1
|
Khan MAS, Chaity SC, Hosen MA, Rahman SR. Genomic epidemiology of multidrug-resistant clinical Acinetobacter baumannii in Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105656. [PMID: 39116952 DOI: 10.1016/j.meegid.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The rising frequency of multidrug-resistant (MDR) Acinetobacter baumannii infections represents a significant public health challenge in Bangladesh. Genomic analysis of bacterial pathogens enhances surveillance and control efforts by providing insights into genetic diversity, antimicrobial resistance (AMR) profiles, and transmission dynamics. In this study, we conducted a comprehensive bioinformatic analysis of 82 whole-genome sequences (WGS) of A. baumannii from Bangladesh to understand their genomic epidemiological characteristics. WGS of the MDR and biofilm-forming A. baumannii strain S1C revealed the presence of 28 AMR genes, predicting its pathogenicity and classification within sequence type ST2. Multi-locus sequence typing (MLST) genotyping suggested heterogeneity in the distribution of clinical A. baumannii strains in Bangladesh, with a predominance of ST575. The resistome diversity was evident from the detection of 82 different AMR genes, with antibiotic inactivation being the most prevalent resistance mechanism. All strains were predicted to be multidrug-resistant. The observed virulence genes were associated with immune evasion, biofilm formation, adherence, nutrient acquisition, effector delivery, and other mechanisms. Mobile genetic elements carrying AMR genes were predicted in 68.29% (N = 56) of the genomes. The "open" state of the pan-genome and a high proportion of accessory genes highlighted the genome plasticity and diversity of A. baumannii in Bangladesh. Additionally, phylogenomic analysis indicated clustering of A. baumannii strains into three separate clades according to sequence type. In summary, our findings offer detailed insights into the genomic landscape of A. baumannii in Bangladesh, contributing to our understanding of its epidemiology and pathogenicity and informing strategies to combat this pathogen.
Collapse
Affiliation(s)
| | | | - Md Arman Hosen
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
2
|
Young M, Chojnacki M, Blanchard C, Cao X, Johnson WL, Flaherty D, Dunman PM. Genetic Determinants of Acinetobacter baumannii Serum-Associated Adaptive Efflux-Mediated Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1173. [PMID: 37508269 PMCID: PMC10376123 DOI: 10.3390/antibiotics12071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen of serious healthcare concern that is becoming increasingly difficult to treat due to antibiotic treatment failure. Recent studies have revealed that clinically defined antibiotic-susceptible strains upregulate the expression of a repertoire of putative drug efflux pumps during their growth under biologically relevant conditions, e.g., in human serum, resulting in efflux-associated resistance to physiologically achievable antibiotic levels within a patient. This phenomenon, termed Adaptive Efflux Mediated Resistance (AEMR), has been hypothesized to account for one mechanism by which antibiotic-susceptible A. baumannii fails to respond to antibiotic treatment. In the current study, we sought to identify genetic determinants that contribute to A. baumannii serum-associated AEMR by screening a transposon mutant library for members that display a loss of the AEMR phenotype. Results revealed that mutation of a putative pirin-like protein, YhaK, results in a loss of AEMR, a phenotype that could be complemented by a wild-type copy of the yhaK gene and was verified in a second strain background. Ethidium bromide efflux assays confirmed that the loss of AEMR phenotype due to pirin-like protein mutation correlated with reduced overarching efflux capacity. Further, flow cytometry and confocal microscopy measures of a fluorophore 7-(dimethylamino)-coumarin-4-acetic acid (DMACA)-tagged levofloxacin isomer, ofloxacin, further verified that YhaK mutation reduces AEMR-mediated antibiotic efflux. RNA-sequencing studies revealed that YhaK may be required for the expression of multiple efflux-associated systems, including MATE and ABC families of efflux pumps. Collectively, the data indicate that the A. baumannii YhaK pirin-like protein plays a role in modulating the organism's adaptive efflux-mediated resistance phenotype.
Collapse
Affiliation(s)
- Mikaeel Young
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.); (M.C.); (W.L.J.)
| | - Michaelle Chojnacki
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.); (M.C.); (W.L.J.)
| | - Catlyn Blanchard
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.); (M.C.); (W.L.J.)
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, Lafayette, IN 47907, USA
| | - William L. Johnson
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.); (M.C.); (W.L.J.)
| | - Daniel Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907, USA
| | - Paul M. Dunman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.); (M.C.); (W.L.J.)
| |
Collapse
|
3
|
Bai J, Raustad N, Denoncourt J, van Opijnen T, Geisinger E. Genome-wide phage susceptibility analysis in Acinetobacter baumannii reveals capsule modulation strategies that determine phage infectivity. PLoS Pathog 2023; 19:e1010928. [PMID: 37289824 PMCID: PMC10249906 DOI: 10.1371/journal.ppat.1010928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Phage have gained renewed interest as an adjunctive treatment for life-threatening infections with the resistant nosocomial pathogen Acinetobacter baumannii. Our understanding of how A. baumannii defends against phage remains limited, although this information could lead to improved antimicrobial therapies. To address this problem, we identified genome-wide determinants of phage susceptibility in A. baumannii using Tn-seq. These studies focused on the lytic phage Loki, which targets Acinetobacter by unknown mechanisms. We identified 41 candidate loci that increase susceptibility to Loki when disrupted, and 10 that decrease susceptibility. Combined with spontaneous resistance mapping, our results support the model that Loki uses the K3 capsule as an essential receptor, and that capsule modulation provides A. baumannii with strategies to control vulnerability to phage. A key center of this control is transcriptional regulation of capsule synthesis and phage virulence by the global regulator BfmRS. Mutations hyperactivating BfmRS simultaneously increase capsule levels, Loki adsorption, Loki replication, and host killing, while BfmRS-inactivating mutations have the opposite effect, reducing capsule and blocking Loki infection. We identified novel BfmRS-activating mutations, including knockouts of a T2 RNase protein and the disulfide formation enzyme DsbA, that hypersensitize bacteria to phage challenge. We further found that mutation of a glycosyltransferase known to alter capsule structure and bacterial virulence can also cause complete phage resistance. Finally, additional factors including lipooligosaccharide and Lon protease act independently of capsule modulation to interfere with Loki infection. This work demonstrates that regulatory and structural modulation of capsule, known to alter A. baumannii virulence, is also a major determinant of susceptibility to phage.
Collapse
Affiliation(s)
- Jinna Bai
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Nicole Raustad
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jason Denoncourt
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, CISID, Cambridge, Massachusetts, United States of America
| | - Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Condinho M, Carvalho B, Cruz A, Pinto SN, Arraiano CM, Pobre V. The role of RNA regulators, quorum sensing and c-di-GMP in bacterial biofilm formation. FEBS Open Bio 2023; 13:975-991. [PMID: 35234364 PMCID: PMC10240345 DOI: 10.1002/2211-5463.13389] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Biofilms provide an ecological advantage against many environmental stressors, such as pH and temperature, making it the most common life-cycle stage for many bacteria. These protective characteristics make eradication of bacterial biofilms challenging. This is especially true in the health sector where biofilm formation on hospital or patient equipment, such as respirators, or catheters, can quickly become a source of anti-microbial resistant strains. Biofilms are complex structures encased in a self-produced polymeric matrix containing numerous components such as polysaccharides, proteins, signalling molecules, extracellular DNA and extracellular RNA. Biofilm formation is tightly controlled by several regulators, including quorum sensing (QS), cyclic diguanylate (c-di-GMP) and small non-coding RNAs (sRNAs). These three regulators in particular are fundamental in all stages of biofilm formation; in addition, their pathways overlap, and the significance of their role is strain-dependent. Currently, ribonucleases are also of interest for their potential role as biofilm regulators, and their relationships with QS, c-di-GMP and sRNAs have been investigated. This review article will focus on these four biofilm regulators (ribonucleases, QS, c-di-GMP and sRNAs) and the relationships between them.
Collapse
Affiliation(s)
- Manuel Condinho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Adriana Cruz
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Sandra N. Pinto
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
5
|
Yue Y, Deng J, Wang H, Lv T, Dou W, Jiao Y, Peng X, Zhang Y. Two Secretory T2 RNases Act as Cytotoxic Factors Contributing to the Virulence of an Insect Fungal Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7069-7081. [PMID: 37122240 DOI: 10.1021/acs.jafc.3c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNase T2 members are secreted by several pathogens or parasites during infection, playing various roles in pathogen-host interaction. However, functions of those members in biocontrol microbes targeting their hosts are still unknown. Here, we report that an insect fungal pathogen, Beauveria bassiana, produces two secretory RNase T2 members that act as cytotoxic factors, which were examined by insect bioassays using the targeted gene(s) disruption and overexpression strains. Overexpression strains displayed dramatically increased virulence, which was concurrent with few fungal cells and hemocytes in hemocoel, suggesting a cytotoxicity of the overexpressed gene products. In vitro assays using yeast-expressed proteins verified the cytotoxicity of the two members against insect cells, to which the cytotoxic effect was dependent on their RNases enzyme activities and glycosylation modification. Moreover, the excessive humoral immune responses triggered by the two ribonucleases were examined. These results suggested prospects of these two T2 ribonucleases for improvement of biocontrol agents.
Collapse
Affiliation(s)
- Yong Yue
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Juan Deng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Lv
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Wei Dou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Yufei Jiao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Xinxin Peng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
6
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
7
|
Abstract
Small molecule adjuvants that enhance the activity of established antibiotics represent promising agents in the battle against antibiotic resistance. Adjuvants generally act by inhibiting antibiotic resistance processes, and specifying the process acted on is a critical step in defining an adjuvant's mechanism of action. This step is typically carried out biochemically by identifying molecules that bind adjuvants and then inferring their roles in resistance. Here, we present a complementary genetic strategy based on identifying mutations that both sensitize cells to antibiotic and make them "adjuvant blind." We tested the approach in Acinetobacter baumannii AB5075 using two adjuvants: a well-characterized β-lactamase inhibitor (avibactam) and a compound enhancing outer membrane permeability (aryl 2-aminoimidazole AI-1). The avibactam studies showed that the adjuvant potentiated one β-lactam (ceftazidime) through action on a single β-lactamase (GES-14) and a second (meropenem) by targeting two different enzymes (GES-14 and OXA-23). Mutations impairing disulfide bond formation (DsbAB) also reduced potentiation, possibly by impairing β-lactamase folding. Mutations reducing AI-1 potentiation of canonical Gram-positive antibiotics (vancomycin and clarithromycin) blocked lipooligosaccharide (LOS/LPS) synthesis or its acyl modification. The results indicate that LOS-mediated outer membrane impermeability is targeted by the adjuvant and show the importance of acylation in the resistance. As part of the study, we employed Acinetobacter baylyi as a model to verify the generality of the A. baumannii results and identified the principal resistance genes for ceftazidime, meropenem, vancomycin, and clarithromycin in A. baumannii AB5075. Overall, the work provides a foundation for analyzing adjuvant action using a comprehensive genetic approach. IMPORTANCE One strategy to confront the antibiotic resistance crisis is through the development of adjuvant compounds that increase the efficacy of established drugs. A key step in the development of a natural product adjuvant as a drug is identifying the resistance process it undermines to enhance antibiotic activity. Previous procedures designed to accomplish this have relied on biochemical identification of cell components that bind adjuvant. Here, we present a complementary strategy based on identifying mutations that eliminate adjuvant activity.
Collapse
|
8
|
Blaschke U, Skiebe E, Wilharm G. Novel Genes Required for Surface-Associated Motility in Acinetobacter baumannii. Curr Microbiol 2021; 78:1509-1528. [PMID: 33666749 PMCID: PMC7997844 DOI: 10.1007/s00284-021-02407-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Acinetobacter baumannii is an opportunistic and increasingly multi-drug resistant human pathogen rated as a critical priority one pathogen for the development of new antibiotics by the WHO in 2017. Despite the lack of flagella, A. baumannii can move along wet surfaces in two different ways: via twitching motility and surface-associated motility. While twitching motility is known to depend on type IV pili, the mechanism of surface-associated motility is poorly understood. In this study, we established a library of 30 A. baumannii ATCC® 17978™ mutants that displayed deficiency in surface-associated motility. By making use of natural competence, we also introduced these mutations into strain 29D2 to differentiate strain-specific versus species-specific effects of mutations. Mutated genes were associated with purine/pyrimidine/folate biosynthesis (e.g. purH, purF, purM, purE), alarmone/stress metabolism (e.g. Ap4A hydrolase), RNA modification/regulation (e.g. methionyl-tRNA synthetase), outer membrane proteins (e.g. ompA), and genes involved in natural competence (comEC). All tested mutants originally identified as motility-deficient in strain ATCC® 17978™ also displayed a motility-deficient phenotype in 29D2. By contrast, further comparative characterization of the mutant sets of both strains regarding pellicle biofilm formation, antibiotic resistance, and virulence in the Galleria mellonella infection model revealed numerous strain-specific mutant phenotypes. Our studies highlight the need for comparative analyses to characterize gene functions in A. baumannii and for further studies on the mechanisms underlying surface-associated motility.
Collapse
Affiliation(s)
- Ulrike Blaschke
- Robert Koch Institute, Project group P2, Burgstr. 37, 38855, Wernigerode, Germany.
| | - Evelyn Skiebe
- Robert Koch Institute, Project group P2, Burgstr. 37, 38855, Wernigerode, Germany
| | - Gottfried Wilharm
- Robert Koch Institute, Project group P2, Burgstr. 37, 38855, Wernigerode, Germany.
| |
Collapse
|
9
|
Development of a Broad-Spectrum Antimicrobial Combination for the Treatment of Staphylococcus aureus and Pseudomonas aeruginosa Corneal Infections. Antimicrob Agents Chemother 2018; 63:AAC.01929-18. [PMID: 30420484 DOI: 10.1128/aac.01929-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are two of the most common causes of bacterial keratitis and corresponding corneal blindness. Accordingly, such infections are predominantly treated with broad-spectrum fluoroquinolones, such as moxifloxacin. Yet, the rising fluoroquinolone resistance has necessitated the development of alternative therapeutic options. Herein, we describe the development of a polymyxin B-trimethoprim (PT) ophthalmic formulation containing the antibiotic rifampin, which exhibits synergistic antimicrobial activity toward a panel of contemporary ocular clinical S. aureus and P. aeruginosa isolates, low spontaneous resistance frequency, and in vitro bactericidal kinetics and antibiofilm activities equaling or exceeding the antimicrobial properties of moxifloxacin. The PT plus rifampin combination also demonstrated increased efficacy in comparison to those of either commercial PT or moxifloxacin in a murine keratitis model of infection, resulting in bacterial clearance of 70% in the animals treated. These results suggest that the combination of PT and rifampin may represent a novel antimicrobial agent in the treatment of bacterial keratitis.
Collapse
|
10
|
Blaschke U, Suwono B, Zafari S, Ebersberger I, Skiebe E, Jeffries CM, Svergun DI, Wilharm G. Recombinant production of A1S_0222 from Acinetobacter baumannii ATCC 17978 and confirmation of its DNA-(adenine N6)-methyltransferase activity. Protein Expr Purif 2018; 151:78-85. [DOI: 10.1016/j.pep.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
|
11
|
Rosales-Reyes R, Gayosso-Vázquez C, Fernández-Vázquez JL, Jarillo-Quijada MD, Rivera-Benítez C, Santos-Preciado JI, Alcántar-Curiel MD. Virulence profiles and innate immune responses against highly lethal, multidrug-resistant nosocomial isolates of Acinetobacter baumannii from a tertiary care hospital in Mexico. PLoS One 2017; 12:e0182899. [PMID: 28797068 PMCID: PMC5552319 DOI: 10.1371/journal.pone.0182899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Virulence profiles and innate immune responses were studied in Acinetobacter baumannii from nosocomial infections collected over one year in a tertiary care hospital in Mexico. A. baumannii were identified by VITEK 2 System followed by susceptibility tests. Carbapenemase genes, active efflux mechanism to imipenem and meropenem and outer membrane proteins profile were analyzed to evaluate their role on the activity of carbapenem resistance. All isolates were genotyped by pulsed field gel electrophoresis. The ability to form biofilm was determined on a polystyrene surface. The resistance to complement was determined with a pooled human normal serum and TNFα release by infected macrophages was determined by ELISA. The 112 isolates from this study were associated with a 52% of mortality. All were resistance to β-lactams, fluoroquinolones, and trimethroprim-sulfamethoxal, 96 and 90% were resistant to meropenem and imipenem, respectively, but with high susceptibility to polymyxin B, colistin and tigecyclin. Isolates were classified in 11 different clones. Most isolates, 88% (99/112), were metallo-β-lactamases and carbapenemases producers, associated in 95% with the presence of blaOXA-72 gene. Only 4/99 and 1/99 of the carbapenem-resistant isolates were related to efflux mechanism to meropenem or imipenem resistance, respectively. The loss of expression of 22, 29, and/or 33-36-kDa proteins was detected in 8/11 of the clinical isolates with resistance to carbapenem. More than 96% (108/112) of the isolates were high producers of biofilms on biotic surfaces. Finally, all isolates showed variable resistance to normal human serum activity and were high inductors of TNFα release by macrophages. In summary, these results suggest that multidrug-resistant A. baumannii can persist in the hospital environment through its ability to form biofilms. The high mortality observed was due to their ability to survive normal human serum activity and capability to induce potent inflammatory immune response making this nosocomial pathogen a serious threat to hospitalized patients.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México
- * E-mail: (MDAC); (RRR)
| | - Catalina Gayosso-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México
| | - José Luis Fernández-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México
| | | | - José Ignacio Santos-Preciado
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México
| | - María Dolores Alcántar-Curiel
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México
- * E-mail: (MDAC); (RRR)
| |
Collapse
|
12
|
Liu D, Liu ZS, Hu P, Hui Q, Fu BQ, Lu SY, Li YS, Zou DY, Li ZH, Yan DM, Ding YX, Zhang YY, Zhou Y, Liu NN, Ren HL. Characterization of a highly virulent and antimicrobial-resistant Acinetobacter baumannii strain isolated from diseased chicks in China. Microbiol Immunol 2017; 60:533-9. [PMID: 27399903 DOI: 10.1111/1348-0421.12400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Abstract
Poultry husbandry is a very important aspect of the agricultural economy in China. However, chicks are often susceptible to infectious disease microorganisms, such as bacteria, viruses and parasites, causing large economic losses in recent years. In the present study, we isolated an Acinetobacter baumannii strain, CCGGD201101, from diseased chicks in the Jilin Province of China. Regression analyses of virulence and LD50 tests conducted using healthy chicks confirmed that A. baumannii CCGGD201101, with an LD50 of 1.81 (±0.11) × 10(4) CFU, was more virulent than A. baumannii ATCC17978, with an LD50 of 1.73 (±0.13) × 10(7) CFU. Moreover, TEM examination showed that the pili of A. baumannii CCGGD201101 were different from those of ATCC17978. Antibiotic sensitivity analyses showed that A. baumannii CCGGD201101 was sensitive to rifampicin but resistant to most other antibiotics. These results imply that A. baumannii strain CCGGD201101 had both virulence enhancement and antibiotic resistance characteristics, which are beneficial for A. baumannii survival under adverse conditions and enhance fitness and invasiveness in the host. A. baumannii CCGGD20101, with its high virulence and antimicrobial resistance, may be one of the pathogens causing death of diseased chicks.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Qi Hui
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - De-Ying Zou
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China.,Panjin Inspection and Testing Center, Panjin 124010, China
| | - Zhao-Hui Li
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Dong-Ming Yan
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Yan-Xia Ding
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Yuan-Yuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Nan-Nan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| |
Collapse
|
13
|
Mu X, Wang N, Li X, Shi K, Zhou Z, Yu Y, Hua X. The Effect of Colistin Resistance-Associated Mutations on the Fitness of Acinetobacter baumannii. Front Microbiol 2016; 7:1715. [PMID: 27847502 PMCID: PMC5088200 DOI: 10.3389/fmicb.2016.01715] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 01/27/2023] Open
Abstract
Acinetobacter baumannii had emerged as an important nosocomial and opportunistic pathogen worldwide. To assess the evolution of colistin resistance in A. baumannii and its effect on bacterial fitness, we exposed five independent colonies of A. baumannii ATCC 17978 to increasing concentrations of colistin in agar (4/5) and liquid media (1/5). Stable resistant isolates were analyzed using whole genome sequencing. All strains were colistin resistant after exposure to colistin. In addition to the previously reported lpxCAD and pmrAB mutations, we identified four novel putative colistin resistance genes: A1S_1983. hepA. A1S_3026, and rsfS. Lipopolysaccharide (LPS) loss mutants exhibited higher fitness costs than those of the pmrB mutant in nutrient-rich medium. The colistin-resistant mutants had a higher inhibition ratio in the serum growth experiment than that of the wild type strain in 100% serum. Minimum inhibitory concentration (MIC) results showed that the LPS-deficient but not the pmrB mutant had an altered antibiotic resistance profile. The compensatory mutations partially or completely rescued the LPS-deficient’s fitness, suggesting that compensatory mutations play an important role in the emergence and spread of colistin resistance in A. baumannii.
Collapse
Affiliation(s)
- Xinli Mu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Nanfei Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Xi Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University Hangzhou, China
| |
Collapse
|
14
|
Zinc Pyrithione Improves the Antibacterial Activity of Silver Sulfadiazine Ointment. mSphere 2016; 1:mSphere00194-16. [PMID: 27642637 PMCID: PMC5023846 DOI: 10.1128/msphere.00194-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022] Open
Abstract
Topical antimicrobial ointments ostensibly mitigate bacterial wound disease and reliance on systemic antibiotics. Yet studies have called into question the therapeutic benefits of several traditional topical antibacterials, accentuating the need for improved next-generation antimicrobial ointments. Yet the development of such agents consisting of a new chemical entity is a time-consuming and expensive proposition. Considering that drug combinations are a mainstay therapeutic strategy for the treatment of other therapeutic indications, one alternative approach is to improve the performance of conventional antimicrobial ointments by the addition of a well-characterized and FDA-approved agent. Here we report data that indicate that the antimicrobial properties of silver sulfadiazine ointments can be significantly improved by the addition of the antifungal zinc pyrithione, suggesting that such combinations may provide an improved therapeutic option for the topical treatment of wound infections. Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are commonly associated with biofilm-associated wound infections that are recalcitrant to conventional antibiotics. As an initial means to identify agents that may have a greater propensity to improve clearance of wound-associated bacterial pathogens, we screened a Food and Drug Administration-approved drug library for members that display bactericidal activity toward 72-h-established P. aeruginosa biofilms using an adenylate kinase reporter assay for bacterial cell death. A total of 34 compounds displayed antibiofilm activity. Among these, zinc pyrithione was also shown to reduce levels of A. baumannii and S. aureus biofilm-associated bacteria and exhibited an additive effect in combination with silver sulfadiazine, a leading topical therapeutic for wound site infections. The improved antimicrobial activity of zinc pyrithione and silver sulfadiazine was maintained in an ointment formulation and led to improved clearance of P. aeruginosa, A. baumannii, and S. aureus in a murine model of wound infection. Taken together, these results suggest that topical zinc pyrithione and silver sulfadiazine combination formulations may mitigate wound-associated bacterial infections and disease progression. IMPORTANCE Topical antimicrobial ointments ostensibly mitigate bacterial wound disease and reliance on systemic antibiotics. Yet studies have called into question the therapeutic benefits of several traditional topical antibacterials, accentuating the need for improved next-generation antimicrobial ointments. Yet the development of such agents consisting of a new chemical entity is a time-consuming and expensive proposition. Considering that drug combinations are a mainstay therapeutic strategy for the treatment of other therapeutic indications, one alternative approach is to improve the performance of conventional antimicrobial ointments by the addition of a well-characterized and FDA-approved agent. Here we report data that indicate that the antimicrobial properties of silver sulfadiazine ointments can be significantly improved by the addition of the antifungal zinc pyrithione, suggesting that such combinations may provide an improved therapeutic option for the topical treatment of wound infections.
Collapse
|
15
|
Colquhoun JM, Wozniak RAF, Dunman PM. Clinically Relevant Growth Conditions Alter Acinetobacter baumannii Antibiotic Susceptibility and Promote Identification of Novel Antibacterial Agents. PLoS One 2015; 10:e0143033. [PMID: 26558753 PMCID: PMC4641712 DOI: 10.1371/journal.pone.0143033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
Biological processes that govern bacterial proliferation and survival in the host-environment(s) are likely to be vastly different from those that are required for viability in nutrient-rich laboratory media. Consequently, growth-based antimicrobial screens performed in conditions modeling aspects of bacterial disease states have the potential to identify new classes of antimicrobials that would be missed by screens performed in conventional laboratory media. Accordingly, we performed screens of the Selleck library of 853 FDA approved drugs for agents that exhibit antimicrobial activity toward the Gram-negative bacterial pathogen Acinetobacter baumannii during growth in human serum, lung surfactant, and/or the organism in the biofilm state and compared those results to that of conventional laboratory medium. Results revealed that a total of 90 compounds representing 73 antibiotics and 17 agents that were developed for alternative therapeutic indications displayed antimicrobial properties toward the test strain in at least one screening condition. Of the active library antibiotics only four agents, rifampin, rifaximin, ciprofloxacin and tetracycline, exhibited antimicrobial activity toward the organism during all screening conditions, whereas the remainder were inactive in ≥ 1 condition; 56 antibiotics were inactive during serum growth, 25 and 38 were inactive toward lung surfactant grown and biofilm-associated cells, respectively, suggesting that subsets of antibiotics may outperform others in differing infection settings. Moreover, 9 antibiotics that are predominantly used for the treatment Gram-positive pathogens and 10 non-antibiotics lacked detectable antimicrobial activity toward A. baumannii grown in conventional medium but were active during ≥ 1 alternative growth condition(s). Such agents may represent promising anti-Acinetobacter agents that would have likely been overlooked by antimicrobial whole cell screening assays performed in traditional laboratory screening media.
Collapse
Affiliation(s)
- Jennifer M. Colquhoun
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Rachel A. F. Wozniak
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Paul M. Dunman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Rosales-Reyes R, Alcántar-Curiel MD, Jarillo-Quijada MD, Gayosso-Vázquez C, Morfin-Otero MDR, Rodríguez-Noriega E, Santos-Preciado JI. Biofilm Formation and Susceptibility to Polymyxin B by a Highly Prevalent Clone of Multidrug-Resistant Acinetobacter baumannii from a Mexican Tertiary Care Hospital. Chemotherapy 2015; 61:8-14. [PMID: 26536333 DOI: 10.1159/000440605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/24/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Acinetobacter baumannii has emerged as a major cause of hospital-associated infections with increased morbidity and mortality among those affected. METHODS A total of 85 isolates of a highly prevalent multidrug-resistant clone, identified during the period 2007-2011, were analyzed for biofilm formation on a polystyrene surface. The minimal inhibitory concentration was determined by the Sensititre System, the agar disk diffusion method and then read by means of the BIOMIC system and serial dilutions on Müller-Hinton agar. RESULTS In this study, covering a period of 5 years (2007-2011), we demonstrate that a particular clone emerged as the most prevalent, with an associated lethality of 28.2%. We demonstrate that 92.9% of strains corresponding to this clone are biofilm producers. Our results also demonstrate that all isolates were 100% susceptible to polymyxin B. CONCLUSION Our study suggests that the high prevalence and lethality of this multidrug-resistant clone of A. baumannii and its persistence over close to 5 years in a Mexican tertiary hospital environment can be explained in part by the ability of these clinical isolates of A. baumannii to form biofilms.
Collapse
|
17
|
Biswas I. Genetic tools for manipulating Acinetobacter baumannii genome: an overview. J Med Microbiol 2015; 64:657-669. [PMID: 25948809 DOI: 10.1099/jmm.0.000081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial pathogen involved in a variety of infections ranging from minor soft-tissue infections to more severe infections such as ventilator-associated pneumonia and bacteraemia. A. baumannii has become resistant to most of the commonly used antibiotics and multidrug-resistant isolates are becoming a severe problem in the healthcare setting. In the past few years, whole-genome sequences of >200 A. baumannii isolates have been generated. Several methods and molecular tools have been used for genetic manipulation of various Acinetobacter spp. Here, we review recent developments of various genetic tools used for modification of the A. baumannii genome, including various ways to inactivate gene function, chromosomal integration and transposon mutagenesis.
Collapse
Affiliation(s)
- Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:2533-48. [PMID: 25693672 DOI: 10.1007/s00253-015-6439-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/11/2023]
Abstract
Acinetobacter occupies an important position in nature because of its ubiquitous presence in diverse environments such as soils, fresh water, oceans, sediments, and contaminated sites. Versatile metabolic characteristics allow species of this genus to catabolize a wide range of natural compounds, implying active participation in the nutrient cycle in the ecosystem. On the other hand, multi-drug-resistant Acinetobacter baumannii causing nosocomial infections with high mortality has been raising serious concerns in medicine. Due to the ecological and clinical importance of the genus, Acinetobacter was proposed as a model microorganism for environmental microbiological studies, pathogenicity tests, and industrial production of chemicals. For these reasons, Acinetobacter has attracted significant attention in scientific and biotechnological fields, but only limited research areas such as natural transformation and aromatic compound degradation have been intensively investigated, while important physiological characteristics including quorum sensing, motility, and stress response have been neglected. The aim of this review is to summarize the recent achievements in Acinetobacter research with a special focus on strain DR1 and to compare the similarities and differences between species or other genera. Research areas that require more attention in future research are also suggested.
Collapse
Affiliation(s)
- Jaejoon Jung
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
19
|
Richards AM, Abu Kwaik Y, Lamont RJ. Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity. Mol Oral Microbiol 2014; 30:2-15. [PMID: 25052812 DOI: 10.1111/omi.12072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 01/20/2023]
Abstract
Actinetobacter baumannii is an important nosocomial pathogen that can cause a wide range of serious conditions including pneumonia, meningitis, necrotizing fasciitis and sepsis. It is also a major cause of wound infections in military personnel injured during the conflicts in Afghanistan and Iraq, leading to its popular nickname of 'Iraqibacter'. Contributing to its success in clinical settings is resistance to environmental stresses such as desiccation and disinfectants. Moreover, in recent years there has been a dramatic increase in the number of A. baumannii strains with resistance to multiple antibiotic classes. Acinetobacter baumannii is an inhabitant of oral biofilms, which can act as a reservoir for pneumonia and chronic obstructive pulmonary disease. Subgingival colonization by A. baumannii increases the risk of refractory periodontitis. Pathogenesis of the organism involves adherence, biofilm formation and iron acquisition. In addition, A. baumannii can induce apoptotic cell death in epithelial cells and kill hyphal forms of Candida albicans. Virulence factors that have been identified include pili, the outer membrane protein OmpA, phospholipases and extracellular polysaccharide. Acinetobacter baumannii can sense blue light through a blue-light sensing using flavin (BLUF) domain protein, BlsA. The resulting conformational change in BlsA leads to changes in gene expression, including virulence genes.
Collapse
Affiliation(s)
- A M Richards
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | | | | |
Collapse
|