPCR) in MCF-7, MDA-MB-231, and MCF-10A as well as 20 breast cancer samples and normal tissues. Luciferase reporter assay was performed. Lentiviral particles containing miR-381 were used to evaluate the effect of miR-381 restoration on cell proliferation, migration, and invasion of the invasive triple-negative MDA-MB-231 cell line and also in a mouse model of breast cancer. The expression of miR-381 was lower than that of normal cells, especially in TNBC cell line and breast tissues. Luciferase assay results confirmed that miR-381 targets all the predicted 3'-untranslated regions (3'-UTRs). Upon miR-381 overexpression, the expression of target genes declined, and the migration and invasion potential of miR-381-receiving MDA-MB-231 cells decreased. In a mouse model of triple-negative breast cancer, miR-381 re-expression inhibited the invasion of cancer cells to lung and liver and prolonged the survival time of cancer cell-bearing mice. Therefore, miR-381 is a regulator of Wnt signaling and its re-expression provides a potentially effective strategy for inhibition of TNBC.
Collapse
Affiliation(s)
- Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahedeh Hosseini
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Xie Y, Qi J, Zhu C, Zhao D, Liao G. MiR-381 functions as a tumor suppressor in gastric cancer by targeting ROCK2. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:164-172. [PMID: 31933730 PMCID: PMC6944001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/09/2017] [Indexed: 06/10/2023]
Abstract
MiR-381 has been reported to be deregulated in many different types of human cancers. However, the clinical significance and function of miR-381 in gastric cancer (GC) remains unclear. Based on real-time quantitative PCR (RTq-PCR) analysis, we found that miR-381 was frequently lost or downregulated in GC tissues and cell lines, and decreased miR-381 was correlated with GC tumor size (P=0.012), TNM stage (P=0.007), invasion depth (P=0.008) and lymphatic metastasis (P=0.019). Cellular function assays revealed that miR-381 restoration inhibited cell proliferation, migration and invasion of GC cells. In addition, we validated that ROCK2 was as a direct target of miR-381, and knockdown of ROCK2 had similar with effects of miR-381 restoration in GC cells, while overexpression of ROCK2 attenuated the inhibitory effects of miR-381 on GC cells. These data suggest that miR-381 serves as a tumor suppressor by targeting ROCK2, which may provide a potential therapeutic tool for GC therapy.
Collapse
Affiliation(s)
- Yilin Xie
- Department of Endoscopy Center, The First Affiliated Hospital of Xiamen UniversityXiamen, P. R. China
| | - Jing Qi
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South UniversityChangsha, Hunan Province, P. R. China
| | - Congbo Zhu
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South UniversityChangsha, Hunan Province, P. R. China
| | - Dingmin Zhao
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South UniversityChangsha, Hunan Province, P. R. China
| | - Guoqing Liao
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South UniversityChangsha, Hunan Province, P. R. China
| |
Collapse
|
16
|
Chang C, Kundu S, Long Q. Scalable Bayesian variable selection for structured high-dimensional data. Biometrics 2018; 74:1372-1382. [PMID: 29738602 PMCID: PMC6222001 DOI: 10.1111/biom.12882] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/30/2022]
Abstract
Variable selection for structured covariates lying on an underlying known graph is a problem motivated by practical applications, and has been a topic of increasing interest. However, most of the existing methods may not be scalable to high-dimensional settings involving tens of thousands of variables lying on known pathways such as the case in genomics studies. We propose an adaptive Bayesian shrinkage approach which incorporates prior network information by smoothing the shrinkage parameters for connected variables in the graph, so that the corresponding coefficients have a similar degree of shrinkage. We fit our model via a computationally efficient expectation maximization algorithm which scalable to high-dimensional settings ( p ∼ 100 , 000 ). Theoretical properties for fixed as well as increasing dimensions are established, even when the number of variables increases faster than the sample size. We demonstrate the advantages of our approach in terms of variable selection, prediction, and computational scalability via a simulation study, and apply the method to a cancer genomics study.
Collapse
Affiliation(s)
- Changgee Chang
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Suprateek Kundu
- Department of Biostatistics, Emory University, Atlanta, Georgia, U.S.A
| | - Qi Long
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
17
|
Malhotra A, Sharma U, Puhan S, Chandra Bandari N, Kharb A, Arifa PP, Thakur L, Prakash H, Vasquez KM, Jain A. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie 2018; 156:148-157. [PMID: 30326253 DOI: 10.1016/j.biochi.2018.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022]
Abstract
The five-year survival rate of esophageal cancer patients is less than 20%. This may be due to increased resistance (acquired or intrinsic) of tumor cells to chemo/radiotherapies, often caused by aberrant cell cycle, deregulated apoptosis, increases in growth factor signaling pathways, and/or changes in the proteome network. In addition, deregulation in non-coding RNA-mediated signaling pathways may contribute to resistance to therapies. At the molecular level, these resistance factors have now been linked to various microRNA (miRNAs), which have recently been shown to control cell development, differentiation and neoplasia. The increased stability and dysregulated expression of miRNAs have been associated with increased resistance to various therapies in several cancers, including esophageal cancer. Therefore, miRNAs represent the next generation of molecules with tremendous potential as biomarkers and therapeutic targets. However, detailed studies on miRNA-based therapeutic interventions are still in their infancy. Hence, in this review, we have summarized the current status of microRNAs in dictating the resistance/sensitivity of tumor cells to chemotherapy and radiotherapy. In addition, we have discussed various strategies to increase radiosensitivity, including targeted therapy, and the use of miRNAs as radiosensitive/radioresistance biomarkers for esophageal cancer in the clinical setting.
Collapse
Affiliation(s)
- Akshay Malhotra
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Shyamly Puhan
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naga Chandra Bandari
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anjali Kharb
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - P P Arifa
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Lovlesh Thakur
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Hridayesh Prakash
- Laboratory Oncology Unit, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India; Institute of Virology and Immunology, Amity University, NOIDA, India.
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
18
|
Wu DM, Wang YJ, Han XR, Wen X, Wang S, Shen M, Fan SH, Zhuang J, Zhang ZF, Shan Q, Li MQ, Hu B, Sun CH, Lu J, Zheng YL. LncRNA LINC00880 promotes cell proliferation, migration, and invasion while inhibiting apoptosis by targeting CACNG5 through the MAPK signaling pathway in spinal cord ependymoma. J Cell Physiol 2018; 233:6689-6704. [PMID: 29215699 DOI: 10.1002/jcp.26329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/02/2017] [Indexed: 01/14/2023]
Abstract
The present study was to investigate the effect of lncRNA LINC00880 targeting CACNG5 on cell proliferation, migration, invasion, and apoptosis in spinal cord ependymoma (SCE) through the MAPK signaling pathway. GEO database was used to download gene expression data related with SCE (GSE50161 and GSE66354) and annotation file. LncRNA with differential expression was predicted by Multi Experiment Matrix website (MEM). The target gene was analyzed by KEGG pathway enrichment analysis. SCE tissues and adjacent tissues were collected. The positive expression of CACNG5 protein was tested by immunohistochemistry. Expression of LINC00880, CACNG5, and MAPK signaling pathway-related proteins was measured with qRT-PCR and Western blotting. Cell proliferation, migration, invasion, cycle, and apoptosis were detected using MTT, Transwell assay, Scratch test, and Flow cytometry. SCE tissues showed increased LINC00880 expression. CACNG5 was a target gene of LINC00880 and correlated with MAPK signaling pathway. Compared with adjacent tissues, SCE tissues showed lower positive expression of CACNG5. Compared with the blank group, LINC00880 expression was higher in the LINC00880 vector and LINC00880 vector + CACNG5 vector groups, and lower in the si-LINC00880 and si-LINC00880 + si-CACNG5 groups; in the LINC00880 vector and si-CACNG5 groups, expression of survivin, p38MAPK, ERK1/2, JNK1/2/3 increased and CACNG5 and Bax expression reduced, the proliferation, invasion and migration of tumor cells increased, and apoptosis rate decreased. Opposite results were found in the si-LINC00880 and CACNG5 vector groups. The findings indicate that lncRNA LINC00880 targeting CACNG5 inhibits cell apoptosis and promotes proliferation, migration, and invasion in SCE through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, P.R. China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, P.R. China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Chun-Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| |
Collapse
|
19
|
Li Y, Zhao C, Yu Z, Chen J, She X, Li P, Liu C, Zhang Y, Feng J, Fu H, Wang B, Kuang L, Li L, Lv G, Wu M. Low expression of miR-381 is a favorite prognosis factor and enhances the chemosensitivity of osteosarcoma. Oncotarget 2018; 7:68585-68596. [PMID: 27612424 PMCID: PMC5356575 DOI: 10.18632/oncotarget.11861] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/24/2016] [Indexed: 01/13/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy with a poor prognosis for all races and both sexes. In this study, we found that miR-381 is a positive prognosis factor for OS patients that OS patients with a low expression of miR-381 had a longer survival time after surgical intervention, and miR-381 expression promotes MG-63 cell proliferation and cell invasion ability. Our results also showed a strong negative correlation between the expression of miR-381 and LRRC4 (brain relative specific expression gene) in OS tissues. This demonstrated that LRRC4 is a direct target gene of miR-381, and suppressing the expression of miR-381 increases the sensitivity of OS cells to chemotherapeutic drugs through the LRRC4-mediated mTOR pathway. In summary, miR-381 is an important biomarker in directing therapeutic intervention and predicting prognosis in OS patients.
Collapse
Affiliation(s)
- Yunchao Li
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunhua Zhao
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Zhibin Yu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Jiarui Chen
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Xiaoling She
- Pathology Department, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Changhong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Yan Zhang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Haijuan Fu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Bing Wang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lei Kuang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lei Li
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guohua Lv
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| |
Collapse
|
20
|
Ma Y, Liang AJ, Fan YP, Huang YR, Zhao XM, Sun Y, Chen XF. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget 2018; 7:42805-42825. [PMID: 27081087 PMCID: PMC5173173 DOI: 10.18632/oncotarget.8715] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Previous studies have reported aberrant expression of the miR-183-96-182 cluster in a variety of tumors, which indicates its' diagnostic or prognostic value. However, a key characteristic of the miR-183-96-182 cluster is its varied expression levels, and pleomorphic functional roles in different tumors or under different conditions. In most tumor types, the cluster is highly expressed and promotes tumorigenesis, cancer progression and metastasis; yet tumor suppressive effects have also been reported in some tumors. In the present study, we discuss the upstream regulators and the downstream target genes of miR-183-96-182 cluster, and highlight the dysregulation and functional roles of this cluster in various tumor cells. Newer insights summarized in this review will help readers understand the different facets of the miR-183-96-182 cluster in cancer development and progression.
Collapse
Affiliation(s)
- Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - A-Juan Liang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yu-Ping Fan
- Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Ran Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Ming Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Tu C, Wang F, Wan J. MicroRNA-381 inhibits cell proliferation and invasion in endometrial carcinoma by targeting the IGF-1R. Mol Med Rep 2017; 17:4090-4098. [PMID: 29257334 DOI: 10.3892/mmr.2017.8288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
Endometrial carcinoma (EC) is the sixth most common type of malignant tumor occurring in females. MicroRNAs (miRNAs) serve as oncogenes or tumor suppressors in human cancer and play important roles in tumorigenesis, and tumor development by regulating various processes. Thus, further investigation into miRNAs involved in EC formation and progression may aid in developing effective therapeutic strategies for patients with this disease. miRNA‑381 (miR‑381) is aberrantly expressed in multiple types of human cancer. However, the expression pattern, biological roles and underlying mechanisms of miR‑381 in EC are poorly understood. In the present study, the results showed that miR‑381 was downregulated in EC tissues and cell lines. Decreased miR‑381 expression correlated with the International Federation of Gynecology and Obstetrics stage, lymph nodes metastasis and myometrial invasion of EC. The ectopic expression of miR‑381 significantly inhibited the proliferation and invasion of EC cells. Through a series of experiments, the insulin‑like growth factor receptor 1 (IGF‑1R) was identified as a novel direct target of miR‑381 in EC. Furthermore, IGF‑1R was highly expressed in EC tissues and inversely correlated with miR‑381 levels. IGF‑1R overexpression partially abrogated the tumor‑suppressive effects of miR‑381 on the proliferation and invasion of EC cells. miR‑381 targeted IGF‑1R to inactivate the protein kinase B (AKT) and extracellular signal‑regulated kinase (ERK) signaling pathways in EC. These results suggest that miR‑381 acts as a tumor suppressor in EC by directly targeting IGF‑1R, and indirectly regulating the AKT and ERK signaling pathways. Thus, miR‑381 should be investigated as a prognostic biomarker and novel therapeutic target for the treatment of patients with EC.
Collapse
Affiliation(s)
- Chunhua Tu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fen Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Junhui Wan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Chen CL, Wang Y, Pan QZ, Tang Y, Wang QJ, Pan K, Huang LX, He J, Zhao JJ, Jiang SS, Zhang XF, Zhang HX, Zhou ZQ, Weng DS, Xia JC. Bromodomain-containing protein 7 (BRD7) as a potential tumor suppressor in hepatocellular carcinoma. Oncotarget 2017; 7:16248-61. [PMID: 26919247 PMCID: PMC4941311 DOI: 10.18632/oncotarget.7637] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023] Open
Abstract
Bromodomain-containing protein 7 (BRD7) is a subunit of the PBAF complex, which functions as a transcriptional cofactor for the tumor suppressor protein p53. Down-regulation of BRD7 has been demonstrated in multiple types of cancer. This study aimed to investigate BRD7 expression and its tumor suppressive effect in hepatocellular carcinoma (HCC). The expression of BRD7 was examined in clinical specimens of primary HCC and in HCC cell lines through real-time quantitative PCR, western blot and immunohistochemistry. The prognostic value of BRD7 expression and its correlation with the clinicopathological features of HCC patients were statistically analyzed. The effect of BRD7 on the tumorigenicity of HCC was also examined using proliferation and colony-formation assays, cell-cycle assays, migration and cell-invasion assays, and xenograft nude mouse models. BRD7 was down-regulated in tumor tissues and HCC cell lines. BRD7 protein expression was strongly associated with clinical stage and tumor size. Kaplan-Meier survival curves revealed higher survival rates in patients with higher BRD7 expression levels compared to those with lower BRD7 levels. A multivariate analysis indicated that BRD7 expression was an independent prognostic marker. The re-introduction of BRD7 expression significantly inhibited proliferation, colony formation, migration and invasion and led to cell cycle arrest in HCC cells in vitro. Furthermore, experiments in mice suggested that BRD7 overexpression suppresses HCC tumorigenicity in vivo. In conclusions, our data indicated that BRD7 may serve as a tumor suppressor in HCC and may be a novel molecular target for the treatment of HCC.
Collapse
Affiliation(s)
- Chang-Long Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiu-Zhong Pan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qi-Jing Wang
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ke Pan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li-Xi Huang
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jia He
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jing-Jing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shan-Shan Jiang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Fei Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hong-Xia Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Qi Zhou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - De Sheng Weng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
23
|
Huang T, Yi D, Xu L, Bu E, Zhu C, Sang J, Zhang Y. Downregulation of miR-381 is associated with poor prognosis in papillary thyroid carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11610-11616. [PMID: 31966518 PMCID: PMC6966045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/24/2017] [Indexed: 06/10/2023]
Abstract
Circulating microRNAs (miRNAs) are potential biomarkers for papillary thyroid carcinoma (PTC). The aim of this study was to evaluate the diagnostic and prognostic value of serum miR-381 in PTC. A total of 87 patients with PTC, 50 cases with benign thyroid nodules (BTN) and 50 healthy volunteers were enrolled. The expression levels of serum miR-381 were measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The results indicated that serum miR-381 expression was significantly decreased in PTC patients compared to that of BTN patients or healthy controls. Moreover, serum miR-381 showed good performance to differentiate PTC cases from controls. Next, reduced serum miR-381 expression was positively correlated with aggressive clinical features and shorter overall survival. Furthermore, serum miR-381 levels were greatly elevated in 21 patients with advanced-stage (stage III/IV) PTC after surgery. Finally, univariate and multivariate Cox regression analysis confirmed that miR-381 in serum was an independent prognostic indicator for OS in PTC patients. Collectively, serum miR-381 might serve as a non-invasive biomarker for the diagnosis and prognosis of PTC.
Collapse
Affiliation(s)
- Tao Huang
- Department of Thyroid and Breast, Lianyungang First People’s HospitalLianyungang, Jiangsu Province, China
| | - Dandan Yi
- Department of General Surgery, Nanjing Drum Tower HospitalNanjing, Jiangsu Province, China
| | - Lei Xu
- Department of General Surgery, Drum Tower Clinical Medical College, Nanjing Medical UniversityNanjing, Jiangsu Province, China
| | - Erlan Bu
- Department of General Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu Province, China
| | - Chengyan Zhu
- Department of Surgical Ultrasound, Nanjing Drum Tower HospitalNanjing, Jiangsu Province, China
| | - Jianfeng Sang
- Department of General Surgery, Nanjing Drum Tower HospitalNanjing, Jiangsu Province, China
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese MedicineNanjing, Jiangsu Province, China
| |
Collapse
|
24
|
Tian C, Li J, Ren L, Peng R, Chen B, Lin Y. MicroRNA-381 serves as a prognostic factor and inhibits migration and invasion in non-small cell lung cancer by targeting LRH-1. Oncol Rep 2017; 38:3071-3077. [PMID: 29048619 DOI: 10.3892/or.2017.5956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence has demonstrated that aberrant miRNAs were involved in carcinogenesis and tumor progression by regulating oncogenes or tumor suppressor expression. Dysregulation of miR-381 has been reported in different tumors. However, the clinical roles and underlying mechanism in non-small cell lung cancer (NSCLC) remains to be elucidated. We found the expression of miR-381 was significantly downregulated in both NSCLC tissues and cell lines. Clinical analysis revealed the reduced miR-381 was obviously associated with advanced TNM stage and lymph node metastasis. Moreover, we disclosed that miR-381 was a novel independent prognostic marker for predicting 5-year survival of NSCLC patients. The ectopic overexpression of miR-381 inhibited cell migration and invasion in vitro and in vivo. Notably, miR-381 could modulate LRH-1 by directly binding to its 3'-UTR. In clinical samples of NSCLC, miR-381 inversely correlated with LRH-1 expression, which performed positive roles in NSCLC migration and invasion. Alteration of LRH-1 expression at least partially abolished the migration and invasion of miR-381 on NSCLC cells. Here, we identified LRH-1 as a functional target of miR-381 in NSCLC. In conclusion, our data indicated that miR-381 inhibited migration and invasion of NSCLC by targeting LRH-1, and may represent a novel potential therapeutic target and prognostic marker for NSCLC.
Collapse
Affiliation(s)
- Chunyan Tian
- Department of Oncology, Cangnan Hospital Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jun Li
- Tumor Department of Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lili Ren
- Department of Oncology, Zhejiang Tumor Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Ren Peng
- Department of Oncology, Cangnan Hospital Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Binbin Chen
- Department of Oncology, Cangnan Hospital Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yumei Lin
- Tumor Department of Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
25
|
Wang J, Lu Z, Tang H, Wu L, Wang Z, Wu M, Yi X, Wang J. Multiplexed Electrochemical Detection of MiRNAs from Sera of Glioma Patients at Different Stages via the Novel Conjugates of Conducting Magnetic Microbeads and Diblock Oligonucleotide-Modified Gold Nanoparticles. Anal Chem 2017; 89:10834-10840. [PMID: 28956430 DOI: 10.1021/acs.analchem.7b02342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) serve as diagnostic and prognostic biomarkers for a wide variety of cancers. Via the novel conjugates of gold nanoparticle-coated magnetic microbeads (AuNP-MMBs) and the diblock oligonucleotide (ODN)-modified AuNPs, multiplexed electrochemical assay of miRNAs was performed. The hybridization to target miRNAs leads to the conformational change of the hairpin-structured ODN probes, and the attachment of the diblock ODN-modified AuNPs was achieved. By examining the oxidation peak currents of methylene blue (MB) and ferrocene (Fc) moieties residing on the diblock ODNs, simultaneous quantification of miRNA-182 and miRNA-381 was conducted. The detection signals were significantly enhanced due to the numerous MB and Fc tags on the AuNPs. The proposed assay was highly selective for discriminating miRNAs with similar sequences, and detection limits of 0.20 fM and 0.12 fM for miRNA-182 and miRNA-381, respectively, were achieved. The feasibility of the method for sensitive determination of miRNA-182 and miRNA-381 from serum samples of glioma patients at different stages was demonstrated. The sensing protocol thus holds great potential for early diagnosis and treatment of cancer patients.
Collapse
Affiliation(s)
- Jingrui Wang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Zhixuan Lu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Hailin Tang
- SunYat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou, Guangdong 510060, P. R. China
| | - Ling Wu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Zixiao Wang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Minghua Wu
- Cancer Research Institute, Central South University , Changsha, Hunan 410013, P. R. China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, P. R. China
| |
Collapse
|
26
|
Liu C, Sun Y, She X, Tu C, Cheng X, Wang L, Yu Z, Li P, Liu Q, Yang H, Li G, Wu M. CASC2c as an unfavorable prognosis factor interacts with miR-101 to mediate astrocytoma tumorigenesis. Cell Death Dis 2017; 8:e2639. [PMID: 28252647 PMCID: PMC5386525 DOI: 10.1038/cddis.2017.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023]
Abstract
miR-101 has been suggested as a tumor suppressor, but the promoter methylation and loss of heterozygosity didn't contribute to its low expression in astrocytoma. We investigated the role of a new long non-coding RNA CASC2c binding with miR-101. High CASC2c was positively correlated with astrocytoma progression, and an unfavorable prognosis factor for patients. Knockdown CASC2c inhibited proliferation and tumorgenesis. Overexpression of CASC2c promotes the malignant characteristic of astrocytoma cells.CASC2c directly bound miR-101 and mediated pre-miR-101 processing into mature miR-101, and functions as a competitor of miR-101 target genes such as CPEB1. Patients who possessed both low CASC2c and high miR-101 had a longer survival than those of low CASC2c alone or high miR-101 alone. In summary, CASC2c plays the onco-RNA role in the tumorgenesis of astrocytoma by acting as a decoy miR-101 sponge. Combination of low expression of CASC2c and high expression of miR-101 has an important referential significance to evaluate the prognosis of patients.
Collapse
Affiliation(s)
- Changhong Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Xiaoling She
- Second Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chaofeng Tu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Lin Wang
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhibin Yu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Qing Liu
- Xiangya Hospital, Central South University, Changsha 410013, China
| | - Honghui Yang
- Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Minghua Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| |
Collapse
|
27
|
Cao Q, Liu F, Ji K, Liu N, He Y, Zhang W, Wang L. MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:29. [PMID: 28193228 PMCID: PMC5307754 DOI: 10.1186/s13046-017-0499-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022]
Abstract
Background MicroRNA-381 (miR-381) has been reported to play suppressive or promoting roles in different malignancies. However, the expression level, biological function, and underlying mechanisms of miR-381 in gastric cancer remain poorly understood. Our previous study indicated that transmembrane protein 16A (TMEM16A) contributed to migration and invasion of gastric cancer and predicted poor prognosis. In this study, we found that miR-381 inhibited the metastasis of gastric cancer through targeting TMEM16A expression. Methods MiR-381 expression was analyzed using bioinformatic software on open microarray datasets from the Gene Expression Omnibus (GEO) and confirmed by quantitative RT-PCR (qRT-PCR) in human gastric cancer tissues and cell lines. Cell proliferation was investigated using MTT and cell count assays, and cell migration and invasion abilities were evaluated by transwell assay. Xenograft nude mouse models were used to observe tumor growth and pulmonary metastasis. Luciferase reporter assay, western blot, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were employed to explore the mechanisms of the effect of miR-381 on gastric cancer cells. Results MiR-381 was significantly down-regulated in gastric cancer tissues and cell lines. Low expression of miR-381 was negatively related to lymph node metastasis, advanced tumor stage and poor prognosis. MiR-381 decreased gastric cancer cell proliferation, migration and invasion in vitro and in vivo. TMEM16A was identified as a direct target of miR-381 and the expression of miR-381 was inversely correlated with TMEM16A expression in gastric cancer tissues. Combination analysis of miR-381 and TMEM16A revealed the improved prognostic accuracy for gastric cancer patients. Moreover, miR-381 inhibited TGF-β signaling pathway and down-regulated epithelial–mesenchymal transition (EMT) phenotype partially by mediating TMEM16A. Conclusions MiR-381 may function as a tumor suppressor by directly targeting TMEM16A and regulating TGF-β pathway and EMT process in the development of progression of gastric cancer. MiR-381/TMEM16A may be a novel therapeutic candidate target in gastric cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0499-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qinghua Cao
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Fang Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kaiyuan Ji
- Cancer Research Insitute, Southern Medical University, Guangzhou, 510515, China
| | - Ni Liu
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wenhui Zhang
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Liantang Wang
- Department of Pathology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
28
|
Wang Z, Guo Q, Wang R, Xu G, Li P, Sun Y, She X, Liu Q, Chen Q, Yu Z, Liu C, Xiong J, Li G, Wu M. The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. J Hematol Oncol 2016; 9:130. [PMID: 27884160 PMCID: PMC5123285 DOI: 10.1186/s13045-016-0355-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Background As a well-characterized key player in various signal transduction networks, extracellular-signal-regulated kinase (ERK1/2) has been widely implicated in the development of many malignancies. We previously found that Leucine-rich repeat containing 4 (LRRC4) was a tumor suppressor and a negative regulator of the ERK/MAPK pathway in glioma tumorigenesis. However, the precise molecular role of LRRC4 in ERK signal transmission is unclear. Methods The interaction between LRRC4 and ERK1/2 was assessed by co-immunoprecipitation and GST pull-down assays in vivo and in vitro. We also investigated the interaction of LRRC4 and ERK1/2 and the role of the D domain in ERK activation in glioma cells. Results Here, we showed that LRRC4 and ERK1/2 interact via the D domain and CD domain, respectively. Following EGF stimuli, the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and abrogates ERK1/2 activation and nuclear translocation. In glioblastoma cells, ectopic LRRC4 expression competitively inhibited the interaction of endogenous mitogen-activated protein kinase (MEK) and ERK1/2. Mutation of the D domain decreased the LRRC4-mediated inhibition of MAPK signaling and its anti-proliferation and anti-invasion roles. Conclusions Our results demonstrated that the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. These findings identify a new mechanism underlying glioblastoma progression and suggest a novel therapeutic strategy by restoring the activity of LRRC4 to decrease MAPK cascade activation. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0355-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeyou Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Guo
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Gang Xu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Peiyao Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling She
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiang Liu
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Qiong Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Zhibin Yu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Changhong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jing Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
29
|
Wang ZY, Xiong J, Zhang SS, Wang JJ, Gong ZJ, Dai MH. Up-Regulation of microRNA-183 Promotes Cell Proliferation and Invasion in Glioma By Directly Targeting NEFL. Cell Mol Neurobiol 2016; 36:1303-1310. [PMID: 26879754 DOI: 10.1007/s10571-016-0328-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal type of primary malignant brain tumor. In recent years, increasing reports suggest that discovery of microRNAs (miRNAs) might provide a novel therapeutical target for human cancers, including GBM. The expression and roles of microRNA-183 (miR-183) has been explored in several types of human cancers, including in GBM, and plays important roles in tumor initiation and progression. However, its biological functions in GBM remain largely unknown. In this study, we demonstrated that miR-183 was significantly up-regulated in astrocytoma tissues and glioblastoma cell lines. Introduction of miR-183 mimics into U251 cells could promoted, while its antisense oligos inhibited cell proliferation and invasion. Moreover, we identified neurofilament light polypeptide (NEFL) as a novel target gene of miR-183. The expression levels of NEFL are inversely correlated with that of miR-183 in human astrocytoma clinical specimens. In addition, NEFL-siRNA could significantly attenuate the inhibitory effects of knockdown miR-183 on the proliferation and invasion of U251 cells via mTOR signaling pathway. Overall, This study revealed that miR-183 promotes glioma cell proliferation by targeting NEFL, and also demonstrated that miR-183 could be a potential target for GBM treatment.
Collapse
Affiliation(s)
- Ze-You Wang
- Department of Clinical Laboratory, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Shan-Shan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Jun Wang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to JiangSu University, Kunshan, Jiangsu, China
| | - Zhao-Jian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min-Hui Dai
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
30
|
Lu W, Lu T, Wei X. Downregulation of DNMT3a expression increases miR-182-induced apoptosis of ovarian cancer through caspase-3 and caspase-9-mediated apoptosis and DNA damage response. Oncol Rep 2016; 36:3597-3604. [DOI: 10.3892/or.2016.5134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
|
31
|
Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, Verma M, Kumar D. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 2016; 5:1917-46. [PMID: 27282910 PMCID: PMC4971921 DOI: 10.1002/cam4.775] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal cancer of the adult brain, remaining incurable with a median survival time of only 15 months. In an effort to identify new targets for GBM diagnostics and therapeutics, recent studies have focused on molecular phenotyping of GBM subtypes. This has resulted in mounting interest in microRNAs (miRNAs) due to their regulatory capacities in both normal development and in pathological conditions such as cancer. miRNAs have a wide range of targets, allowing them to modulate many pathways critical to cancer progression, including proliferation, cell death, metastasis, angiogenesis, and drug resistance. This review explores our current understanding of miRNAs that are differentially modulated and pathologically involved in GBM as well as the current state of miRNA-based therapeutics. As the role of miRNAs in GBM becomes more well understood and novel delivery methods are developed and optimized, miRNA-based therapies could provide a critical step forward in cancer treatment.
Collapse
Affiliation(s)
- Amanda Shea
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | | | - Zainab Afzal
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Juliet Chijioke
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Habib Kedir
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Shahnoza Dusmatova
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Arpita Roy
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Malathi Ramalinga
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Brent Harris
- Department of Neurology and PathologyGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Jan Blancato
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Mukesh Verma
- Division of Cancer Control and Population SciencesNational Cancer Institute (NCI)National Institutes of Health (NIH)RockvilleMaryland20850
| | - Deepak Kumar
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| |
Collapse
|
32
|
Wang Z, Yang J, Xu G, Wang W, Liu C, Yang H, Yu Z, Lei Q, Xiao L, Xiong J, Zeng L, Xiang J, Ma J, Li G, Wu M. Targeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors. Oncotarget 2016; 6:3147-64. [PMID: 25605243 PMCID: PMC4413644 DOI: 10.18632/oncotarget.3061] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNA-381 (miR-381) is a highly expressed onco-miRNA that is involved in malignant progression and has been suggested to be a good target for glioblastoma multiforme (GBM) therapy. In this study, we employed two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) and MALDI–TOF/TOF-MS/MS to identify 27 differentially expressed proteins, including the significantly upregulated neurofilament light polypeptide (NEFL), in glioblastoma cells in which miR-381 expression was inhibited. We identified NEFL as a novel target molecule of miR-381 and a tumor suppressor gene. In human astrocytoma clinical specimens, NEFL was downregulated with increased levels of miR-381 expression. Either suppressing miR-381 or enforcing NEFL expression dramatically sensitized glioblastoma cells to temozolomide (TMZ), a promising chemotherapeutic agent for treating GBMs. The mechanism by which these cells were sensitized to TMZ was investigated by inhibiting various multidrug resistance factors (ABCG2, ABCC3, and ABCC5) and stemness factors (ALDH1, CD44, CKIT, KLF4, Nanog, Nestin, and SOX2). Our results further demonstrated that miR-381 overexpression reversed the viability of U251 cells exhibiting NEFL-mediated TMZ sensitivity. In addition, NEFL-siRNA also reversed the proliferation rate of U251 cells exhibiting locked nucleic acid (LNA)-anti-miR-381-mediated TMZ sensitivity. Overall, the miR-381-NEFL axis is important for TMZ resistance in GBM and may potentially serve as a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Zeyou Wang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Jing Yang
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Gang Xu
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Wei Wang
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Changhong Liu
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Honghui Yang
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Zhibin Yu
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Qianqian Lei
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Lan Xiao
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Jing Xiong
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China.,Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Zeng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, Hunan, China
| |
Collapse
|
33
|
He X, Wei Y, Wang Y, Liu L, Wang W, Li N. MiR-381 functions as a tumor suppressor in colorectal cancer by targeting Twist1. Onco Targets Ther 2016; 9:1231-9. [PMID: 27094913 PMCID: PMC4789845 DOI: 10.2147/ott.s99228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
MiR-381 has been reported to be dysregulated in several human cancers. However, the function and mechanism of miR-381 in colorectal cancer (CRC) remains unclear. In the present study, the miR-381 expression was assessed in a cohort of 113 CRC specimens using real-time quantitative polymerase chain reaction (RTq-PCR), which demonstrated that miR-381 was significantly downregulated in CRC and correlated with distant metastasis and tumor, node, and metastasis (TNM) stage. Functional study revealed that restoration of miR-381 significantly inhibited the invasion, migration, and epithelial–mesenchymal transition (EMT) of CRC cells. Luciferase reporter assay validated that Twist1, an important EMT inducer, was a direct target of miR-381, and rescued Twist1 attenuated the function of miR-381 in CRC cells. Correlation analysis also revealed an inverse correlation between miR-381 and Twist1 expression levels in CRC specimens. Taken together, our results highlight the significance of miR-381/Twist1 interaction in the development and progression of CRC, and suggest that restoration of miR-381 may be a potential therapeutic strategy for the patients with CRC.
Collapse
Affiliation(s)
- Xinxin He
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Yangnian Wei
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Yong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Ling Liu
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Wen Wang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Nianfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| |
Collapse
|
34
|
Yu X, Li Z, Shen J. BRD7: a novel tumor suppressor gene in different cancers. Am J Transl Res 2016; 8:742-748. [PMID: 27158366 PMCID: PMC4846923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
BRD7 (bromodomain 7), also known as celtix-1, was first identified in nasopharyngeal carcinoma (NPC) cells in 2000. BRD7 is a crucial component of both functional p53 and BRCA1 (breast cancer 1, early onset) pathways. Recently, the BRD7 tumor suppressor status has been fully established. Previous studies demonstrated that BRD7 was downregulated in human breast cancer and the downregulation often associates with tumor progression. The expression of BRD7 was downregulated in various cancers, including breast cancer, NPC, gastric cancer, colorectal carcinoma, ovarian cancer, and prostate cancer. Moreover, BRD7 inhibited cancer cell growth and metastasis and promote apoptosis in vitro and in vivo via downregulating AKT pathway. In addition, BRD7 may regulate many signaling pathways including ras-raf-MEK-ERK and RB/E2F. In this review, we provide an overview of current knowledge concerning the role of BRD7 in tumor development and progression. To our knowledge, this is the first review about the role of this novel tumor suppressor gene BRD7in tumor development and progression.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100042, China
| | - Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| | - Jianxiong Shen
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| |
Collapse
|
35
|
MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumour Biol 2016; 37:9157-67. [PMID: 26768613 DOI: 10.1007/s13277-016-4805-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a common type of gynecologic cancer, which accounts for the majority of deaths among all gynecologic malignant tumors in developed countries. A series of recent studies suggested that miR-381 might play important roles in the development of various cancer types. However, the biological function of miR-381 in EOC remains to be investigated. We examined the levels of miR-381 expression in EOC tissues and cell lines. We identified miR-381 target genes by bioinformatic prediction. We also characterized the phenotype regarding cell proliferation, cell migration, and cell invasion in EOC cells lines with altered expression levels of both miR-381 and its target gene, YY1. The expression levels of miR-381 were downregulated in EOC tissues and cell lines. Overexpression of miR-381 significantly inhibited EOC cell proliferation, migration, and invasion. Restoration of YY1 expression partially reversed the phenotype induced by miR-381 overexpression. Knockdown of miR-381 target gene, YY1, mimicked the phenotype induced by miR-381 overexpression. MiR-381 regulated EOC cell through miR-381/YY1/p53 and miR-381/YY1/Wnt signaling axis. We concluded that miR-381 inhibited EOC cell proliferation, migration, and invasion, at least in part, via suppressing YY1 expression.
Collapse
|
36
|
Zhang Q, Zhao S, Pang X, Chi B. MicroRNA-381 suppresses cell growth and invasion by targeting the liver receptor homolog-1 in hepatocellular carcinoma. Oncol Rep 2015; 35:1831-40. [PMID: 26677080 DOI: 10.3892/or.2015.4491] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) have emerged as prospective tools for human cancer therapy, including hepatocellular carcinoma (HCC) therapy. Previous studies have suggested that miR-381 functions as oncogenic or tumor-suppressive miRs in other cancer types. However, the role of miR-381 in HCC remains unknown. The present study investigated the expression and functional role of miR-381 in HCC. miR-381 expression was significantly decreased in HCC tissues and cell lines. miR-381 overexpression significantly inhibited HCC cell proliferation and colony formation, induced G0/G1 cell cycle arrest and suppressed cell invasion. Conversely, suppression of miR-381 showed the opposite effect in HCC cells. Bioinformatics analysis and dual-luciferase reporter assay results showed that miR-381 directly targeted the 3'-untranslated region of liver receptor homolog-1 (LRH-1), and quantitative polymerase chain reaction and western blot analysis results showed that miR-381 negatively modulated LRH-1 expression. Data elucidated that miR-381 directly regulated HCC cell growth and invasion, as well as the Wnt signaling pathways, by targeting LRH-1. Clinical tissue detection data revealed an inverse correlation between miR-381 and LRH-1 expression in HCC tissues, further indicating the functional significance of miR-381-LRH-1 in regulating HCC tumorigenesis. The present study indicates that miR-381 may be a novel tumor suppressor that blocks HCC growth and invasion by targeting LRH-1. The results present novel insights into understanding the molecular mechanism underlying HCC tumorigenesis and provide a future direction to the development of therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Hepatobiliary and Pancreatic Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shixing Zhao
- Department of Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Xiaoli Pang
- Department of Hepatobiliary and Pancreatic Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baorong Chi
- Department of Hepatobiliary and Pancreatic Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
37
|
Shi X, Yan C, Liu B, Yang C, Nie X, Wang X, Zheng J, Wang Y, Zhu Y. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression. PLoS One 2015; 10:e0138973. [PMID: 26431046 PMCID: PMC4591969 DOI: 10.1371/journal.pone.0138973] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes) and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR-381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR-381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR-381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR-381 played important role in neural stem cells proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaodong Shi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Chunhua Yan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Baoquan Liu
- Department of anatomy, Harbin Medical University, Harbin, 150081, PR China
| | - Chunxiao Yang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Xuedan Nie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Jiaolin Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Yue Wang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, 150081, PR China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
38
|
Xu K, Xiong W, Zhou M, Wang H, Yang J, Li X, Chen P, Liao Q, Deng H, Li X, Li G, Zeng Z. Integrating ChIP-sequencing and digital gene expression profiling to identify BRD7 downstream genes and construct their regulating network. Mol Cell Biochem 2015; 411:57-71. [PMID: 26407966 DOI: 10.1007/s11010-015-2568-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
BRD7 is a single bromodomain-containing protein that functions as a subunit of the SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well-known tumor suppressor protein p53 to trans-activate genes involved in cell cycle arrest. In this paper, we report an integrative analysis of genome-wide chromatin occupancy of BRD7 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and digital gene expression (DGE) profiling by RNA-sequencing upon the overexpression of BRD7 in human cells. We localized 156 BRD7-binding peaks representing 184 genes by ChIP-sequencing, and most of these peaks were co-localized with histone modification sites. Four novel motifs were significantly represented in these BRD7-enriched regions. Ingenuity pathway analysis revealed that 22 of these BRD7 target genes were involved in a network regulating cell death and survival. DGE profiling identified 560 up-regulated genes and 1088 down-regulated genes regulated by BRD7. Using Gene Ontology and pathway analysis, we found significant enrichment of the cell cycle and apoptosis pathway genes. For the integrative analysis of the ChIP-seq and DEG data, we constructed a regulating network of BRD7 downstream genes, and this network suggests multiple feedback regulations of the pathways. Furthermore, we validated BIRC2, BIRC3, TXN2, and NOTCH1 genes as direct, functional BRD7 targets, which were involved in the cell cycle and apoptosis pathways. These results provide a genome-wide view of chromatin occupancy and the gene regulation network of the BRD7 signaling pathway.
Collapse
Affiliation(s)
- Ke Xu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heran Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jing Yang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
39
|
Duan HF, Li XQ, Hu HY, Li YC, Cai Z, Mei XS, Yu P, Nie LP, Zhang W, Yu ZD, Nie GH. Functional elucidation of miR-494 in the tumorigenesis of nasopharyngeal carcinoma. Tumour Biol 2015; 36:6679-89. [PMID: 25809707 PMCID: PMC4644213 DOI: 10.1007/s13277-015-3356-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/30/2014] [Indexed: 02/05/2023] Open
Abstract
Nasopharyngeal carcinoma has very high incidence and high mortality worldwide. MiRNA is related to the tumorigenesis and metastasis of a variety of tumors. In the present study, we verify that the expression of miR-494 in NPC tissues and NPC-derived cells was down-regulated, respectively. The proliferation, colony formation, migration, and invasion of NPC-derived cells were suppressed, while the cell apoptosis was promoted, when miR-494 was over-expressed in these cells. GALNT7 and CDK16 were confirmed to be the direct targets of miR-494. These results suggested that miR-494 play an inhibitory role in the tumorigenesis of NPC.
Collapse
Affiliation(s)
- Hong-Fang Duan
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
- Guangzhou Medical University, 510000, Guangzhou, Guangdong Province, China
| | - Xiao-Qing Li
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
- Shantou University Medical College, 515041, Shantou, Guangdong Province, China
| | - Hong-Yi Hu
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Yu-Chi Li
- Shantou University Medical College, 515041, Shantou, Guangdong Province, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen PKU-HKUST Medical Center, Institute of Urology, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Zhi Cai
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Xue-Shuang Mei
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Peng Yu
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Li-Ping Nie
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, 518036, Shenzhen, Guangdong Province, China.
| | - Zhen-Dong Yu
- Central Laboratory, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China.
| | - Guo-Hui Nie
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China.
| |
Collapse
|
40
|
Wang H, Liu S, Cui J, Li C, Hu Y, Zhou W, Chang Y, Qiu X, Liu Z, Wang X. Identification and Characterization of MicroRNAs from Longitudinal Muscle and Respiratory Tree in Sea Cucumber (Apostichopus japonicus) Using High-Throughput Sequencing. PLoS One 2015; 10:e0134899. [PMID: 26244987 PMCID: PMC4526669 DOI: 10.1371/journal.pone.0134899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/15/2015] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs), as a family of non-coding small RNAs, play important roles in the post-transcriptional regulation of gene expression. Sea cucumber (Apostichopus japonicus) is an important economic species which is widely cultured in East Asia. The longitudinal muscle (LTM) and respiratory tree (RPT) are two important tissues in sea cucumber, playing important roles such as respiration and movement. In this study, we identified and characterized miRNAs in the LTM and RPT of sea cucumber (Apostichopus japonicus) using Illumina HiSeq 2000 platform. A total of 314 and 221 conserved miRNAs were identified in LTM and RPT, respectively. In addition, 27 and 34 novel miRNAs were identified in the LTM and RPT, respectively. A set of 58 miRNAs were identified to be differentially expressed between LTM and RPT. Among them, 9 miRNAs (miR-31a-3p, miR-738, miR-1692, let-7a, miR-72a, miR-100b-5p, miR-31b-5p, miR-429-3p, and miR-2008) in RPT and 7 miRNAs (miR-127, miR-340, miR-381, miR-3543, miR-434-5p, miR-136-3p, and miR-300-3p) in LTM were differentially expressed with foldchange value being greater than 10. A total of 14,207 and 12,174 target genes of these miRNAs were predicted, respectively. Functional analysis of these target genes of miRNAs were performed by GO analysis and pathway analysis. This result provided in this work will be useful for understanding biological characteristics of the LTM and RPT of sea cucumber and assisting molecular breeding of sea cucumber for aquaculture.
Collapse
Affiliation(s)
- Hongdi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, United States of America
| | - Jun Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Chengze Li
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Yucai Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
- School of Science, Dalian Ocean University, Dalian 116023, China
| | - Wei Zhou
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Xuemei Qiu
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, United States of America
| | - Xiuli Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
- * E-mail:
| |
Collapse
|
41
|
Peng G, Yuan X, Yuan J, Liu Q, Dai M, Shen C, Ma J, Liao Y, Jiang W. miR-25 promotes glioblastoma cell proliferation and invasion by directly targeting NEFL. Mol Cell Biochem 2015. [PMID: 26209061 DOI: 10.1007/s11010-015-2516-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant and common brain tumor; it is aggressive growth pattern means that GBM patients face a poor prognosis even when receiving the best available treatment modalities. In recent years, an increasing number of reports suggest that the discovery of microRNAs (miRNAs) might provide a novel therapeutic target for human cancers, including GBM. One miRNA in particular, microRNA-25 (miR-25), is overexpressed in several cancers, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-25 in GBM has not been totally elucidated. In this study, we demonstrated that miR-25 was significantly up-regulated in astrocytoma tissues and glioblastoma cell lines. In vitro studies further demonstrated that overexpressed miR-25 was able to promote, while its antisense oligos inhibited cell proliferation and invasion in U251 cells. Moreover, we identified neurofilament light polypeptide (NEFL) as a novel target molecule of miR-25. Also of note was the fact that NEFL was down-regulated with increased levels of miR-25 expression in human astrocytoma clinical specimens. In addition, via the mTOR signaling pathway, NEFL-siRNA could significantly attenuate the inhibitory effects of knockdown miR-25 on the proliferation and invasion of U251 cells. Overall, our results showed an important role for miR-25 in regulating NEFL expression in GBM, and suggest that miR-25 could be a potential target for GBM treatment.
Collapse
Affiliation(s)
- Gang Peng
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Minhui Dai
- Department of Ophthalmology, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Jianrong Ma
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
42
|
Bernstein C, Bernstein H. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer. World J Gastrointest Oncol 2015; 7:30-46. [PMID: 25987950 PMCID: PMC4434036 DOI: 10.4251/wjgo.v7.i5.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy.
Collapse
|
43
|
Costa PM, Cardoso AL, Custódia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma. J Control Release 2015; 207:31-9. [PMID: 25861727 DOI: 10.1016/j.jconrel.2015.04.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/04/2023]
Abstract
Malignant brain tumors, including glioblastoma (GBM), are among the most lethal human cancers, due to their tremendous invasive capacity and limited therapeutic options. Despite remarkable advances in cancer theranostics, which resulted in significant improvement of clinical outcomes, GBM relapse is very frequent and patient survival remains under one year. The elucidation of the role of abnormally-expressed miRNAs in different steps of GBM pathogenesis and in tumor resistance to therapy paved the way for the development of new miRNA-based therapeutic approaches targeting this disease, aiming at increasing specific tumor cell killing and, ultimately, cancer eradication. Here, we demonstrate that intravenously-administered chlorotoxin (CTX)-coupled (targeted) stable nucleic acid lipid particle (SNALP)-formulated anti-miR-21 oligonucleotides accumulate preferentially within brain tumors and promote efficient miR-21 silencing, which results in increased mRNA and protein levels of its target RhoB, while showing no signs of systemic immunogenicity. Decreased tumor cell proliferation and tumor size, as well as enhanced apoptosis activation and, to a lesser extent, improvement of animal survival, were also observed in GBM-bearing mice upon systemic delivery of targeted nanoparticle-formulated anti-miR-21 oligonucleotides and exposure to the tyrosine kinase inhibitor sunitinib. Overall, our results provide evidence that CTX-coupled SNALPs are a reliable and efficient system for systemic delivery of anti-miRNA oligonucleotides. Moreover, although further studies are still necessary to demonstrate a therapeutic benefit in a clinical context, our findings suggest that miRNA modulation by the targeted nanoparticles combined with anti-angiogenic chemotherapy may hold promise as an attractive approach towards GBM treatment.
Collapse
Affiliation(s)
- Pedro M Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana L Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos Custódia
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Pedro Cunha
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3001-401 Coimbra, Portugal.
| |
Collapse
|
44
|
Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 2015; 29:732-45. [PMID: 25838542 PMCID: PMC4387715 DOI: 10.1101/gad.257394.114] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/26/2015] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Fotini M Kouri
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Lisa A Hurley
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | - Emily S Day
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Youjia Hua
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Liangliang Hao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Chian-Yu Peng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Timothy J Merkel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Markus A Queisser
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Carissa Ritner
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Hailei Zhang
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Lynda Chin
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - John A Kessler
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Marcus E Peter
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA; Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA;
| |
Collapse
|
45
|
Xu Y, Cao W, Zhou M, Li C, Luo Y, Wang H, Zhao R, Jiang S, Yang J, Liu Y, Wang X, Li X, Xiong W, Ma J, Peng S, Zeng Z, Li X, Tan M, Li G. Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex. Behav Brain Res 2015; 286:1-10. [PMID: 25721744 DOI: 10.1016/j.bbr.2015.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
BRD7 is a bromodomain-containing protein (BCP), and recent evidence implicates the role of BCPs in the initiation and development of neurodevelopmental disorders. However, few studies have investigated the biological functions of BRD7 in the central nervous system. In our study, BRD7 was found to be widely expressed in various regions of the mouse brain, including the medial prefrontal cortex (mPFC), caudate putamen (CPu), hippocampus (Hip), midbrain (Mb), cerebellum (Cb), and mainly co-localized with neuron but not with glia. Using a BRD7 knockout mouse model and a battery of behavioral tests, we report that disruption of BRD7 results in impaired cognitive behavior leaving the emotional behavior unaffected. Moreover, a series of proteins involved in synaptic plasticity were decreased in the medial prefrontal cortex and there was a concomitant decrease in neuronal spine density and dendritic branching in the medial prefrontal cortex. However, no significant difference was found in the hippocampus compared to the wild-type mice. Thus, BRD7 might play a critical role in the regulation of synaptic plasticity and affect cognitive behavior.
Collapse
Affiliation(s)
- Yang Xu
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Wenyu Cao
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Tongzipo Road 172, Changsha, Hunan Province 410013, People's Republic of China
| | - Ming Zhou
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China.
| | - Changqi Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Tongzipo Road 172, Changsha, Hunan Province 410013, People's Republic of China
| | - Yanwei Luo
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Heran Wang
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Ran Zhao
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Shihe Jiang
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Jing Yang
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Yukun Liu
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Xinye Wang
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Xiayu Li
- The Third Xiang-Ya Hospital, Central South University, Tongzipo Road 237, Changsha, Hunan Province 410013, People's Republic of China
| | - Wei Xiong
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Jian Ma
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Shuping Peng
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Zhaoyang Zeng
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Xiaoling Li
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Xiangya Road 110 Changsha, Hunan Province 410078, People's Republic of China.
| |
Collapse
|
46
|
Yang HW, Xing H, Johnson MD. A major role for microRNAs in glioblastoma cancer stem-like cells. Arch Pharm Res 2015; 38:423-34. [PMID: 25683176 DOI: 10.1007/s12272-015-0574-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/06/2023]
Abstract
Studies have demonstrated that miRNAs contribute to the maintenance and phenotype of in several cancer types. This review will focus on the roles of a few well studied miRNAs in cancer stem-like cells of glioblastoma.
Collapse
Affiliation(s)
- Hong Wei Yang
- Department of Neurosurgery, Brigham and Women's Hospital/Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,
| | | | | |
Collapse
|
47
|
Li P, Xu G, Li G, Wu M. Function and mechanism of tumor suppressor gene LRRC4/NGL-2. Mol Cancer 2014; 13:266. [PMID: 25526788 PMCID: PMC4349622 DOI: 10.1186/1476-4598-13-266] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/15/2014] [Indexed: 11/24/2022] Open
Abstract
LRRC4/NGL-2 (Leucine rich repeat containing 4/Netrin-G ligand-2), a relatively specific expressed gene in brain tissue, is a member of the LRRC4/ NGL (netrin-G ligand) family and belongs to the superfamily of LRR proteins. LRRC4/NGL-2 regulates neurite outgrowth and lamina-specific dendritic segmentation, suggesting that LRRC4/NGL-2 is important for the development of the nervous system. In addition, LRRC4/NGL-2 has been identified as a tumor suppressor gene. The overexpression of LRRC4/NGL-2 suppresses glioma cell growth, angiogenesis and invasion through complicated signaling regulation networks. LRRC4/NGL-2 also has the ability to form multiphase loops with miRNA, transcription factors and gene methylation modification; the loss of LRRC4/NGL-2 function may be an important event in multiple biological processes in gliomas. In summary, LRRC4/NGL-2 is a critical gene in the normal development and tumorigenesis of the nervous system.
Collapse
Affiliation(s)
| | | | | | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School Central South University, Changsha, Hunan, China.
| |
Collapse
|
48
|
Zhou S, Ye W, Ren J, Shao Q, Qi Y, Liang J, Zhang M. MicroRNA-381 increases radiosensitivity in esophageal squamous cell carcinoma. Am J Cancer Res 2014; 5:267-277. [PMID: 25628936 PMCID: PMC4300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Radiation resistance poses a major clinical challenge in treatment of esophageal squamous cell carcinoma (ESCC). However, the mechanisms of radioresistance has not been fully elucidated. Since accumulating evidence demonstrates that aberrant expression of microRNAs (miRNAs) contributes to cancer sensitivity to radiation, we aimed to identify miRNAs associated with radioresistance of ESCC. METHODS In this study, we used GeneChip miRNA Array to perform an comparison of miRNAs expression in tissues from primary ESCC and recurrent ESCC in situ after radiotherapy. Differential expressions of miRNAs were comfirmed by quantitative Real-Time PCR in tissues and six ESCC cell lines. Cell radiosensitivity were determined by colony formation assay. Functional analyses of miRNA-381 in ESCC cells growth and metastasis were performed by MTT and Transwell Assays. In vivo assays of the functions of miRNA-381 were performed in tumor xenografts. RESULTS One miRNA candidate, miRNA-381, was found to be downregulated in radiation resistance tissues and cells. Enforced expression of miRNA-381 increased radiosensitivity of ESCC cells and promoted nonaggressive phenotype including decreased cellular proliferation and migration. In contrast, inhibition of miRNA-381 in ESCC cells promoted radiation resistance and development of an aggressive phenotype. In vivo assays extended the significance of these results, showing that miRNA-381 overexpression decreased the tumor growth and the resistance to radiation treatment in tumor xenografts. CONCLUSIONS Together, our work reveals miRNA-381 expression as a critical determinant of radiosensitivity in esophageal cancer cells.
Collapse
Affiliation(s)
- Suna Zhou
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Wenguang Ye
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Juan Ren
- Department of Radiotherapy, First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Jun Liang
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| | - Mingxin Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical UniversityXi’an, Shaanxi, China
| |
Collapse
|
49
|
Xiao S, Yang Z, Lv R, Zhao J, Wu M, Liao Y, Liu Q. miR-135b contributes to the radioresistance by targeting GSK3β in human glioblastoma multiforme cells. PLoS One 2014; 9:e108810. [PMID: 25265336 PMCID: PMC4181861 DOI: 10.1371/journal.pone.0108810] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). Recent data strongly suggests the important role of miRNAs in cancer progression and therapeutic response. Here, we have established a radioresistant human GBM cell line U87R derived from parental U87 and found miR-135b expression was upregulated in U87R cells. miR-135b knockdown reversed radioresistance of U87R cells, and miR-135b overexpression enhanced radioresistance of U87 cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated GSK3β (Glycogen synthase kinase 3 beta) was a novel direct target of miR-135b. Moreover, GSK3β protein expression was downregulated in U87R cells and restored expression of GSK3β increased radiosensitivity of U87R cells. In addition, clinical data indicated that the expression of miR-135b or GSK3β was significantly association with IR resistance of GBM samples. Our findings suggest miR-135b is involved in the radioresistance of human GBM cells and miR-135b-GSK3β axis may be a novel candidate for developing rational therapeutic strategies for human GBM treatment.
Collapse
Affiliation(s)
- Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guanzhou, Guangdong, People's Republic of China
| | - Zhen Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guanzhou, Guangdong, People's Republic of China
| | - Ruiyan Lv
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guanzhou, Guangdong, People's Republic of China
| | - Jia Zhao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guanzhou, Guangdong, People's Republic of China
| | - Ming Wu
- Department of Neurosurgery, Xiangya Hospital, Central South university, Changsha, Hunan, People's Republic of China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South university, Changsha, Hunan, People's Republic of China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South university, Changsha, Hunan, People's Republic of China
- * E-mail:
| |
Collapse
|
50
|
LRRC4 haplotypes are associated with pituitary adenoma in a Chinese population. Med Oncol 2014; 31:888. [PMID: 24563334 DOI: 10.1007/s12032-014-0888-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Pituitary adenoma results from accumulation of multiple genetic and/or epigenetic aberrations such as GNAS, MEN1, CNC, and FIPA. LRRC4 is relatively tissue-specific expressed gene in the normal brain and downregulated expression in glioma (87.5%), meningioma (80.9%), and pituitary adenoma (85.5%). It has been suggested that the aberrant expression of LRRC4 contributes to tumorigenesis in glioma. However, little is known yet about association between LRRC4 and risk of pituitary adenoma. In this study, we genotyped three LRRC4 haplotype-tagging SNPs (htSNP) by direct sequencing in case-control studies, which included 183 Han Chinese patients diagnosed with pituitary adenoma and 183 age-, gender-matched, and geographically matched Han Chinese controls. Haplotypes were reconstructed according to the genotyping data and linkage disequilibrium status of the htSNP. We observed statistically significant differences regarding the genotype TT + CT of rs6944446 in the NCA. Haplotype AC of rs3823994-rs6944446 is suggested to have a protective effect in the development of pituitary adenoma (OR 0.339; 95% CI 0.123-0.934). However, haplotype GT of rs3808058-rs6944446 (OR 1.575; 95% CI 1.048-2.368) and AGT of rs3823994-rs6944446-rs3808058 (OR 1.673; 95% CI 1.056-2.651) might be a risk factor for pituitary adenoma development. In a brief, the results support the hypothesis that polymorphisms or haplotypes in the LRRC4 may have important research significance and could be used to predict the risk of pituitary adenoma.
Collapse
|