1
|
Schierz IAM, Piro E, Giuffrè M, Pinello G, Angelini A, Antona V, Cimador M, Corsello G. Clinical and genetic approach in the characterization of newborns with anorectal malformation. J Matern Fetal Neonatal Med 2022; 35:4513-4520. [DOI: 10.1080/14767058.2020.1854213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ingrid Anne Mandy Schierz
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Neonatal Intensive Care Unit, University Hospital “P. Giaccone”, Palermo, Italy
| | - Ettore Piro
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Neonatal Intensive Care Unit, University Hospital “P. Giaccone”, Palermo, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Neonatal Intensive Care Unit, University Hospital “P. Giaccone”, Palermo, Italy
| | - Giuseppa Pinello
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Neonatal Intensive Care Unit, University Hospital “P. Giaccone”, Palermo, Italy
| | - Alice Angelini
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Neonatal Intensive Care Unit, University Hospital “P. Giaccone”, Palermo, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Neonatal Intensive Care Unit, University Hospital “P. Giaccone”, Palermo, Italy
| | - Marcello Cimador
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Pediatric Surgery Unit, University Hospital “P. Giaccone”, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Neonatal Intensive Care Unit, University Hospital “P. Giaccone”, Palermo, Italy
| |
Collapse
|
2
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Moreno OM, Sánchez AI, Herreño A, Giraldo G, Suárez F, Prieto JC, Clavijo AS, Olaya M, Vargas Y, Benítez J, Surallés J, Rojas A. Phenotypic Characteristics and Copy Number Variants in a Cohort of Colombian Patients with VACTERL Association. Mol Syndromol 2021; 11:271-283. [PMID: 33505230 DOI: 10.1159/000510910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
VACTERL association (OMIM 192350) is a heterogeneous clinical condition characterized by congenital structural defects that include at least 3 of the following features: vertebral abnormalities, anal atresia, heart defects, tracheoesophageal fistula, renal malformations, and limb defects. The nonrandom occurrence of these malformations and some familial cases suggest a possible association with genetic factors such as chromosomal alterations, gene mutations, and inherited syndromes such as Fanconi anemia (FA). In this study, the clinical phenotype and its relationship with the presence of chromosomal abnormalities and FA were evaluated in 18 patients with VACTERL association. For this, a G-banded karyotype, array-comparative genomic hybridization, and chromosomal fragility test for FA were performed. All patients (10 female and 8 male) showed a broad clinical spectrum: 13 (72.2%) had vertebral abnormalities, 8 (44.4%) had anal atresia, 14 (77.8%) had heart defects, 8 (44.4%) had esophageal atresia, 10 (55.6%) had renal abnormalities, and 10 (55.6%) had limb defects. Chromosomal abnormalities and FA were ruled out. In 2 cases, the finding of microalterations, namely del(15)(q11.2) and dup(17)(q12), explained the phenotype; in 8 cases, copy number variations were classified as variants of unknown significance and as not yet described in VACTERL. These variants comprise genes related to important cellular functions and embryonic development.
Collapse
Affiliation(s)
- Olga M Moreno
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ana I Sánchez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia.,Departamento Materno Infantil, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana, Cali, Colombia.,Centro Médico Imbanaco de Cali, Cali, Colombia
| | - Angélica Herreño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gustavo Giraldo
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Suárez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia.,Unidad de Genética Medica, Hospital Universitario de San Ignacio, Bogotá, Colombia
| | - Juan Carlos Prieto
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ana Shaia Clavijo
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mercedes Olaya
- Servicio de Patología, Hospital Universitario de San Ignacio, Bogotá, Colombia
| | - Yaris Vargas
- Servicio de Pediatría, Neonatología, Hospital Universitario de San Ignacio, Bogotá, Colombia
| | - Javier Benítez
- CNIO: Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Jordi Surallés
- Departamento de Genética y Microbiología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Jung M, Ramanagoudr-Bhojappa R, van Twest S, Rosti RO, Murphy V, Tan W, Donovan FX, Lach FP, Kimble DC, Jiang CS, Vaughan R, Mehta PA, Pierri F, Dufour C, Auerbach AD, Deans AJ, Smogorzewska A, Chandrasekharappa SC. Association of clinical severity with FANCB variant type in Fanconi anemia. Blood 2020; 135:1588-1602. [PMID: 32106311 PMCID: PMC7193183 DOI: 10.1182/blood.2019003249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia (FA) is the most common genetic cause of bone marrow failure and is caused by inherited pathogenic variants in any of 22 genes. Of these, only FANCB is X-linked. We describe a cohort of 19 children with FANCB variants, from 16 families of the International Fanconi Anemia Registry. Those with FANCB deletion or truncation demonstrate earlier-than-average onset of bone marrow failure and more severe congenital abnormalities compared with a large series of FA individuals in published reports. This reflects the indispensable role of FANCB protein in the enzymatic activation of FANCD2 monoubiquitination, an essential step in the repair of DNA interstrand crosslinks. For FANCB missense variants, more variable severity is associated with the extent of residual FANCD2 monoubiquitination activity. We used transcript analysis, genetic complementation, and biochemical reconstitution of FANCD2 monoubiquitination to determine the pathogenicity of each variant. Aberrant splicing and transcript destabilization were associated with 2 missense variants. Individuals carrying missense variants with drastically reduced FANCD2 monoubiquitination in biochemical and/or cell-based assays tended to show earlier onset of hematologic disease and shorter survival. Conversely, variants with near-normal FANCD2 monoubiquitination were associated with more favorable outcome. Our study reveals a genotype-phenotype correlation within the FA-B complementation group of FA, where severity is associated with level of residual FANCD2 monoubiquitination.
Collapse
Affiliation(s)
- Moonjung Jung
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Sylvie van Twest
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Rasim Ozgur Rosti
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Vincent Murphy
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Winnie Tan
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Frank X Donovan
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Danielle C Kimble
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Caroline S Jiang
- Department of Biostatistics, The Rockefeller University Hospital, The Rockefeller University, New York, NY
| | - Roger Vaughan
- Department of Biostatistics, The Rockefeller University Hospital, The Rockefeller University, New York, NY
| | - Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Carlo Dufour
- Hematology Unit, IRCSS G. Gaslini, Genoa, Italy; and
| | - Arleen D Auerbach
- Human Genetics and Hematology Program, The Rockefeller University, New York, NY
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Settara C Chandrasekharappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
van de Putte R, van Rooij IALM, Haanappel CP, Marcelis CLM, Brunner HG, Addor MC, Cavero-Carbonell C, Dias CM, Draper ES, Etxebarriarteun L, Gatt M, Khoshnood B, Kinsner-Ovaskainen A, Klungsoyr K, Kurinczuk JJ, Latos-Bielenska A, Luyt K, O'Mahony MT, Miller N, Mullaney C, Nelen V, Neville AJ, Perthus I, Pierini A, Randrianaivo H, Rankin J, Rissmann A, Rouget F, Schaub B, Tucker D, Wellesley D, Wiesel A, Zymak-Zakutnia N, Loane M, Barisic I, de Walle HEK, Bergman JEH, Roeleveld N. Maternal risk factors for the VACTERL association: A EUROCAT case-control study. Birth Defects Res 2020; 112:688-698. [PMID: 32319733 PMCID: PMC7319423 DOI: 10.1002/bdr2.1686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The VACTERL association (VACTERL) is the nonrandom occurrence of at least three of these congenital anomalies: vertebral, anal, cardiac, tracheoesophageal, renal, and limb anomalies. Despite suggestions for involvement of several genes and nongenetic risk factors from small studies, the etiology of VACTERL remains largely unknown. OBJECTIVE To identify maternal risk factors for VACTERL in offspring in a large European study. METHODS A case-control study was performed using data from 28 EUROCAT registries over the period 1997-2015 with case and control ascertainment through hospital records, birth and death certificates, questionnaires, and/or postmortem examinations. Cases were diagnosed with VACTERL, while controls had a genetic syndrome and/or chromosomal abnormality. Data collected included type of birth defect and maternal characteristics, such as age, use of assisted reproductive techniques (ART), and chronic illnesses. Multivariable logistic regression analyses were performed to estimate confounder adjusted odds ratios (aOR) with 95% confidence intervals (95% CI). RESULTS The study population consisted of 329 VACTERL cases and 49,724 controls with recognized syndromes or chromosomal abnormality. For couples who conceived through ART, we found an increased risk of VACTERL (aOR 2.3 [95% CI 1.3, 3.9]) in offspring. Pregestational diabetes (aOR 3.1 [95% CI 1.1, 8.6]) and chronic lower obstructive pulmonary diseases (aOR 3.9 [95% CI 2.2, 6.7]) also increased the risk of having a child with VACTERL. Twin pregnancies were not associated with VACTERL (aOR 0.6 [95% CI 0.3, 1.4]). CONCLUSION We identified several maternal risk factors for VACTERL in offspring befitting a multifactorial etiology.
Collapse
Affiliation(s)
- Romy van de Putte
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center (Radboudumc), Nijmegen, The Netherlands
| | - Iris A L M van Rooij
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center (Radboudumc), Nijmegen, The Netherlands.,Paediatric Surgery, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Cynthia P Haanappel
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center (Radboudumc), Nijmegen, The Netherlands
| | | | - Han G Brunner
- Department of Human Genetics, Nijmegen, The Netherlands.,Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marie-Claude Addor
- Department of Woman-Mother-Child, University Medical Center CHUV, Lausanne, Switzerland
| | - Clara Cavero-Carbonell
- Rare Diseases Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
| | - Carlos M Dias
- Epidemiology Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | | | - Larraitz Etxebarriarteun
- Department of Health, Public Health Service, Basque Government Basque Country, Vitoria-Gasteiz, Spain
| | - Miriam Gatt
- Malta Congenital Anomalies Register, Directorate for Health Information and Research, Pietà, Malta
| | - Babak Khoshnood
- INSERM UMR 1153, Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), DHU Risks in Pregnancy, Paris Descartes University, Paris, France
| | | | - Kari Klungsoyr
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Division for Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Jenny J Kurinczuk
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Karen Luyt
- South West Congenital Anomaly Register (SWCAR), Bristol Medical School, University of Bristol, Bristol, UK
| | - Mary T O'Mahony
- Department of Public Health, Health Service Executive - South, Cork, Ireland
| | - Nicola Miller
- National Congenital Anomaly and Rare Disease Registration Service, Public Health England, Newcastle upon Tyne, UK
| | - Carmel Mullaney
- Department of Public Health, Health Service Executive - South East, Kilkenny, Ireland
| | - Vera Nelen
- Provinciaal Instituut voor Hygiene (PIH), Antwerp, Belgium
| | - Amanda J Neville
- Registro IMER - IMER Registry (Emilia Romagna Registry of Birth Defects), Center for Clinical and Epidemiological Research, University of Ferrara, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Isabelle Perthus
- Auvergne registry of congenital anomalies (CEMC-Auvergne), Department of clinical genetics, Centre de Référence des Maladies Rares, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Anna Pierini
- Tuscany Registry of Congenital Defects (RTDC), Institute of Clinical Physiology - National Research Council / Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Hanitra Randrianaivo
- Register of congenital malformations of Reunion Island, CHU Réunion, St Pierre, France
| | - Judith Rankin
- Institute of Health & Society, Newcastle University, Newcastle, UK
| | - Anke Rissmann
- Malformation Monitoring Centre Saxony-Anhalt, Medical Faculty Otto-von-Guericke University, Magdeburg, Germany
| | - Florence Rouget
- Brittany Registry of congenital anomalies, CHU Rennes, University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Bruno Schaub
- French West Indies Registry, Registre des Malformations des Antilles (REMALAN), Maison de la Femme de la Mère et de l'Enfant, University Hospital of Martinique, Fort-de-France, France
| | - David Tucker
- CARIS, Public Health Wales, Singleton Hospital, Swansea, UK
| | - Diana Wellesley
- Wessex Clinical Genetics Department, Princess Anne Hospital, Southampton, UK
| | - Awi Wiesel
- Department of Pediatrics, Birth Registry Mainz Model, University Medical Center of Mainz, Mainz, Germany
| | - Natalya Zymak-Zakutnia
- OMNI-Net Ukraine Birth Defects Program and Khmelnytsky City Children's Hospital, Khmelnytsky, Ukraine
| | - Maria Loane
- Centre for Maternal, Fetal and lnfant Research, lnstitute of Nursing and Health Research, Ulster University, Belfast, UK
| | - Ingeborg Barisic
- Centre of Excellence for Reproductive and Regenerative Medicine, Children's Hospital Zagreb, Medical School University of Zagreb, Zagreb, Croatia
| | - Hermien E K de Walle
- Department of Genetics, EUROCAT Northern Netherlands, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jorieke E H Bergman
- Department of Genetics, EUROCAT Northern Netherlands, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nel Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center (Radboudumc), Nijmegen, The Netherlands
| |
Collapse
|
6
|
van de Putte R, Dworschak GC, Brosens E, Reutter HM, Marcelis CLM, Acuna-Hidalgo R, Kurtas NE, Steehouwer M, Dunwoodie SL, Schmiedeke E, Märzheuser S, Schwarzer N, Brooks AS, de Klein A, Sloots CEJ, Tibboel D, Brisighelli G, Morandi A, Bedeschi MF, Bates MD, Levitt MA, Peña A, de Blaauw I, Roeleveld N, Brunner HG, van Rooij IALM, Hoischen A. A Genetics-First Approach Revealed Monogenic Disorders in Patients With ARM and VACTERL Anomalies. Front Pediatr 2020; 8:310. [PMID: 32656166 PMCID: PMC7324789 DOI: 10.3389/fped.2020.00310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The VATER/VACTERL association (VACTERL) is defined as the non-random occurrence of the following congenital anomalies: Vertebral, Anal, Cardiac, Tracheal-Esophageal, Renal, and Limb anomalies. As no unequivocal candidate gene has been identified yet, patients are diagnosed phenotypically. The aims of this study were to identify patients with monogenic disorders using a genetics-first approach, and to study whether variants in candidate genes are involved in the etiology of VACTERL or the individual features of VACTERL: Anorectal malformation (ARM) or esophageal atresia with or without trachea-esophageal fistula (EA/TEF). Methods: Using molecular inversion probes, a candidate gene panel of 56 genes was sequenced in three patient groups: VACTERL (n = 211), ARM (n = 204), and EA/TEF (n = 95). Loss-of-function (LoF) and additional likely pathogenic missense variants, were prioritized and validated using Sanger sequencing. Validated variants were tested for segregation and patients were clinically re-evaluated. Results: In 7 out of the 510 patients (1.4%), pathogenic or likely pathogenic variants were identified in SALL1, SALL4, and MID1, genes that are associated with Townes-Brocks, Duane-radial-ray, and Opitz-G/BBB syndrome. These syndromes always include ARM or EA/TEF, in combination with at least two other VACTERL features. We did not identify LoF variants in the remaining candidate genes. Conclusions: None of the other candidate genes were identified as novel unequivocal disease genes for VACTERL. However, a genetics-first approach allowed refinement of the clinical diagnosis in seven patients, in whom an alternative molecular-based diagnosis was found with important implications for the counseling of the families.
Collapse
Affiliation(s)
- Romy van de Putte
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gabriel C Dworschak
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands.,Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Heiko M Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Neonatology, Children's Hospital, University Hospital Bonn, Bonn, Germany
| | - Carlo L M Marcelis
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rocio Acuna-Hidalgo
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nehir E Kurtas
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Eberhard Schmiedeke
- Department of Pediatric Surgery and Urology, Centre for Child and Youth Health, Klinikum Bremen-Mitte, Bremen, Germany
| | - Stefanie Märzheuser
- Department of Pediatric Surgery, Campus Virchow Clinic, Charité University Hospital Berlin, Berlin, Germany
| | - Nicole Schwarzer
- SoMA e.V., Self-Help Organization for People With Anorectal Malformation, Munich, Germany
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Cornelius E J Sloots
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Giulia Brisighelli
- Department of Paediatric Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa.,Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Morandi
- Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Michael D Bates
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Marc A Levitt
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.,Department of Surgery, Center for Colorectal and Pelvic Reconstruction, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - Alberto Peña
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.,Department of Surgery, International Center for Colorectal Care, Children's Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - Ivo de Blaauw
- Department of Surgery-Pediatric Surgery, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nel Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Iris A L M van Rooij
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Winberg J, Gustavsson P, Sahlin E, Larsson M, Ehrén H, Fossum M, Wester T, Nordgren A, Nordenskjöld A. Pathogenic copy number variants are detected in a subset of patients with gastrointestinal malformations. Mol Genet Genomic Med 2019; 8:e1084. [PMID: 31837127 PMCID: PMC7005659 DOI: 10.1002/mgg3.1084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background Gastrointestinal atresias and urological defects are main causes of pediatric surgery in infants. As copy number variants (CNVs) have been shown to be involved in the development of congenital malformations, the aim of our study was to investigate the presence of CNVs in patients with gastrointestinal and urological malformations as well as the possibility of tissue‐specific mosaicism for CNVs in the cohort. Methods We have collected tissue and/or blood samples from 25 patients with anorectal malformations, esophageal atresia, or hydronephrosis, and screened for pathogenic CNVs using array comparative genomic hybridization (array‐CGH). Results We detected pathogenic aberrations in 2/25 patients (8%) and report a novel possible susceptibility region for esophageal atresia on 15q26.3. CNV analysis in different tissues from the same patients did not reveal evidence of tissue‐specific mosaicism. Conclusion Our study shows that it is important to perform clinical genetic investigations, including CNV analysis, in patients with congenital gastrointestinal malformations since this leads to improved information to families as well as an increased understanding of the pathogenesis.
Collapse
Affiliation(s)
- Johanna Winberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Larsson
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Ehrén
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Fossum
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Wester
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Fiesco-Roa MO, Giri N, McReynolds LJ, Best AF, Alter BP. Genotype-phenotype associations in Fanconi anemia: A literature review. Blood Rev 2019; 37:100589. [PMID: 31351673 DOI: 10.1016/j.blre.2019.100589] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
Abstract
Fanconi anemia (FA) is a genomic instability syndrome with predisposition to congenital abnormalities, bone marrow failure, and cancer. Classical and most frequent congenital abnormalities include all those seen in VACTERL-H association and those described under the PHENOS acronym. Pathogenic variants in at least 22 genes are associated with FA, which code for proteins that comprise the FA/BRCA DNA repair pathway. We reviewed 187 publications and 1101 cases of FA in which the gene or complementation group was identified and analyzed those in whom physical findings were sought. We conducted genotype-phenotype analyses considering the specific gene, the location in the FA/BRCA DNA repair pathway, and the type of variant (null or hypomorphic) as exposures. The outcomes were the presence of any physical abnormality or specific categories of abnormalities. Seventy-nine percent of the patients had at least one physical abnormality. Pathogenic variants in FANCB, FANCD2, the ID complex and downstream genes were associated with several specific anomalies. Patients with biallelic or hemizygous null variants had a higher proportion of at least one abnormality, renal malformations, microcephaly, short stature and the combination of VACTERL-H compared with those with hypomorphic genotypes. VACTERL-H alone or in combination with PHENOS is highly associated with FA, but the absence of those features does not rule out the diagnosis of FA.
Collapse
Affiliation(s)
- Moisés O Fiesco-Roa
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA; Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City, Mexico; Programa de Maestría y Doctorado en Ciencias Médicas, UNAM, Posgrados, Zona Cultural Ciudad Universitaria, Del. Coyoacan, Mexico City 14510, Mexico.
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Ana F Best
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
9
|
Salehi Karlslätt K, Pettersson M, Jäntti N, Szafranski P, Wester T, Husberg B, Ullberg U, Stankiewicz P, Nordgren A, Lundin J, Lindstrand A, Nordenskjöld A. Rare copy number variants contribute pathogenic alleles in patients with intestinal malrotation. Mol Genet Genomic Med 2019; 7:e549. [PMID: 30632303 PMCID: PMC6418355 DOI: 10.1002/mgg3.549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intestinal malrotation is a potentially life-threatening congenital anomaly due to the risk of developing midgut volvulus. The reported incidence is 0.2%-1% and both apparently hereditary and sporadic cases have been reported. Intestinal malrotation is associated with a few syndromes with known genotype but the genetic contribution in isolated intestinal malrotation has not yet been reported. Rare copy number variants (CNVs) have been implicated in many congenital anomalies, and hence we sought to investigate the potential contribution of rare CNVs in intestinal malrotation. METHODS Analysis of array comparative genomic hybridization (aCGH) data from 47 patients with symptomatic intestinal malrotation was performed. RESULTS We identified six rare CNVs in five patients. Five CNVs involved syndrome loci: 7q11.23 microduplication, 16p13.11 microduplication, 18q terminal deletion, HDAC8 (Cornelia de Lange syndrome type 5 and FOXF1) as well as one intragenic deletion in GALNT14, not previously implicated in human disease. CONCLUSION In the present study, we identified rare CNVs contributing pathogenic or potentially pathogenic alleles in five patients with syndromic intestinal malrotation, suggesting that CNV screening is indicated in intestinal malrotation with associated malformations or neurological involvements. In addition, we identified intestinal malrotation in two known syndromes (Cornelia de Lange type 5 and 18q terminal deletion syndrome) that has not previously been associated with gastrointestinal malformations.
Collapse
Affiliation(s)
- Karin Salehi Karlslätt
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nina Jäntti
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tomas Wester
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt Husberg
- Department of General Surgery, Ersta Hospital, Stockholm, Sweden
| | - Ulla Ullberg
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Impact of next generation sequencing on our understanding of CAKUT. Semin Cell Dev Biol 2018; 91:104-110. [PMID: 30172048 DOI: 10.1016/j.semcdb.2018.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/29/2022]
Abstract
Congenital abnormalities of the kidney and urinary tract (CAKUT) form the leading cause of pediatric end-stage renal disease. Knowledge on the molecular mechanisms that underlie CAKUT leads to the improvement of DNA diagnostics and counseling regarding prognosis and recurrence risk estimation for CAKUT patients and their relatives. Implementation of next generation sequencing in research and diagnostic settings has led to the identification of the molecular basis of many developmental diseases. In this review, we summarize the efforts on next generation sequencing in CAKUT research and we discuss how next generation sequencing added to our understanding of CAKUT genetics. Although next generation sequencing has certainly proven to be a game changer in the field of disease gene identification and novel CAKUT-causing gene variants have been identified, most CAKUT cases still remain unsolved. Occurring with genetic and phenotypic heterogeneity along with incomplete penetrance, the identification of CAKUT etiology poses many challenges. We see great potential for combined -omics approaches that include next generation sequencing in the identification of CAKUT-specific biomarkers, which is necessary to optimize the care for CAKUT patients.
Collapse
|
11
|
Husain M, Dutra-Clarke M, Lemieux B, Wencel M, Solomon BD, Kimonis V. Phenotypic diversity of patients diagnosed with VACTERL association. Am J Med Genet A 2018; 176:1830-1837. [PMID: 30152190 DOI: 10.1002/ajmg.a.40363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022]
Abstract
The combination of vertebral, anal, cardiac, tracheo-esophageal, renal and limb anomalies termed VACTERL association, also referred to as VATER, has been used as a clinical descriptor and more recently, a diagnosis of exclusion, for a specific group of phenotypic manifestations that have been observed to co-occur non-randomly. Though the causes remain elusive and poorly understood in most patients, VACTERL association is thought to be due to defects in early embryogenesis and is likely genetically heterogeneous. We present data on 36 patients diagnosed with VACTERL association in addition to describing the phenotypic diversity of each component feature. Unique cases in our cohort include a patient with a 498.59 kb microdeletion in the 16p11.2 region and another with a 215 kb duplication in the 3p25.2 region. Our findings expand upon the current understanding of VACTERL association and guide future research aimed at determining its etiology.
Collapse
Affiliation(s)
- Majid Husain
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine, School of Medicine, Irvine, California, USA
| | - Marina Dutra-Clarke
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine, School of Medicine, Irvine, California, USA
| | - Bryan Lemieux
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine, School of Medicine, Irvine, California, USA
| | - Marie Wencel
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine, School of Medicine, Irvine, California, USA
| | | | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
12
|
Asur RS, Kimble DC, Lach FP, Jung M, Donovan FX, Kamat A, Noonan RJ, Thomas JW, Park M, Chines P, Vlachos A, Auerbach AD, Smogorzewska A, Chandrasekharappa SC. Somatic mosaicism of an intragenic FANCB duplication in both fibroblast and peripheral blood cells observed in a Fanconi anemia patient leads to milder phenotype. Mol Genet Genomic Med 2018; 6:77-91. [PMID: 29193904 PMCID: PMC5823675 DOI: 10.1002/mgg3.350] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/28/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fanconi anemia (FA) is a rare disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer. Patients harboring X-linked FANCB pathogenic variants usually present with severe congenital malformations resembling VACTERL syndrome with hydrocephalus. METHODS We employed the diepoxybutane (DEB) test for FA diagnosis, arrayCGH for detection of duplication, targeted capture and next-gen sequencing for defining the duplication breakpoint, PacBio sequencing of full-length FANCB aberrant transcript, FANCD2 ubiquitination and foci formation assays for the evaluation of FANCB protein function by viral transduction of FANCB-null cells with lentiviral FANCB WT and mutant expression constructs, and droplet digital PCR for quantitation of the duplication in the genomic DNA and cDNA. RESULTS We describe here an FA-B patient with a mild phenotype. The DEB diagnostic test for FA revealed somatic mosaicism. We identified a 9154 bp intragenic duplication in FANCB, covering the first coding exon 3 and the flanking regions. A four bp homology (GTAG) present at both ends of the breakpoint is consistent with microhomology-mediated duplication mechanism. The duplicated allele gives rise to an aberrant transcript containing exon 3 duplication, predicted to introduce a stop codon in FANCB protein (p.A319*). Duplication levels in the peripheral blood DNA declined from 93% to 7.9% in the span of eleven years. Moreover, the patient fibroblasts have shown 8% of wild-type (WT) allele and his carrier mother showed higher than expected levels of WT allele (79% vs. 50%) in peripheral blood, suggesting that the duplication was highly unstable. CONCLUSION Unlike sequence point variants, intragenic duplications are difficult to precisely define, accurately quantify, and may be very unstable, challenging the proper diagnosis. The reversion of genomic duplication to the WT allele results in somatic mosaicism and may explain the relatively milder phenotype displayed by the FA-B patient described here.
Collapse
Affiliation(s)
- Rajalakshmi S. Asur
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Danielle C. Kimble
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Francis P. Lach
- Laboratory of Genome MaintenanceThe Rockefeller UniversityNew YorkNYUSA
| | - Moonjung Jung
- Laboratory of Genome MaintenanceThe Rockefeller UniversityNew YorkNYUSA
| | - Frank X. Donovan
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Aparna Kamat
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Raymond J. Noonan
- Laboratory of Genome MaintenanceThe Rockefeller UniversityNew YorkNYUSA
| | - James W. Thomas
- NIH Intramural Sequencing CenterNational Human Genome Research InstituteNIHRockvilleMDUSA
| | - Morgan Park
- NIH Intramural Sequencing CenterNational Human Genome Research InstituteNIHRockvilleMDUSA
| | - Peter Chines
- Medical Genomics and Metabolic Genetics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Adrianna Vlachos
- Hematology/Oncology and Stem Cell TransplantationCohen Children's Medical CenterNew Hyde ParkNYUSA
- The Feinstein Institute for Medical Research of Northwell HealthManhassetNYUSA
| | - Arleen D. Auerbach
- Human Genetics and Hematology ProgramThe Rockefeller UniversityNew YorkNYUSA
| | | | | |
Collapse
|
13
|
Genomic study of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis. Genet Med 2017; 20:745-753. [PMID: 29261186 DOI: 10.1038/gim.2017.173] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/24/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Fetal anomalies represent a poorly studied group of developmental disorders. Our objective was to assess the impact of whole-exome sequencing (WES) on the investigation of these anomalies. METHODS We performed WES in 101 fetuses or stillborns who presented prenatally with severe anomalies, including renal a/dysgenesis, VACTERL association (vertebral defects, anal atresia, cardiac defects, tracheoesophageal fistula, renal anomalies, and limb abnormalities), brain anomalies, suspected ciliopathies, multiple major malformations, and akinesia. RESULTS A molecular diagnosis was obtained in 19 cases (19%). In 13 of these cases, the diagnosis was not initially suspected by the clinicians because the phenotype was nonspecific or atypical, corresponding in some cases to the severe end of the spectrum of a known disease (e.g., MNX1-, RYR1-, or TUBB-related disorders). In addition, we identified likely pathogenic variants in genes (DSTYK, ACTB, and HIVEP2) previously associated with phenotypes that were substantially different from those found in our cases. Finally, we identified variants in novel candidate genes that were associated with perinatal lethality, including de novo mutations in GREB1L in two cases with bilateral renal agenesis, which represents a significant enrichment of such mutations in our cohort. CONCLUSION Our study opens a window on the distinctive genetic landscape associated with fetal anomalies and highlights the power-but also the challenges-of WES in prenatal diagnosis.
Collapse
|
14
|
Reutter H, Hilger AC, Hildebrandt F, Ludwig M. Underlying genetic factors of the VATER/VACTERL association with special emphasis on the "Renal" phenotype. Pediatr Nephrol 2016; 31:2025-33. [PMID: 26857713 PMCID: PMC5207487 DOI: 10.1007/s00467-016-3335-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/18/2022]
Abstract
The acronym VATER/VACTERL association (OMIM #192350) refers to the rare non-random co-occurrence of the following component features (CFs): vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). According to epidemiological studies, the majority of patients with VATER/VACTERL association present with a "Renal" phenotype comprising a large spectrum of congenital renal anomalies. This finding is supported by evidence linking all of the human disease genes for the VATER/VACTERL association identified to date, namely, FGF8, FOXF1, HOXD13, LPP, TRAP1, and ZIC3, with renal malformations. Here we review these genotype-phenotype correlations and suggest that the elucidation of the genetic causes of the VATER/VACTERL association will ultimately provide insights into the genetic causes of the complete spectrum of congenital renal anomalies per se.
Collapse
Affiliation(s)
- Heiko Reutter
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany. .,Department of Neonatology and Pediatric Intensive Care, Children's Hospital-University of Bonn, Bonn, Germany.
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital-Harvard Medical School, Boston, MA, USA
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Prenatal exposure to environmental factors and congenital limb defects. ACTA ACUST UNITED AC 2016; 108:243-273. [DOI: 10.1002/bdrc.21140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
16
|
Chen Y, Liu Z, Chen J, Zuo Y, Liu S, Chen W, Liu G, Qiu G, Giampietro PF, Wu N, Wu Z. The genetic landscape and clinical implications of vertebral anomalies in VACTERL association. J Med Genet 2016; 53:431-7. [PMID: 27084730 PMCID: PMC4941148 DOI: 10.1136/jmedgenet-2015-103554] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 01/22/2023]
Abstract
VACTERL association is a condition comprising multisystem congenital malformations, causing severe physical disability in affected individuals. It is typically defined by the concurrence of at least three of the following component features: vertebral anomalies (V), anal atresia (A), cardiac malformations (C), tracheo-oesophageal fistula (TE), renal dysplasia (R) and limb abnormalities (L). Vertebral anomaly is one of the most important and common defects that has been reported in approximately 60–95% of all VACTERL patients. Recent breakthroughs have suggested that genetic factors play an important role in VACTERL association, especially in those with vertebral phenotypes. In this review, we summarised the genetic studies of the VACTERL association, especially focusing on the genetic aetiology of patients with vertebral anomalies. Furthermore, genetic reports of other syndromes with vertebral phenotypes overlapping with VACTERL association are also included. We aim to provide a further understanding of the genetic aetiology and a better evidence for genetic diagnosis of the association and vertebral anomalies.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenlei Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Philip F Giampietro
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Lubinsky M. The VACTERL Association as a disturbance of cell fate determination. Am J Med Genet A 2015; 167A:2582-8. [DOI: 10.1002/ajmg.a.37238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Mark Lubinsky
- 6003 W. Washington Blvd.; Wauwatosa; Wisconsin 53213
| |
Collapse
|
18
|
Nakamura Y, Kikugawa S, Seki S, Takahata M, Iwasaki N, Terai H, Matsubara M, Fujioka F, Inagaki H, Kobayashi T, Kimura T, Kurahashi H, Kato H. PCSK5 mutation in a patient with the VACTERL association. BMC Res Notes 2015; 8:228. [PMID: 26055999 PMCID: PMC4467638 DOI: 10.1186/s13104-015-1166-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The VACTERL association is a typically sporadic, non-random collection of congenital anomalies that includes vertebral defects, anal atresia, cardiac defects, tracheoesophageal fistula with esophageal atresia, renal anomalies, and limb abnormalities. Although several chromosomal aberrations and gene mutations have been reported as disease-causative, these findings have been sparsely replicated to date. CASE PRESENTATION In the present study, whole exome sequencing of a case with the VACTERL association uncovered a novel frameshift mutation in the PCSK5 gene, which has been reported as one of the causative genes for the VACTERL association. Although this mutation appears potentially pathogenic in its functional aspects, it was also carried by the healthy father. Furthermore, a database survey revealed several other deleterious variants in the PCSK5 gene in the general population. CONCLUSIONS Further studies are necessary to clarify the etiological role of the PCSK5 mutation in the VACTERL association.
Collapse
Affiliation(s)
- Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | - Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan.
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan.
| | - Hidetomi Terai
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Mitsuhiro Matsubara
- Department of Orthopaedic Surgery, Nagano Prefectural Children's Hospital, Azumino, Japan.
| | - Fumio Fujioka
- Department of Orthopaedic Surgery, Nagano Prefectural Children's Hospital, Azumino, Japan.
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
| | - Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Tomoatsu Kimura
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan.
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| |
Collapse
|
19
|
Abstract
Making the diagnosis of genetic syndromes in the neonatal period can be challenging, as limited information concerning growth and development is available. The pattern of dysmorphic features and malformations is, therefore, correspondingly more important in syndrome recognition. The authors provide specific examples of the differences in the presentation for selected syndromes between the newborn period and later childhood. The purpose is to describe the variation in presentation that can occur with chronologic age and to aid in the early diagnosis of these conditions.
Collapse
|
20
|
Winberg J, Berggren H, Malm T, Johansson S, Johansson Ramgren J, Nilsson B, Liedén A, Nordenskjöld A, Gustavsson P, Nordgren A. No evidence for mosaic pathogenic copy number variations in cardiac tissue from patients with congenital heart malformations. Eur J Med Genet 2015; 58:129-33. [PMID: 25652018 DOI: 10.1016/j.ejmg.2015.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/10/2015] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate if pathogenic copy number variations (CNVs) are present in mosaic form in patients with congenital heart malformations. We have collected cardiac tissue and blood samples from 23 patients with congenital heart malformations that underwent cardiac surgery and screened for mosaic gene dose alterations restricted to cardiac tissue using array comparative genomic hybridization (array CGH). We did not find evidence of CNVs in mosaic form after array CGH analysis. Pathogenic CNVs that were present in both cardiac tissue and blood were detected in 2/23 patients (9%), and in addition we found several constitutional CNVs of unclear clinical significance. This is the first study investigating mosaicism for CNVs in heart tissue compared to peripheral blood and the results do not indicate that pathogenic mosaic copy number changes are common in patients with heart malformations. Importantly, in line with previous studies, our results show that constitutional pathogenic CNVs are important factors contributing to congenital heart malformations.
Collapse
Affiliation(s)
- Johanna Winberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Håkan Berggren
- Pediatric Cardiac Surgery Unit, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Torsten Malm
- Pediatric Cardiac Surgery Unit, Children's Hospital, University Hospital, Lund, Sweden
| | - Sune Johansson
- Pediatric Cardiac Surgery Unit, Children's Hospital, University Hospital, Lund, Sweden
| | | | - Boris Nilsson
- Pediatric Cardiac Surgery Unit, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Agne Liedén
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Woman and Child Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Zeidler C, Woelfle J, Draaken M, Mughal SS, Große G, Hilger AC, Dworschak GC, Boemers TM, Jenetzky E, Zwink N, Lacher M, Schmidt D, Schmiedeke E, Grasshoff-Derr S, Märzheuser S, Holland-Cunz S, Schäfer M, Bartels E, Keppler K, Palta M, Leonhardt J, Kujath C, Rißmann A, Nöthen MM, Reutter H, Ludwig M. Heterozygous FGF8 mutations in patients presenting cryptorchidism and multiple VATER/VACTERL features without limb anomalies. ACTA ACUST UNITED AC 2014; 100:750-9. [PMID: 25131394 DOI: 10.1002/bdra.23278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND The acronym VATER/VACTERL association describes the combination of at least three of the following cardinal features: vertebral defects, anorectal malformations, cardiac defects, tracheoesophageal fistula with or without esophageal atresia, renal malformations, and limb defects. Although fibroblast growth factor-8 (FGF8) mutations have mainly found in patients with Kallmann syndrome, mice with a hypomorphic Fgf8 allele or complete gene invalidation display, aside from gonadotropin-releasing hormone deficiency, parts or even the entire spectrum of human VATER/VACTERL association. METHODS We performed FGF8 gene analysis in 49 patients with VATER/VACTERL association and 27 patients presenting with a VATER/VACTERL-like phenotype (two cardinal features). RESULTS We identified two heterozygous FGF8 mutations in patients displaying either VATER/VACTERL association (p.Gly29_Arg34dup) or a VATER/VACTERL-like phenotype (p.Pro26Leu) without limb anomalies. Whereas the duplication mutation has not been reported before, p.Pro26Leu was once observed in a Kallmann syndrome patient. Both our patients had additional bilateral cryptorchidism, a key phenotypic feature in males with FGF8 associated Kallmann syndrome. Each mutation was paternally inherited. Besides delayed puberty in both and additional unilateral cryptorchidism in one of the fathers, they were otherwise healthy. Serum hormone levels downstream the gonadotropin-releasing hormone in both patients and their fathers were within normal range. CONCLUSION Our results suggest FGF8 mutations to contribute to the formation of the VATER/VACTERL association. Further studies are needed to support this observation.
Collapse
Affiliation(s)
- Claudia Zeidler
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|