1
|
Abstract
Major advances in biomedical imaging have occurred over the last 2 decades and now allow many physiological, cellular, and molecular processes to be imaged noninvasively in small animal models of cardiovascular disease. Many of these techniques can be also used in humans, providing pathophysiological context and helping to define the clinical relevance of the model. Ultrasound remains the most widely used approach, and dedicated high-frequency systems can obtain extremely detailed images in mice. Likewise, dedicated small animal tomographic systems have been developed for magnetic resonance, positron emission tomography, fluorescence imaging, and computed tomography in mice. In this article, we review the use of ultrasound and positron emission tomography in small animal models, as well as emerging contrast mechanisms in magnetic resonance such as diffusion tensor imaging, hyperpolarized magnetic resonance, chemical exchange saturation transfer imaging, magnetic resonance elastography and strain, arterial spin labeling, and molecular imaging.
Collapse
Affiliation(s)
- David E Sosnovik
- Cardiology Division, Cardiovascular Research Center (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,A.A. Martinos Center for Biomedical Imaging (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge (D.E.S.)
| | - Marielle Scherrer-Crosbie
- Cardiology Division, Hospital of the University of Pennsylvania and Perelman School of Medicine, Philadelphia (M.S.-C)
| |
Collapse
|
2
|
Meng Z, Gai W, Song D. Postconditioning with Nitrates Protects Against Myocardial Reperfusion Injury: A New Use for an Old Pharmacological Agent. Med Sci Monit 2020; 26:e923129. [PMID: 32516304 PMCID: PMC7299064 DOI: 10.12659/msm.923129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Early reperfusion remains the key therapy to salvage viable myocardium and must be applied as soon as possible following an acute myocardial infarction (AMI) to attenuate the ischemic insult. However, reperfusion injury may develop following reintroduction of blood and oxygen to vulnerable myocytes, which results in more severe cell death than in the preceding ischemic episode. Ischemic postconditioning (I-PostC) provides a cardioprotective effect in combination with pharmacological agents. Although nitrates have been tested in many experimental and clinical studies of acute AMI to evaluate the cardioprotective effect, few investigations have been focused on nitrates postconditioning in patients undergoing percutaneous coronary intervention (PCI). This review presents the manifestations of myocardial reperfusion injury (RI) and potential mechanisms underlying it, and provides the mechanisms involved in the cardioprotection of I-PostC. We also present a new therapeutic approach to attenuate RI by use of an ‘old’ agent – nitrates – in AMI patients.
Collapse
Affiliation(s)
- Zhu Meng
- Department of Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| | - Weili Gai
- Department of Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| | - Dalin Song
- Department of Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| |
Collapse
|
3
|
Wang TT, Shi MM, Liao XL, Li YQ, Yuan HX, Li Y, Liu X, Ning DS, Peng YM, Yang F, Mo ZW, Jiang YM, Xu YQ, Li H, Wang M, Ou ZJ, Xia Z, Ou JS. Overexpression of inducible nitric oxide synthase in the diabetic heart compromises ischemic postconditioning. J Mol Cell Cardiol 2019; 129:144-153. [PMID: 30797815 DOI: 10.1016/j.yjmcc.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023]
Abstract
Ischemia postconditioning (PTC) can reduce myocardial ischemia/reperfusion injury. However, the effectiveness of PTC cardioprotection is reduced or lost in diabetes and the mechanisms are largely unclear. Hyperglycemia can induce overexpression of inducible nitric oxide synthesis (iNOS) in the myocardium of diabetic subjects. However, it is unknown whether or not iNOS especially its overexpression plays an important role in the loss of cardioprotection of PTC in diabetes. C57BL6 and iNOS-/- mice were treated with streptozotocin to induce diabetes. Part of diabetic C57BL6 mice were also treated with an iNOS specific inhibitor, 1400 W. Mice were subjected to myocardial ischemia/ reperfusion with/without PTC. The hemodynamic parameters, plasma levels of cardiac troponin T (cTnT), TNF-α, IL-6 and nitric oxide (NO) were monitored. The myocardial infarct size, superoxide anion (O2-) generation, nitrotyrosine production and apoptosis were measured. The expression of phosphorylated Akt, endothelial NOS (eNOS), iNOS and Erk1/2 in ischemic heart were detected by immunoblot analysis. In diabetic C57BL6 and iNOS-/- mice, the post-ischemic hemodynamics were impaired, the cTnT, TNF-α, IL-6 level, myocardial infarct size, apoptotic index, O2- and nitrotyrosine generation were increased and the Akt/eNOS signal pathways were inhibited. PTC improved hemodynamic parameters, reduced cTnT level, myocardial infarct size, apoptotic index, O2- and nitrotyrosine generation and activated Akt/eNOS and Erk1/2 signal pathways in both non-diabetic C57BL6 and iNOS-/- mice as well as diabetic iNOS-/- mice, but not in diabetic C57BL6 mice. PTC also increased NO production in both non-diabetic and diabetic C57BL6 and iNOS-/- mice, and enhanced iNOS expression in non-diabetic C57BL6 mice. 1400 W restored the cardioprotection of PTC in diabetic C57BL6 mice. Our data demonstrated that PTC reduced myocardial ischemia/reperfusion injury in non-diabetic mice but not C57BL6 diabetic mice. Deletion of iNOS restored the cardioprotection of PTC in diabetic mice. Our findings suggest that iNOS plays a key role in the reduction of cardioprotection of PTC in diabetes and may provide a therapeutic target for diabetic patients.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Mao-Mao Shi
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Xiao-Long Liao
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yan Li
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Xiang Liu
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Fan Yang
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yu-Mei Jiang
- Department of Extracorporeal circulation, Heart center, The First Affiliated Hospital, Sun Yat-sen University, PR China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China
| | - Haobo Li
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Min Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, PR China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China.
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, PR China.
| |
Collapse
|
4
|
Bibli SI, Zhou Z, Zukunft S, Fisslthaler B, Andreadou I, Szabo C, Brouckaert P, Fleming I, Papapetropoulos A. Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2. Cardiovasc Res 2018; 113:926-937. [PMID: 28444132 DOI: 10.1093/cvr/cvx058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/20/2017] [Indexed: 02/06/2023] Open
Abstract
Aims Endothelial nitric oxide (NO) synthase (eNOS) is known to play a cardioprotective protective. However, the molecular mechanisms regulating eNOS activity during ischaemia/reperfusion (I/R) injury are incompletely understood. eNOS is a substrate for several kinases that positively or negatively affect its enzymatic activity. Herein, we sought to correlate eNOS phosphorylation status with cardiomyocyte survival and we investigated the contribution of the proline-rich tyrosine kinase 2 (PYK2)/eNOS axis to the regulation of myocardial infarct size in vivo. Methods and results Exposure of H9c2 cardiomyocytes to H2O2 lead to PYK2 phosphorylation on its activator site (Y402) and eNOS phosphorylation on the inhibitor site Y656 and the activator site S1176. Both H2O2-induced eNOS phosphorylation events were abolished by PYK2 pharmacological inhibition or gene knockdown. Activity assays demonstrated that phosphorylation of the tyrosine inhibitory site exerts a dominant effect over S1176. In cardiomyocytes subjected to oxidative stress or oxygen-glucose deprivation, inhibition of PYK2 limited cell injury; this effect was prevented by inhibition of NO production. In vivo, ischaemia-reperfusion induced an early activation of PYK2, leading to eNOS phosphorylation on Y656, which, in turn, reduced NO output, as judged by the low tissue levels of its downstream effector cGMP. Moreover, pharmacological blockade of PYK2 alleviated eNOS inhibition and prevented cardiac damage following I/R injury in wild-type, but not in eNOS KO mice. Conclusion The current studies demonstrate that PYK2 is a pivotal regulator of eNOS function in myocardial infarction and identify PYK2 as a novel therapeutic target for cardioprotection.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou 15771, Greece.,"George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Ipsilantou 45-47, Athens, 10675 Greece.,Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Zongmin Zhou
- "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Ipsilantou 45-47, Athens, 10675 Greece
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Beate Fisslthaler
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou 15771, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, 601 Harborside Drive, Galveston, 77555 TX, USA
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium.,Laboratory for Molecular Pathology and Experimental Therapy, Inflammation Research Center, VIB, Ghent B-9052, Belgium
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, D-60590, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou 15771, Greece.,"George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Ipsilantou 45-47, Athens, 10675 Greece.,Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece
| |
Collapse
|
5
|
Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F, Chen Y. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res 2017; 63:e12413. [PMID: 28398674 PMCID: PMC5518188 DOI: 10.1111/jpi.12413] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
Abstract
The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin-treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP-activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, which subsequently induced voltage-dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy-mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p-Drp1S616 downregulation and p-Drp1S37 upregulation, which blunted Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1-HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy-mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis via activation of AMPKα.
Collapse
Affiliation(s)
- Hao Zhou
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Ying Zhang
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Shunying Hu
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Chen Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Department of Radiation OncologyPeking University Cancer Hospital and InstituteBeijingChina
| | - Pingjun Zhu
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Qiang Ma
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Qinhua Jin
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Feng Cao
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Feng Tian
- Department of CardiologyChinese PLA General HospitalBeijingChina
| | - Yundai Chen
- Department of CardiologyChinese PLA General HospitalBeijingChina
| |
Collapse
|