1
|
Sharma P, Paul K. Selective Recognition of Oncogene Promoter C-Myc G-Quadruplex: Design, Synthesis, and In Vitro Evaluation of Naphthalimide and Imidazo[1,2- a]pyrazines for Their Anticancer Activity. ACS APPLIED BIO MATERIALS 2025. [PMID: 39844620 DOI: 10.1021/acsabm.4c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
c-Myc is a transcription factor that is overexpressed in most human cancers. Despite its challenging nature, we have developed a series of naphthalimide-imidazopyrazine conjugates to target c-Myc. The library of synthesized derivatives was tested for their anticancer activity against a nine-panel of cancer cell lines. Compound 8eb showed excellent cytotoxicity against all the tested cancer cell lines, with the range of growth inhibition from -98.79% to 96.62% at a single-dose concentration of 10-5 M. Further, 8eb was employed for a 5-dose assay against the same cancer cell lines, which showed efficacy at varying concentrations with an MG-MID GI50 value of 2.61 μM. Biophysical studies were performed to explore the interaction of 8eb with c-Myc Pu27 over ct-DNA, oncogene promotor Pu22, and human telomere, with a binding constant value of 1.3 × 107 M-1. Additionally, experiments were performed to get insights into the interaction mechanism between 8eb and the c-Myc oncogene promoter. A molecular docking study unveiled the stacking of the compound with G4 DNA through groove binding, where very few reports are available, with a favorable binding energy of -9.2 kcal/mol. Moreover, the pharmacokinetic study and HOMO-LUMO energy gap analysis underscored the potency of the active candidate. The compound's binding ability toward HSA was also assessed, where results suggested effective binding of the compound to HSA, revealing its potential for easy delivery to the target site. The above findings suggested that these newly synthesized candidates with potent anticancer activity offer a promising avenue as G4 DNA c-Myc stabilizers.
Collapse
Affiliation(s)
- Palak Sharma
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| |
Collapse
|
2
|
Kumar P, Singh A, Sarkar N, Kaushik M. Protein coupled thionine acetate probed silica nanoparticles: An integrated laser-assisted therapeutic approach for treating cancer. Bioorg Chem 2024; 147:107398. [PMID: 38691907 DOI: 10.1016/j.bioorg.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Herein, we report a multifaceted nanoformulation, developed by binding thionine acetate (TA) in silica matrix to form TA loaded silica nanoparticles (STA Nps), which were characterized using various physicochemical techniques. STA NPs were spherical shaped having size 40-50 nm and exhibited good heating efficiency, improved photostability and singlet oxygen production rate than TA alone. In PDT experiment, the rate of degradation for ABDMA was enhanced from 0.1367 min-1 for TA alone to 0.1774 min-1 for STA Nps, depicting an increase in the reactive oxygen species (ROS) generation ability of STA Nps. Further, the cytotoxicity of STA Nps was investigated by carrying out the biophysical studies with Calf thymus DNA (Ct-DNA) and Human Serum Albumin (HSA). The results indicated that the binding of STA Nps to Ct-DNA causes alterations in the double helix structure of DNA and as a result, STA Nps can impart chemotherapeutic effects via targeting DNA. STA Nps showed good binding affinity with HSA without compromising the structure of HSA, which is important for STA Nps sustainable biodistribution and pharmacokinetics. Based on this study, it is suggested that because of the synergistic effect of chemo and phototherapy, STA Nps can be extensively utilized as potential candidates for treating cancer.
Collapse
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India; Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India; Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India.
| |
Collapse
|
3
|
Khurana S, Kukreti S, Kaushik M. Prospecting the cancer therapeutic edge of chitosan-based gold nanoparticles through conformation selective binding to the parallel G-quadruplex formed by short telomeric DNA sequence: A multi-spectroscopic approach. Int J Biol Macromol 2023; 253:126835. [PMID: 37709220 DOI: 10.1016/j.ijbiomac.2023.126835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The biological relevance of G4 structures formed in telomere & oncogenes promoters make them extremely crucial therapeutic target for cancer treatment. Herein, we have synthesized chitosan-based gold nanoparticles (CH-Au NPs) through green method and have investigated their interaction with G4 structures formed by short telomeric sequences to evaluate their potential for targeting G4 structures. Firstly, we have characterized morphological/physical attributes of synthesized CH-Au NPs and salt dependent structural aspects of model G-rich DNA sequence, 12-mer d(T2G4)2 [TETRA] using spectroscopic and biophysical techniques. The molecular interactions between CH-Au NPs and parallel/antiparallel TETRA G4 structures were evaluated using UV-Visible, CD, Fluorescence, CD melting, DLS and Zeta potential studies. The experimental data indicated that CH-Au NPs showed strong binding interactions with Parallel TETRA G4 and provided thermal stabilization to the structure, whereas their interactions with Antiparallel TETRA G4 DNA and Ct-DNA (DNA duplex) were found to be negligible. Further, CH-Au NPs were also investigated for their selectivity aptitude for different G4 structures formed by human telomeric sequences; d(T2AG3)3 [HUM-12] and d(T2AG3)4T [HUM-25]. Our findings suggested that CH-Au NPs exhibited topology specific binding aptitude towards G4 structure, which can be utilized to inhibit/modulate crucial biological functions for potential anticancer activity.
Collapse
Affiliation(s)
- Sonia Khurana
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
4
|
Determination of Curcumin on Functionalized Carbon Nano Tube Modified Electrode and Probing its Interaction with DNA and Copper Ion. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Notarstefano V, Pisani M, Bramucci M, Quassinti L, Maggi F, Vaccari L, Parlapiano M, Giorgini E, Astolfi P. A vibrational in vitro approach to evaluate the potential of monoolein nanoparticles as isofuranodiene carrier in MDA-MB 231 breast cancer cell line: New insights from Infrared and Raman microspectroscopies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120735. [PMID: 34923374 DOI: 10.1016/j.saa.2021.120735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Isofuranodiene (IFD) is a sesquiterpene occurring in several plant species, which proved to have multiple anticancer activities. IFD has a lipophilic nature and, hence, a very low water solubility and a poor bioavailability; moreover, it is not stable, undergoing the "Cope rearrangement" to the less active curzerene. The use of appropriate delivery systems can thus be considered as a valid tool to enhance IFD bioavailability, solubility, stability and at the same time also to improve its intracellular uptake and pharmacological activity. Within this frame, monoolein (GMO) nanoparticles loaded with IFD were prepared and their enhanced anticancer activity, compared to pristine IFD, was assessed. In this study, for the first time, an in vitro Fourier Transform Infrared and Raman Microspectroscopy approaches were exploited to evaluate the effects of IFD, alone and loaded in GMO nanoparticles, on MDA-MB 231 breast cancer cell line. The anti-cancer effects of IFD were evidenced by both the spectroscopic techniques and discriminated from the GMO-induced changes in the culture environment; moreover, a synergistic effect of IFD and GMO administration can be envisaged by the experimental results.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| | - Michela Pisani
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy.
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy.
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, SISSI Beamline, s.s. 14 km 163,500 in Area Science Park, I-34149 Basovizza, Trieste, Italy.
| | - Marco Parlapiano
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| | - Paola Astolfi
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| |
Collapse
|
6
|
Russo G, Notarstefano V, Montik N, Gioacchini G, Giorgini E, Polidori AR, Candela FA, Ciavattini A, Cignitti M, Carnevali O. Evaluation of Controlled Ovarian Stimulation Protocols in Patients with Normal and Low Ovarian Reserve: Analyses of miRNAs and Selected Target Genes Involved in the Proliferation of Human Cumulus Cells and Oocyte Quality. Int J Mol Sci 2022; 23:1713. [PMID: 35163635 PMCID: PMC8836191 DOI: 10.3390/ijms23031713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
The oocyte and the surrounding cumulus cells (CCs) are deeply linked by a complex bidirectional cross-talk. In this light, the molecular analysis of the CCs is nowadays considered to be precious in providing information on oocyte quality. It is now clear that miRNAs play a key role in several ovarian functions, such as folliculogenesis, steroidogenesis, and ovulation. Thus, in this study, specific miRNAs, together with their target genes, were selected and investigated in CCs to assess the response of patients with normal (NR) and low (LR) ovarian reserve to two different controlled ovarian stimulation (COS) protocols, based on rFSH and hMG. Moreover, a Fourier transform infrared microspectroscopy (FTIRM) analysis was performed to evaluate DNA conformational changes in CCs and to relate them with the two COS protocols. The results evidenced a modulation of the expression of miRNAs and related target genes involved in CCs' proliferation, in vasculogenesis, angiogenesis, genomic integrity, and oocyte quality, with different effects according to the ovarian reserve of patients. Moreover, the COS protocols determined differences in DNA conformation and the methylation state. In particular, the results clearly showed that treatment with rFSH is the most appropriate in NR patients with normal ovarian reserve, while treatment with hMG appears to be the most suitable in LR patients with low ovarian reserve.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| | - Nina Montik
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| | - Anna Rita Polidori
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Fulvia Antonia Candela
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Andrea Ciavattini
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Maurizio Cignitti
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| |
Collapse
|
7
|
Hekmat A, Hatamie S, Saboury AA. The effects of synthesized silver nanowires on the structure and esterase-like activity of human serum albumin and their impacts on human endometrial stem cells. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadie Hatamie
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Notarstefano V, Belloni A, Sabbatini S, Pro C, Orilisi G, Monterubbianesi R, Tosco V, Byrne HJ, Vaccari L, Giorgini E. Cytotoxic Effects of 5-Azacytidine on Primary Tumour Cells and Cancer Stem Cells from Oral Squamous Cell Carcinoma: An In Vitro FTIRM Analysis. Cells 2021; 10:2127. [PMID: 34440896 PMCID: PMC8392608 DOI: 10.3390/cells10082127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023] Open
Abstract
In the present study, the cytotoxic effects of 5-azacytidine on primary Oral Squamous Cell Carcinoma cells (OSCCs) from human biopsies, and on Cancer Stem Cells (CSCs) from the same samples, were investigated by an in vitro Fourier Transform InfraRed Microscospectroscopy (FTIRM) approach coupled with multivariate analysis. OSCC is an aggressive tumoral lesion of the epithelium, accounting for ~90% of all oral cancers. It is usually diagnosed in advanced stages, and this causes a poor prognosis with low success rates of surgical, as well as radiation and chemotherapy treatments. OSCC is frequently characterised by recurrence after chemotherapy and by the development of a refractoriness to some employed drugs, which is probably ascribable to the presence of CSCs niches, responsible for cancer growth, chemoresistance and metastasis. The spectral information from FTIRM was correlated with the outcomes of cytotoxicity tests and image-based cytometry, and specific spectral signatures attributable to 5-azacytidine treatment were identified, allowing us to hypothesise the demethylation of DNA and, hence, an increase in the transcriptional activity, together with a conformational transition of DNA, and a triggering of cell death by an apoptosis mechanism. Moreover, a different mechanism of action between OSSC and CSC cells was highlighted, probably due to possible differences between OSCCs and CSCs response.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| | - Alessia Belloni
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| | - Simona Sabbatini
- Department of Material, Environmental Sciences and Urban Planning, Università Politecnica Delle Marche, 60131 Ancona, Italy;
| | - Chiara Pro
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| | - Giulia Orilisi
- Department of Clinical Sciences and Stomatology, Università Politecnica Delle Marche, 60126 Ancona, Italy; (G.O.); (R.M.); (V.T.)
| | - Riccardo Monterubbianesi
- Department of Clinical Sciences and Stomatology, Università Politecnica Delle Marche, 60126 Ancona, Italy; (G.O.); (R.M.); (V.T.)
| | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology, Università Politecnica Delle Marche, 60126 Ancona, Italy; (G.O.); (R.M.); (V.T.)
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin 8, Ireland;
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, SISSI Beamline, 34149 Basovizza, Italy;
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| |
Collapse
|
9
|
Notarstefano V, Sabbatini S, Pro C, Belloni A, Orilisi G, Rubini C, Byrne HJ, Vaccari L, Giorgini E. Exploiting fourier transform infrared and Raman microspectroscopies on cancer stem cells from oral squamous cells carcinoma: new evidence of acquired cisplatin chemoresistance. Analyst 2021; 145:8038-8049. [PMID: 33063801 DOI: 10.1039/d0an01623c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral Squamous Cells Carcinoma (OSCC) is characterised by the risk of recurrence and the onset of a refractoriness response to chemotherapy drugs. These phenomena have been recently related to a subpopulation of Cancer Stem Cells (CSCs), which have either an innate or acquired drug resistance, triggered by chemotherapy treatments. In this light, to precisely target chemotherapy regimens, it is essential to improve knowledge on CSCs, with a particular focus on their molecular features. In this work, a subpopulation of CSCs, isolated by tumour sphere formation from primary OSCC cells, were treated with cisplatin for 16, 24 and 48 hours and analysed by infrared absorption and Raman microspectroscopies. CSC spectral data were compared with those obtained in previous work, for primary OSCC cells treated under the same conditions. Routine viability/apoptosis cell-based assays evidenced in CSCs and primary OSCCs, a similar degree of sensitivity to the drug at 24 hours, while a reversion of the conventional monotonic time response exhibited by OSCCs was shown by CSCs at 48 hours. This peculiar time response was also supported by the analysis of IR and Raman data, which pinpointed alterations in the lipid composition and DNA conformation in CSCs. The results obtained suggest that CSCs, although sharing with OSCC cells a similar sensitivity to cisplatin, display the onset of a mechanism of chemoresistance and enrichment of resistant CSCs as a result of drug treatment, shedding new light on the severe issue of refractoriness of some patients to chemotherapy conventionally used for OSCC.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ipte P, Sharma A, Pal H, Satpati A. Probing the interaction of ciprofloxacin with dsDNA: Electrochemical, spectro-electrochemical and AFM investigation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Hekmat A, Salavati F, Hesami Tackallou S. The Effects of Paclitaxel in the Combination of Diamond Nanoparticles on the Structure of Human Serum Albumin (HSA) and Their Antiproliferative Role on MDA-MB-231cells. Protein J 2020; 39:268-283. [DOI: 10.1007/s10930-020-09882-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Sofińska K, Wilkosz N, Szymoński M, Lipiec E. Molecular Spectroscopic Markers of DNA Damage. Molecules 2020; 25:E561. [PMID: 32012927 PMCID: PMC7037412 DOI: 10.3390/molecules25030561] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Every cell in a living organism is constantly exposed to physical and chemical factors which damage the molecular structure of proteins, lipids, and nucleic acids. Cellular DNA lesions are the most dangerous because the genetic information, critical for the identity and function of each eukaryotic cell, is stored in the DNA. In this review, we describe spectroscopic markers of DNA damage, which can be detected by infrared, Raman, surface-enhanced Raman, and tip-enhanced Raman spectroscopies, using data acquired from DNA solutions and mammalian cells. Various physical and chemical DNA damaging factors are taken into consideration, including ionizing and non-ionizing radiation, chemicals, and chemotherapeutic compounds. All major spectral markers of DNA damage are presented in several tables, to give the reader a possibility of fast identification of the spectral signature related to a particular type of DNA damage.
Collapse
Affiliation(s)
| | | | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.S.); (N.W.); or (M.S.)
| |
Collapse
|
13
|
Pashah Z, Hekmat A, Hesami Tackallou S. Structural effects of Diamond nanoparticles and Paclitaxel combination on calf thymus DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:249-278. [PMID: 30922151 DOI: 10.1080/15257770.2018.1515440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The combination effects of nanodiamonds (NDs) and Paclitaxel (PTX) on the DNA structure were examined. The UV-Visible, steady-state and time-resolved fluorescence spectroscopy, CD, viscosity and zeta potential results showed that PTX + NDs could form a complex via groove binding mechanism. The values of binding constants, ΔG° and ΔH° and ΔS° values showed that PTX + NDs interact strongly with DNA and the hydrophobic force plays main role in this interaction. The ΔG25ο and Tm study indicated the instability of DNA in presence of PTX + NDs. This study demonstrated that NDs could enhance the effect of PTX on DNA structure as well as its affinity and binding to DNA.
Collapse
Affiliation(s)
- Zahra Pashah
- a Department of Biology , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Azadeh Hekmat
- a Department of Biology , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Saeed Hesami Tackallou
- b Department of Biology , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|
14
|
Farhane Z, Nawaz H, Bonnier F, Byrne HJ. In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: Towards a new paradigm of spectralomics. JOURNAL OF BIOPHOTONICS 2018; 11:e201700258. [PMID: 29083121 DOI: 10.1002/jbio.201700258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
This overview groups some of the recent studies highlighting the potential application of Raman microspectroscopy as an analytical technique in preclinical development to predict drug mechanism of action and in clinical application as a companion diagnostic and in personalised therapy due to its capacity to predict cellular resistance and therefore to optimise chemotherapeutic treatment efficacy. Notably, the anthracyclines, doxorubicin and actinomycin D, elicit similar spectroscopic signatures of subcellular interaction characteristic of the mode of action of intercalation. Although cisplatin and vincristine show markedly different signatures, at low exposure doses, their signatures at higher doses show marked similarities to those elicited by the intercalating anthracyclines, confirming that anticancer agents can have different modes of action with different spectroscopic signatures, depending on the dose. The study demonstrates that Raman microspectroscopy can elucidate subcellular transport and accumulation pathways of chemotherapeutic agents, characterise and fingerprint their mode of action, and potentially identify cell-resistant strains. The consistency of the spectroscopic signatures for drugs of similar modes of action, in different cell lines, suggests that this fingerprint can be considered a "spectralome" of the drug-cell interaction suggesting a new paradigm of representing spectroscopic responses.
Collapse
Affiliation(s)
- Zeineb Farhane
- FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Franck Bonnier
- Faculty of Pharmacy, Université François-Rabelais de Tours, Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
15
|
Ikhlas S, Ahmad M. Binding studies of guggulsterone-E to calf thymus DNA by multi-spectroscopic, calorimetric and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:402-408. [PMID: 28954252 DOI: 10.1016/j.saa.2017.09.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Guggulsterone, a sterol found in plants is used as an ayurvedic medicine for many diseases such as obesity, internal tumors, ulcers etc. E and Z are two isoforms of guggulsterone, wherein guggulsterone-E (GUGE) has also been shown to have anticancer potential. Most of the anticancer drugs target nucleic acids. Therefore, we studied the mode of interaction between ctDNA and GUGE using UV-Vis, fluorescence and CD spectroscopy, isothermal calorimetry along with molecular docking studies. Hoechst 3325, ethidium bromide and rhodamine-B displacement experiments confirms that GUGE binds in the minor groove of DNA. ITC results further suggest these interactions to be feasible and spontaneous with hydrogen bond formation and van der waals interactions. Lastly, molecular docking also suggests GUGE to be a minor groove binder interacting through a single hydrogen bond formation between OH group of GUGE and nitrogen (N3) of adenosine (A6).
Collapse
Affiliation(s)
- Shoeb Ikhlas
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
16
|
R S SM, R S SS, D RB, S V, R B, G NR. Interaction of vasicine with calf thymus DNA: Molecular docking, spectroscopic and differential scanning calorimetric insights. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 180:217-223. [PMID: 28315618 DOI: 10.1016/j.saa.2017.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
The present study brings out the interaction between vasicine, an alkaloid of Adhatoda vasica Nees with double stranded DNA [corrected]. The physico-chemical interaction between small molecules and nucleic acids is a major area of focus in screening drugs against various cancers. Molecular probing in our study using Molecular Operating Environment (MOE) has revealed interaction of vasicine with DNA double helix. Here we report the interaction of vasicine with Calf thymus DNA. We present for the first time the results obtained from UV-visible, fluorescence spectroscopic and differential scanning calorimetric techniques that suggest a moderate to strong electrostatic, hydrophobic and van der Waals interactions mediating the DNA binding properties of vasicine, leading to disruption of DNA secondary structure.
Collapse
Affiliation(s)
- Sai Murali R S
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India; Division of Research and Development, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab 144411, India.
| | - Sai Siddhardha R S
- Material Science & Technology, Innovation Centre, Tata Chemicals Limited, Pune, Maharashtra, India; Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| | - Rajesh Babu D
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| | - Venketesh S
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| | - Basavaraju R
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| | - Nageswara Rao G
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| |
Collapse
|
17
|
Denbigh JL, Perez-Guaita D, Vernooij RR, Tobin MJ, Bambery KR, Xu Y, Southam AD, Khanim FL, Drayson MT, Lockyer NP, Goodacre R, Wood BR. Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modern vibrational spectroscopy techniques. Sci Rep 2017; 7:2649. [PMID: 28572622 PMCID: PMC5453947 DOI: 10.1038/s41598-017-02069-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/07/2017] [Indexed: 01/07/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a life threatening cancer for which there is an urgent clinical need for novel therapeutic approaches. A redeployed drug combination of bezafibrate and medroxyprogesterone acetate (BaP) has shown anti-leukaemic activity in vitro and in vivo. Elucidation of the BaP mechanism of action is required in order to understand how to maximise the clinical benefit. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Synchrotron radiation FTIR (S-FTIR) and Raman microspectroscopy are powerful complementary techniques which were employed to probe the biochemical composition of two AML cell lines in the presence and absence of BaP. Analysis was performed on single living cells along with dehydrated and fixed cells to provide a large and detailed data set. A consideration of the main spectral differences in conjunction with multivariate statistical analysis reveals a significant change to the cellular lipid composition with drug treatment; furthermore, this response is not caused by cell apoptosis. No change to the DNA of either cell line was observed suggesting this combination therapy primarily targets lipid biosynthesis or effects bioactive lipids that activate specific signalling pathways.
Collapse
Affiliation(s)
- Joanna L Denbigh
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, M1 7DN, United Kingdom.,Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, United Kingdom
| | - David Perez-Guaita
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Robbin R Vernooij
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark J Tobin
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Keith R Bambery
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Yun Xu
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Farhat L Khanim
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Nicholas P Lockyer
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Royston Goodacre
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
18
|
Callies O, Hernández Daranas A. Application of isothermal titration calorimetry as a tool to study natural product interactions. Nat Prod Rep 2016; 33:881-904. [DOI: 10.1039/c5np00094g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of molecular interactions of natural products by isothermal titration calorimetry (ITC) is a potent tool to get new insights of the underpinning driving forces.
Collapse
Affiliation(s)
- O. Callies
- Institute of Bioorganic Chemistry “Antonio González”
- Center for Biomedical Research of the Canary Islands
- University of La Laguna
- 38206 La Laguna
- Spain
| | - A. Hernández Daranas
- Institute of Bioorganic Chemistry “Antonio González”
- Center for Biomedical Research of the Canary Islands
- University of La Laguna
- 38206 La Laguna
- Spain
| |
Collapse
|