1
|
Girault G, Freddi L, Jay M, Perrot L, Dremeau A, Drapeau A, Delannoy S, Fach P, Ferreira Vicente A, Mick V, Ponsart C, Djokic V. Combination of in silico and molecular techniques for discrimination and virulence characterization of marine Brucella ceti and Brucella pinnipedialis. Front Microbiol 2024; 15:1437408. [PMID: 39360323 PMCID: PMC11444999 DOI: 10.3389/fmicb.2024.1437408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Mammals are the main hosts for Brucella sp., agents of worldwide zoonosis. Marine cetaceans and pinnipeds can be infected by Brucella ceti and B. pinnipedialis, respectively. Besides classical bacteriological typing, molecular approaches such as MLVA, MLSA, and whole-genome sequencing (WGS) can differentiate these species but are cumbersome to perform. Methods We compared the DNA and genome sequences of 12 strains isolated from nine marine mammals, with highly zoonotic B. melitensis, B. abortus, and B. suis, and the publicly available genomes of B. ceti and B. pinnipedialis. In silico pipelines were used to detect the antimicrobial resistance (AMR), plasmid, and virulence genes (VGs) by screening six open-source and one home-made library. Results and discussion Our results show that easier-to-use HRM-PCR, Bruce-ladder, and Suis-ladder can separate marine Brucella sp., and the results are fully concordant with other molecular methods, such as WGS. However, the restriction fragment length polymorphism (RFLP) method cannot discriminate between B. pinnipedialis and B. ceti B1-94-like isolates. MLVA-16 results divided the investigated strains into three clades according to their preferred host, which was confirmed in WGS. In silico analysis did not find any AMR and plasmid genes, suggesting antimicrobial susceptibility of marine Brucella, while the presence of the VGs btpA gene was variable dependent on the clade. Conclusion The HRM-PCR and Suis-ladder are quick, easy, and cost-effective methods to identify marine Brucella sp. Moreover, in silico genome analyses can give useful insights into the genetic virulence and pathogenicity potential of marine Brucella strains.
Collapse
Affiliation(s)
- Guillaume Girault
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Luca Freddi
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Maryne Jay
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Ludivine Perrot
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Alexandre Dremeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Antoine Drapeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Sabine Delannoy
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Acacia Ferreira Vicente
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Virginie Mick
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Claire Ponsart
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Vitomir Djokic
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| |
Collapse
|
2
|
de Carvalho TP, da Silva LA, Castanheira TLL, de Souza TD, da Paixão TA, Lazaro-Anton L, Tsolis RM, Santos RL. Cell and Tissue Tropism of Brucella spp. Infect Immun 2023; 91:e0006223. [PMID: 37129522 PMCID: PMC10187126 DOI: 10.1128/iai.00062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Brucella spp. are facultatively intracellular bacteria that can infect, survive, and multiply in various host cell types in vivo and/or in vitro. The genus Brucella has markedly expanded in recent years with the identification of novel species and hosts, which has revealed additional information about the cell and tissue tropism of these pathogens. Classically, Brucella spp. are considered to have tropism for organs that contain large populations of phagocytes such as lymph nodes, spleen, and liver, as well as for organs of the genital system, including the uterus, epididymis, testis, and placenta. However, experimental infections of several different cultured cell types indicate that Brucella may actually have a broader cell tropism than previously thought. Indeed, recent studies indicate that certain Brucella species in particular hosts may display a pantropic distribution in vivo. This review discusses the available knowledge on cell and tissue tropism of Brucella spp. in natural infections of various host species, as well as in experimental animal models and cultured cells.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Laice Alves da Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Larissa Lourenço Castanheira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Norte de Minas Gerais, Salinas, Brazil
| | - Tayse Domingues de Souza
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leticia Lazaro-Anton
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA
| |
Collapse
|
3
|
Orsini M, Ianni A, Zinzula L. Brucella ceti and Brucella pinnipedialis genome characterization unveils genetic features that highlight their zoonotic potential. Microbiologyopen 2022; 11:e1329. [PMID: 36314752 PMCID: PMC9597259 DOI: 10.1002/mbo3.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Gram-negative bacteria Brucella ceti and Brucella pinnipedialis circulate in marine environments primarily infecting marine mammals, where they cause an often-fatal disease named brucellosis. The increase of brucellosis among several species of cetaceans and pinnipeds, together with the report of sporadic human infections, raises concerns about the zoonotic potential of these pathogens on a large scale and may pose a threat to coastal communities worldwide. Therefore, the characterization of the B. ceti and B. pinnipedialis genetic features is a priority to better understand the pathological factors that may impact global health. Moreover, an in-depth functional analysis of the B. ceti and B. pinnipedialis genome in the context of virulence and pathogenesis was not undertaken so far. Within this picture, here we present the comparative whole-genome characterization of all B. ceti and B. pinnipedialis genomes available in public resources, uncovering a collection of genetic tools possessed by these aquatic bacterial species compared to their zoonotic terrestrial relatives. We show that B. ceti and B. pinnipedialis genomes display a wide host-range infection capability and a polyphyletic phylogeny within the genus, showing a genomic structure that fits the canonical definition of closeness. Functional genome annotation led to identifying genes related to several pathways involved in mechanisms of infection, others conferring pan-susceptibility to antimicrobials and a set of virulence genes that highlight the similarity of B. ceti and B. pinnipedialis genotypes to those of Brucella spp. displaying human-infecting phenotypes.
Collapse
Affiliation(s)
- Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratory of Microbial Ecology and GenomicsLegnaroItaly
| | - Andrea Ianni
- Research Unit in Hygiene, Statistics and Public HealthCampus Bio‐Medico di Roma UniversityRomeItaly
| | - Luca Zinzula
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Centro di Educazione Ambientale e alla Sostenibilità (CEAS) Laguna di NoraPulaItaly
| |
Collapse
|
4
|
Kudela E, Liskova A, Samec M, Koklesova L, Holubekova V, Rokos T, Kozubik E, Pribulova T, Zhai K, Busselberg D, Kubatka P, Biringer K. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer. EPMA J 2021; 12:199-220. [PMID: 34194585 PMCID: PMC8192654 DOI: 10.1007/s13167-021-00244-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
HPVs representing the most common sexually transmitted disease are a group of carcinogenic viruses with different oncogenic potential. The immune system and the vaginal microbiome represent the modifiable and important risk factors in HPV-induced carcinogenesis. HPV infection significantly increases vaginal microbiome diversity, leading to gradual increases in the abundance of anaerobic bacteria and consequently the severity of cervical dysplasia. Delineation of the exact composition of the vaginal microbiome and immune environment before HPV acquisition, during persistent/progressive infections and after clearance, provides insights into the complex mechanisms of cervical carcinogenesis. It gives hints regarding the prediction of malignant potential. Relative high HPV prevalence in the general population is a challenge for modern and personalized diagnostics and therapeutic guidelines. Identifying the dominant microbial biomarkers of high-grade and low-grade dysplasia could help us to triage the patients with marked chances of lesion regression or progression. Any unnecessary surgical treatment of cervical dysplasia could negatively affect obstetrical outcomes and sexual life. Therefore, understanding the effect and role of microbiome-based therapies is a breaking point in the conservative management of HPV-associated precanceroses. The detailed evaluation of HPV capabilities to evade immune mechanisms from various biofluids (vaginal swabs, cervicovaginal lavage/secretions, or blood) could promote the identification of new immunological targets for novel individualized diagnostics and therapy. Qualitative and quantitative assessment of local immune and microbial environment and associated risk factors constitutes the critical background for preventive, predictive, and personalized medicine that is essential for improving state-of-the-art medical care in patients with cervical precanceroses and cervical cancer. The review article focuses on the influence and potential diagnostic and therapeutic applications of the local innate immune system and the microbial markers in HPV-related cancers in the context of 3P medicine.
Collapse
Affiliation(s)
- Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Veronika Holubekova
- Jessenius Faculty of Medicine, Biomedical Centre Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Tomas Rokos
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Erik Kozubik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Terezia Pribulova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Dietrich Busselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| |
Collapse
|
5
|
Zhou Y, Wang L, Pei F, Ji M, Zhang F, Sun Y, Zhao Q, Hong Y, Wang X, Tian J, Wang Y. Patients With LR-HPV Infection Have a Distinct Vaginal Microbiota in Comparison With Healthy Controls. Front Cell Infect Microbiol 2019; 9:294. [PMID: 31555603 PMCID: PMC6722871 DOI: 10.3389/fcimb.2019.00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/30/2019] [Indexed: 01/31/2023] Open
Abstract
Condyloma acuminatum (CA) is a benign epithelium hyperplasia mainly caused by human papillomavirus (HPV), which is now the second most common viral sexually transmitted infection (STI) in China. In total, 90% of CA patients are caused by the low-risk HPV 6 and 11. Aside from low-risk HPV infection there are likely other factors within the local microenvironment that contribute to CA and there has been related research before. In this study, 62 vaginal specimens were analyzed using 16S rRNA gene sequencing. The diversity of the vaginal microbiota was higher and the composition was different with LR-HPV infection. While the relative abundance of dominant Firmicutes was lower, Actinobacteria, Proteobacteria, and Fusobacteria phyla were significantly higher; at the genus level Gardnerella, Bifidobacterium, Sneathia, Hydrogenophilus, Burkholderia, and Atopobium were higher. This study firstly confirmed a more accurate and comprehensive understanding of the relationship between low-risk HPV infection and vaginal microbiota, in order to provide a theoretical basis for further research on the occurrence and development of CA.
Collapse
Affiliation(s)
- Yunying Zhou
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China.,Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Shandong LaiBo Biotechnology Co., Ltd., Jinan, China
| | - Lu Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Fengyan Pei
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Mingyu Ji
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Fang Zhang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yingshuo Sun
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Qianqian Zhao
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yatian Hong
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiao Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Juanjuan Tian
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yunshan Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
6
|
Waldrop SG, Sriranganathan N. Intracellular invasion and survival of Brucella neotomae, another possible zoonotic Brucella species. PLoS One 2019; 14:e0213601. [PMID: 30943213 PMCID: PMC6447175 DOI: 10.1371/journal.pone.0213601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
In 1967, Brucella neotomae was first isolated from Neotoma lepida, the dessert wood rat, in Utah. With little infection data since its discovery, the zoonotic potential of this Brucella species is largely unknown. Recent reports of isolation from human cerebrospinal fluid, along with current literature suggest that B. neotomae has the ability to infect various hosts and cell types. In this report we extend the knowledge of B. neotomae ATCC 23459’s intracellular invasion and survival abilities to a variety of cell lines through gentamicin protection assays. Some of the phagocytic and epithelial cell lines from various mammalian species represent characteristics of some cell types that could be encountered by Brucella in potential hosts. It was found that B. neotomae ATCC 23459 exhibits generally lower intracellular bacterial CFUs compared to the mouse-passaged strain of B. neotomae ATCC 23459, B. suis 1330, and B. abortus 2308. Ultimately, these observations provide a small piece of the puzzle in the investigation of the breadth of B. neotomae’s pathogenic potential.
Collapse
Affiliation(s)
- Steven Grant Waldrop
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Larsen AK, Nymo IH, Sørensen KK, Seppola M, Rødven R, Jiménez de Bagüés MP, Al Dahouk S, Godfroid J. Concomitant Temperature Stress and Immune Activation may Increase Mortality Despite Efficient Clearance of an Intracellular Bacterial Infection in Atlantic Cod. Front Microbiol 2018; 9:2963. [PMID: 30564213 PMCID: PMC6289035 DOI: 10.3389/fmicb.2018.02963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Abstract
The environmental temperature has profound effects on biological systems of marine aquatic organisms and plays a critical role in species distribution and abundance. Particularly during the warmer seasons, variations in habitat temperature may introduce episodes of stressful temperatures which the organisms must adapt to and compensate for to maintain physiological homeostasis. The marine environment is changing and predicted raises in water temperatures will affect numerous marine species. Translocation of pathogens follow migration of species and alternations in physical environmental parameters may have influence upon the virulence of pathogens, as well as the hosts immune responses. While pathogenicity of many true pathogens is expected to increase following climate induced temperature stress, the impact from environmental stressors on the occurrence and severity of opportunistic infections is unknown. Here we describe how thermal stress in the cold-water species Atlantic cod influenced the fish immune responses against an opportunistic intracellular bacterium. Following experimental infection with Brucella pinnipedialis at normal water temperature (6°C) and sub-optimal temperature (15°C), cod cleared the intracellular bacteria more rapidly at the highest temperature. The overall immune response was faster and of higher amplitude at 15°C, however, a significant number of cod died at this temperature despite efficient clearance of infection. An increased growth rate not affected by infection was observed at 15°C, confirming multiple energy demanding processes taking place. Serum chemistry suggested that general homeostasis was influenced by both infection and increased water temperature, highlighting the cumulative stress responses (allostatic load) generated by simultaneous stressors. Our results suggest a trade-off between resistance and tolerance to survive infection at sub-optimal temperatures and raise questions concerning the impact of increased water temperatures on the energetic costs of immune system activation in aquatic ectotherms.
Collapse
Affiliation(s)
- Anett K Larsen
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ingebjørg H Nymo
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Karen K Sørensen
- Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Marit Seppola
- Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Rolf Rødven
- Department of Research and Development, UiT - The Arctic University of Norway, Tromsø, Norway
| | - María Pilar Jiménez de Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Jacques Godfroid
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Foster G, Nymo IH, Kovacs KM, Beckmen KB, Brownlow AC, Baily JL, Dagleish MP, Muchowski J, Perrett LL, Tryland M, Lydersen C, Godfroid J, McGovern B, Whatmore AM. First isolation of Brucella pinnipedialis and detection of Brucella antibodies from bearded seals Erignathus barbatus. DISEASES OF AQUATIC ORGANISMS 2018; 128:13-20. [PMID: 29565250 DOI: 10.3354/dao03211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brucella species infecting marine mammals was first reported in 1994 and in the years since has been documented in various species of pinnipeds and cetaceans. While these reports have included species that inhabit Arctic waters, the few available studies on bearded seals Erignathus barbatus have failed to detect Brucella infection to date. We report the first isolation of Brucella pinnipedialis from a bearded seal. The isolate was recovered from the mesenteric lymph node of a bearded seal that stranded in Scotland and typed as ST24, a sequence type associated typically with pinnipeds. Furthermore, serological studies of free-ranging bearded seals in their native waters detected antibodies to Brucella in seals from the Chukchi Sea (1990-2011; 19%) and Svalbard (1995-2007; 8%), whereas no antibodies were detected in bearded seals from the Bering Sea or Bering Strait or from captive bearded seals.
Collapse
Affiliation(s)
- Geoffrey Foster
- SAC Consulting Veterinary Services, Drummondhill, Stratherrick Road, Inverness IV2 4JZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nymo IH, Rødven R, Beckmen K, Larsen AK, Tryland M, Quakenbush L, Godfroid J. Brucella Antibodies in Alaskan True Seals and Eared Seals-Two Different Stories. Front Vet Sci 2018; 5:8. [PMID: 29445729 PMCID: PMC5797734 DOI: 10.3389/fvets.2018.00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Brucella pinnipedialis was first isolated from true seals in 1994 and from eared seals in 2008. Although few pathological findings have been associated with infection in true seals, reproductive pathology including abortions, and the isolation of the zoonotic strain type 27 have been documented in eared seals. In this study, a Brucella enzyme-linked immunosorbent assay (ELISA) and the Rose Bengal test (RBT) were initially compared for 206 serum samples and a discrepancy between the tests was found. Following removal of lipids from the serum samples, ELISA results were unaltered while the agreement between the tests was improved, indicating that serum lipids affected the initial RBT outcome. For the remaining screening, we used ELISA to investigate the presence of Brucella antibodies in sera of 231 eared and 1,412 true seals from Alaskan waters sampled between 1975 and 2011. In eared seals, Brucella antibodies were found in two Steller sea lions (Eumetopias jubatus) (2%) and none of the 107 Northern fur seals (Callorhinus ursinus). The low seroprevalence in eared seals indicate a low level of exposure or lack of susceptibility to infection. Alternatively, mortality due to the Brucella infection may remove seropositive animals from the population. Brucella antibodies were detected in all true seal species investigated; harbor seals (Phoca vitulina) (25%), spotted seals (Phoca largha) (19%), ribbon seals (Histriophoca fasciata) (16%), and ringed seals (Pusa hispida hispida) (14%). There was a low seroprevalence among pups, a higher seroprevalence among juveniles, and a subsequent decreasing probability of seropositivity with age in harbor seals. Similar patterns were present for the other true seal species; however, solid conclusions could not be made due to sample size. This pattern is in accordance with previous reports on B. pinnipedialis infections in true seals and may suggest environmental exposure to B. pinnipedialis at the juvenile stage, with a following clearance of infection. Furthermore, analyses by region showed minor differences in the probability of being seropositive for harbor seals from different regions regardless of the local seal population trend, signifying that the Brucella infection may not cause significant mortality in these populations. In conclusion, the Brucella infection pattern is very different for eared and true seals.
Collapse
Affiliation(s)
- Ingebjørg H Nymo
- Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Rolf Rødven
- Bioscience, Fishery and Economy, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kimberlee Beckmen
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Fairbanks, AK, United States
| | - Anett K Larsen
- Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Morten Tryland
- Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Lori Quakenbush
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Fairbanks, AK, United States
| | - Jacques Godfroid
- Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
10
|
Hoover-Miller A, Dunn JL, Field CL, Blundell G, Atkinson S. Seroprevalence of Brucella antibodies in harbor seals in Alaska, USA, with age, regional, and reproductive comparisons. DISEASES OF AQUATIC ORGANISMS 2017; 126:1-12. [PMID: 28930080 DOI: 10.3354/dao03153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Populations of harbor seal Phoca vitulina in the Gulf of Alaska have dramatically declined during the past 4 decades. Numbers of seals in Glacier Bay, in southeast Alaska, USA, have also declined despite extensive protection. Causes of the declines and slow recovery are poorly understood. Brucellosis is a zoonotic disease that adversely affects reproduction in many domestic species. We measured the seroprevalence of Brucella antibodies in 554 harbor seals in 3 Alaska locations: Prince William Sound (PWS), Glacier Bay (GB), and Tracy Arm Fords Terror (TAFT) Wilderness Area. Objectives included testing for regional, sex, age, and female reproductive state differences in Brucella antibody seroprevalence, persistence in titers in recaptured seals, and differences in titers between mother seals and their pups. Overall, 52% of adults (AD), 53% of subadults (SA), 77% of yearlings (YRL), and 26% of <5 mo old pups were seropositive. Matched mother-pup samples were consistent with dependent pups acquiring maternal passive immunity to Brucella. Results show higher seroprevalence (64%) for AD and SA seals in the depressed and declining populations in PWS and GB than in TAFT (29%). Lactating females were less likely to be seropositive than other AD females, including pregnant females. Further research is needed to seek evidence of Brucella infection in Alaskan harbor seals, identify effects on neonatal viability, and assess zoonotic implications for Alaska Natives who rely on harbor seals for food.
Collapse
Affiliation(s)
- A Hoover-Miller
- Alaska SeaLife Center, 301 Railway Ave, PO Box 1329, Seward, AK 99664, USA
| | | | | | | | | |
Collapse
|
11
|
Bakkemo KR, Mikkelsen H, Johansen A, Robertsen B, Seppola M. Francisella noatunensis subsp. noatunensis invades, survives and replicates in Atlantic cod cells. DISEASES OF AQUATIC ORGANISMS 2016; 121:149-159. [PMID: 27667812 DOI: 10.3354/dao03043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Systemic infection caused by the facultative intracellular bacterium Francisella noatunensis subsp. noatunensis remains a disease threat to Atlantic cod Gadus morhua L. Future prophylactics could benefit from better knowledge on how the bacterium invades, survives and establishes infection in its host cells. Here, facilitated by the use of a gentamicin protection assay, this was studied in primary monocyte/macrophage cultures and an epithelial-like cell line derived from Atlantic cod larvae (ACL cells). The results showed that F. noatunensis subsp. noatunensis is able to invade primary monocyte/macrophages, and that the actin-polymerisation inhibitor cytochalasin D blocked internalisation, demonstrating that the invasion is mediated through phagocytosis. Interferon gamma (IFNγ) treatment of cod macrophages prior to infection enhanced bacterial invasion, potentially by stimulating macrophage activation in an early step in host defence against F. noatunensis subsp. noatunensis infections. We measured a rapid drop of the initial high levels of internalised bacteria in macrophages, indicating the presence and action of a cellular immune defence mechanism before intracellular bacterial replication took place. Low levels of bacterial internalisation and replication were detected in the epithelial-like ACL cells. The capacity of F. noatunensis subsp. noatunensis to enter, survive and even replicate within an epithelial cell line may play an important role in its ability to infect live fish and transverse epithelial barriers to reach the bacterium's main target cells-the macrophage.
Collapse
|
12
|
Nymo IH, Seppola M, Al Dahouk S, Bakkemo KR, Jiménez de Bagüés MP, Godfroid J, Larsen AK. Experimental Challenge of Atlantic Cod (Gadus morhua) with a Brucella pinnipedialis Strain from Hooded Seal (Cystophora cristata). PLoS One 2016; 11:e0159272. [PMID: 27415626 PMCID: PMC4944957 DOI: 10.1371/journal.pone.0159272] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Pathology has not been observed in true seals infected with Brucella pinnipedialis. A lack of intracellular survival and multiplication of B. pinnipedialis in hooded seal (Cystophora cristata) macrophages in vitro indicates a lack of chronic infection in hooded seals. Both epidemiology and bacteriological patterns in the hooded seal point to a transient infection of environmental origin, possibly through the food chain. To analyse the potential role of fish in the transmission of B. pinnipedialis, Atlantic cod (Gadus morhua) were injected intraperitoneally with 7.5 x 107 bacteria of a hooded seal field isolate. Samples of blood, liver, spleen, muscle, heart, head kidney, female gonads and feces were collected on days 1, 7, 14 and 28 post infection to assess the bacterial load, and to determine the expression of immune genes and the specific antibody response. Challenged fish showed an extended period of bacteremia through day 14 and viable bacteria were observed in all organs sampled, except muscle, until day 28. Neither gross lesions nor mortality were recorded. Anti-Brucella antibodies were detected from day 14 onwards and the expression of hepcidin, cathelicidin, interleukin (IL)-1β, IL-10, and interferon (IFN)-γ genes were significantly increased in spleen at day 1 and 28. Primary mononuclear cells isolated from head kidneys of Atlantic cod were exposed to B. pinnipedialis reference (NCTC 12890) and hooded seal (17a-1) strain. Both bacterial strains invaded mononuclear cells and survived intracellularly without any major reduction in bacterial counts for at least 48 hours. Our study shows that the B. pinnipedialis strain isolated from hooded seal survives in Atlantic cod, and suggests that Atlantic cod could play a role in the transmission of B. pinnipedialis to hooded seals in the wild.
Collapse
Affiliation(s)
- Ingebjørg Helena Nymo
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Marit Seppola
- Department of Medical Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Sascha Al Dahouk
- Federal Institute for Risk Assessment, Berlin, Germany
- RWTH Aachen University, Department of Internal Medicine III, Aachen, Germany
| | | | - María Pilar Jiménez de Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria (CITA), Instituto Agroalimentario de Aragón–IA2 (CITA–Universidad de Zaragoza), Zaragoza, Spain
| | - Jacques Godfroid
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Anett Kristin Larsen
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT–The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
13
|
Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model. PLoS One 2016; 11:e0150432. [PMID: 26959235 PMCID: PMC4784796 DOI: 10.1371/journal.pone.0150432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.
Collapse
|
14
|
Brucella pinnipedialis in hooded seal (Cystophora cristata) primary epithelial cells. Acta Vet Scand 2016; 58:9. [PMID: 26809981 PMCID: PMC4727353 DOI: 10.1186/s13028-016-0188-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/12/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Marine Brucella spp. have been isolated from numerous pinniped and cetacean species, but pathological findings in association with infection with Brucella pinnipedialis in pinnipeds have been sparse. The capacity of brucellae to survive and replicate within host macrophages underlies their important ability to produce chronic infections, but previous work has shown that B. pinnipedialis spp. are rapidly eliminated from hooded seal (Cystophora cristata) alveolar macrophages. RESULTS To investigate if multiplication could take place in other hooded seal cell types, primary epithelial cells were isolated, verified to express the epithelial marker cytokeratin and challenged with three different strains of B. pinnipedialis; B. pinnipedialis sp. nov., B. pinnipedialis hooded seal strain B17, and B. pinnipedialis hooded seal strain 22F1. All strains were steadily eliminated and the amounts of intracellular bacteria were reduced to less than one-third by 48 h post infection. Intracellular presence was verified using immunocytochemistry. CONCLUSIONS So far, intracellular multiplication in seal cells has not been documented for B. pinnipedialis. The lack of intracellular survival in macrophages, as well as in epithelial cells, together with the fact that pathological changes due to B. pinnipedialis infection is not yet identified in seals, suggests that the bacteria may only cause a mild, acute and transient infection. These findings also contribute to substantiate the hypothesis that seals may not be the primary host of B. pinnipedialis and that the transmission to seals are caused by other species in the marine environment.
Collapse
|
15
|
Cheng BCY, Yu H, Su T, Fu XQ, Guo H, Li T, Cao HH, Tse AKW, Kwan HY, Yu ZL. A herbal formula comprising Rosae Multiflorae Fructus and Lonicerae Japonicae Flos inhibits the production of inflammatory mediators and the IRAK-1/TAK1 and TBK1/IRF3 pathways in RAW 264.7 and THP-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:195-199. [PMID: 26297845 DOI: 10.1016/j.jep.2015.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As documented in the Chinese Materia Medica Grand Dictionary (), a herbal formula (RL) consisting of Rosae Multiflorae Fructus (multiflora rose hips) and Lonicerae Japonicae Flos (Japanese honeysuckle flowers) has traditionally been used in treating inflammatory disorders. RL was previously reported to inhibit the expression of various inflammatory mediators regulated by NF-κB and MAPKs that are components of the TLR4 signalling pathways. AIM OF THE STUDY This study aims to provide further justification for clinical application of RL in treating inflammatory disorders by further delineating the involvement of the TLR4 signalling cascades in the effects of RL on inflammatory mediators. MATERIALS AND METHODS RL consisting of Rosae Multiflorae Fructus and Lonicerae Japonicae Flos (in 5:3 ratio) was extracted using absolute ethanol. We investigated the effect of RL on the production of cytokines and chemokines that are regulated by three key transcription factors of the TLR4 signalling pathways AP-1, NF-κB and IRF3 in LPS-stimulated RAW264.7 cells using the multiplex biometric immunoassay. Phosphorylation of AP-1, NF-κB, IRF3, IκB-α, IKKα/β, Akt, TAK1, TBK1, IRAK-1 and IRAK-4 were examined in LPS-stimulated RAW264.7 cells and THP-1 cells using Western blotting. Nuclear localizations of AP-1, NF-κB and IRF3 were also examined using Western blotting. RESULTS RL reduced the secretion of various pro-inflammatory cytokines and chemokines regulated by transcription factors AP-1, NF-κB and IRF3. Phosphorylation and nuclear protein levels of these transcription factors were decreased by RL treatment. Moreover, RL inhibited the activation/phosphorylation of IκB-α, IKKα/β, TAK1, TBK1 and IRAK-1. CONCLUSIONS Suppression of the IRAK-1/TAK1 and TBK1/IRF3 signalling pathways was associated with the effect of RL on inflammatory mediators in LPS-stimulated RAW264.7 and THP-1 cells. This provides further pharmacological basis for the clinical application of RL in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Brian Chi Yan Cheng
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hua Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Tao Su
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hui Guo
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ting Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hui-Hui Cao
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Anfernee Kai-Wing Tse
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hiu-Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
16
|
Brucella canis is an intracellular pathogen that induces a lower proinflammatory response than smooth zoonotic counterparts. Infect Immun 2015; 83:4861-70. [PMID: 26438796 DOI: 10.1128/iai.00995-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023] Open
Abstract
Canine brucellosis caused by Brucella canis is a disease of dogs and a zoonotic risk. B. canis harbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies of B. canis outbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulent B. canis strain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore, B. canis induced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than did B. abortus. When the interaction of B. canis with cells was studied ex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicative B. canis followed an intracellular trafficking route undistinguishable from that of B. abortus. Although B. canis induces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly.
Collapse
|
17
|
Nymo IH, das Neves CG, Tryland M, Bårdsen BJ, Santos RL, Turchetti AP, Janczak AM, Djønne B, Lie E, Berg V, Godfroid J. Brucella pinnipedialis hooded seal (Cystophora cristata) strain in the mouse model with concurrent exposure to PCB 153. Comp Immunol Microbiol Infect Dis 2014; 37:195-204. [PMID: 24534631 DOI: 10.1016/j.cimid.2014.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 01/08/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Brucellosis, a worldwide zoonosis, is linked to reproductive problems in primary hosts. A high proportion of Brucella-positive hooded seals (Cystophora cristata) have been detected in the declined Northeast Atlantic stock. High concentrations of polychlorinated biphenyls (PCBs) have also been discovered in top predators in the Arctic, including the hooded seal, PCB 153 being most abundant. The aim of this study was to assess the pathogenicity of Brucella pinnipedialis hooded seal strain in the mouse model and to evaluate the outcome of Brucella spp. infection after exposure of mice to PCB 153. BALB/c mice were infected with B. pinnipedialis hooded seal strain or Brucella suis 1330, and half from each group was exposed to PCB 153 through the diet. B. pinnipedialis showed a reduced pathogenicity in the mouse model as compared to B. suis 1330. Exposure to PCB 153 affected neither the immunological parameters, nor the outcome of the infection. Altogether this indicates that it is unlikely that B. pinnipedialis contribute to the decline of hooded seals in the Northeast Atlantic.
Collapse
Affiliation(s)
- Ingebjørg H Nymo
- Norwegian University of Life Sciences, School of Veterinary Science, Department of Food Safety and Infection Biology, Section for Arctic Veterinary Medicine, Stakkevolleveien 23, 9010 Tromsø, Norway; Member of the Fram Centre, N-9296 Tromsø, Norway.
| | - Carlos G das Neves
- Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, N-0106 Oslo, Norway
| | - Morten Tryland
- Norwegian University of Life Sciences, School of Veterinary Science, Department of Food Safety and Infection Biology, Section for Arctic Veterinary Medicine, Stakkevolleveien 23, 9010 Tromsø, Norway; Member of the Fram Centre, N-9296 Tromsø, Norway
| | - Bård-Jørgen Bårdsen
- Norwegian Institute for Nature Research, Arctic Ecology Department, Fram Centre, 9296 Tromsø, Norway; Member of the Fram Centre, N-9296 Tromsø, Norway
| | - Renato Lima Santos
- Universidade Federal de Minas Gerais, Escola de Veterinária, Departamento de Clínica e Cirurgia Veterinária, Av. Antonio Carlos, 6627 Pampulha, 30161-970 Belo Horizonte, Brazil
| | - Andreia Pereira Turchetti
- Universidade Federal de Minas Gerais, Escola de Veterinária, Departamento de Clínica e Cirurgia Veterinária, Av. Antonio Carlos, 6627 Pampulha, 30161-970 Belo Horizonte, Brazil
| | - Andrew M Janczak
- Norwegian University of Life Sciences, School of Veterinary Science, Department of Production Animal Clinical Sciences, Animal Welfare Research Group, Postboks 8146 Dep, N-0033 Oslo, Norway
| | - Berit Djønne
- Norwegian Veterinary Institute, Ullevålsveien 68, Pb 750 Sentrum, N-0106 Oslo, Norway
| | - Elisabeth Lie
- Norwegian Institute for Nature Research, Contaminants in Aquatic Environments, Gaustadalléen 21, NO-0349 Oslo, Norway; Norwegian University of Life Sciences, School of Veterinary Science, Department of Food Safety and Infection Biology, Section for Pharmacology and Toxicology, Postboks 8146 Dep, N-0033 Oslo, Norway
| | - Vidar Berg
- Norwegian University of Life Sciences, School of Veterinary Science, Department of Food Safety and Infection Biology, Section for Pharmacology and Toxicology, Postboks 8146 Dep, N-0033 Oslo, Norway
| | - Jacques Godfroid
- Norwegian University of Life Sciences, School of Veterinary Science, Department of Food Safety and Infection Biology, Section for Arctic Veterinary Medicine, Stakkevolleveien 23, 9010 Tromsø, Norway; Member of the Fram Centre, N-9296 Tromsø, Norway
| |
Collapse
|