1
|
Arrones A, Antar O, Pereira-Dias L, Solana A, Ferrante P, Aprea G, Plazas M, Prohens J, Díez MJ, Giuliano G, Gramazio P, Vilanova S. A novel tomato interspecific ( Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium) MAGIC population facilitates trait association and candidate gene discovery in untapped exotic germplasm. HORTICULTURE RESEARCH 2024; 11:uhae154. [PMID: 39005998 PMCID: PMC11246243 DOI: 10.1093/hr/uhae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
We developed a novel eight-way tomato multiparental advanced generation intercross (MAGIC) population to improve the accessibility of tomato relatives genetic resources to geneticists and breeders. The interspecific tomato MAGIC population (ToMAGIC) was obtained by intercrossing four accessions each of Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium, which are the weedy relative and the ancestor of cultivated tomato, respectively. The eight exotic ToMAGIC founders were selected based on a representation of the genetic diversity and geographical distribution of the two taxa. The resulting MAGIC population comprises 354 lines, which were genotyped using a new 12k tomato single primer enrichment technology panel and yielded 6488 high-quality single-nucleotide polymorphism (SNPs). The genotyping data revealed a high degree of homozygosity, an absence of genetic structure, and a balanced representation of the founder genomes. To evaluate the potential of the ToMAGIC population, a proof of concept was conducted by phenotyping it for fruit size, plant pigmentation, leaf morphology, and earliness. Genome-wide association studies identified strong associations for the studied traits, pinpointing both previously identified and novel candidate genes near or within the linkage disequilibrium blocks. Domesticated alleles for fruit size were recessive and were found, at low frequencies, in wild/ancestral populations. Our findings demonstrate that the newly developed ToMAGIC population is a valuable resource for genetic research in tomato, offering significant potential for identifying new genes that govern key traits in tomato. ToMAGIC lines displaying a pyramiding of traits of interest could have direct applicability for integration into breeding pipelines providing untapped variation for tomato breeding.
Collapse
Affiliation(s)
- Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Oussama Antar
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Andrea Solana
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Paola Ferrante
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Giuseppe Aprea
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L’energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
2
|
Singh A, Mahato AK, Maurya A, Rajkumar S, Singh AK, Bhardwaj R, Kaushik SK, Kumar S, Gupta V, Singh K, Singh R. Amaranth Genomic Resource Database: an integrated database resource of Amaranth genes and genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1203855. [PMID: 37448872 PMCID: PMC10337998 DOI: 10.3389/fpls.2023.1203855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
Amaranth (Amaranthus L.) is native to Mexico and North America, where it was cultivated thousands of years ago, but now amaranth is grown worldwide. Amaranth is one of the most promising food crops with high nutritional value and belongs to the family Amaranthaceae. The high-quality genome assembly of cultivated amaranth species (A. hypochondriacus, A. cruentus) and wild/weedy species (A. tuberculatus, A. hybridus, and A. palmeri) has already been reported; therefore, we developed an Amaranth Genomic Resource Database (AGRDB) to provide access to all the genomic information such as genes, SSRs, SNPs, TFs, miRNAs, and transporters in one place. The AGRDB database contains functionally annotated gene information with their sequence details, genic as well as genomic SSRs with their three sets of primers, transcription factors classified into different families with their sequence information and annotation details, putative miRNAs with their family, sequences, and targeted gene details, transporter genes with their superfamily, trans-membrane domain details, and details of genic as well as nongenic SNPs with 3' and 5' flanking sequence information of five amaranth species. A database search can be performed using the gene ID, sequence ID, sequence motif, motif repeat, family name, annotation keyword, scaffold or chromosome numbers, etc. This resource also includes some useful tools, including JBrowse for the visualization of genes, SSRs, SNPs, and TFs on the respective amaranth genomes and BLAST search to perform a BLAST search of the user's query sequence against the amaranth genome as well as protein sequences. The AGRDB database will serve as a potential platform for genetic improvement and characterization of this futuristic crop. The AGRDB database will be accessible via the link: http://www.nbpgr.ernet.in:8080/AmaranthGRD/.
Collapse
Affiliation(s)
- Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. Rajkumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - A. K. Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. K. Kaushik
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sandeep Kumar
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Veena Gupta
- Division of Germplasm Conservation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- International Crop Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
3
|
Aiyelari E, Oshunsanya S, Aliku O, Adeniran S, Ona M. Response of irrigated tomato ( Solanum lycopersicum Mill) to mulch application rates. Heliyon 2022; 8:e11270. [PMID: 36325147 PMCID: PMC9619000 DOI: 10.1016/j.heliyon.2022.e11270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/27/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Rapid decline in available water for crop production has led to the adoption of irrigation schedules for meeting water supply throughout cropping seasons. Nonetheless, the loss of water from soil often results in spells of water stress between schedules, which adversely affect crop yield. Hence, the use of mulch in conserving soil moisture in irrigated farming is becoming popular among farmers. In this study, a two-year screenhouse pot experiment was conducted to evaluate the effects of Pennisetum purpureum (Pp) mulch on tomato (Roma variety) grown in daily irrigation (IFdaily), irrigation at 3-days interval (IF3), and irrigation at 5-days interval (IF5) conditions. The Pp mulch was chopped to 5 cm and applied on the soil surface of each experimental pot at 1 t ha−1 (Pp1), 2 t ha−1 (Pp2), 3 t ha−1 (Pp3), and 4 t ha−1 (Pp4). These rates were compared against a bare soil as control (Pp0). The treatments were laid in a completely randomised design with four replicates. Tomato yield decreased by 53.6% and 26.6% in IF3, and 86.2% and 65.0% in IF5 compared with IFdaily in years 1 and 2, respectively. Among mulch rates, Pp4 and Pp3 increased tomato yield respectively by 107.5% and 99.9% compared with Pp0, while Pp2 and Pp1 were similar in year 1. In year 2, mulch increased tomato yield by 84.1% (Pp1) – 215.3% (Pp4) and contributed substantially to tomato yield in IFdaily (R2 = 0.99; p < 0.01); IF3 (R2 = 0.93; p < 0.01); and IF5 (R2 = 0.25; p < 0.05). However, withdrawing irrigation at 5 days interval was detrimental to tomato yield production.
Collapse
|
4
|
Singh J, Aggarwal R, Bashyal BM, Darshan K, Parmar P, Saharan MS, Hussain Z, Solanke AU. Transcriptome Reprogramming of Tomato Orchestrate the Hormone Signaling Network of Systemic Resistance Induced by Chaetomium globosum. FRONTIERS IN PLANT SCIENCE 2021; 12:721193. [PMID: 34630468 PMCID: PMC8495223 DOI: 10.3389/fpls.2021.721193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/16/2021] [Indexed: 06/12/2023]
Abstract
Chaetomium globosum is a potential biological control agent effective against various plant pathogens. Several reports are available on the mycoparastism and antibiosis mechanisms of C. globosum against plant pathogenic fungi, whereas a few states induced resistance. The potential induced defense component of C. globosum (Cg-2) was evaluated against early blight disease of tomato (Solanum lycopersicum) and further, global RNA sequencing was performed to gain deep insight into its mechanism. The expression of marker genes of hormone signaling pathways, such as PR1, PiII, PS, PAL, Le4, and GluB were analyzed using real-time quantitative reverse transcription PCR (qRT-PCR) to determine the best time point for RNA sequencing. The transcriptome data revealed that 22,473 differentially expressed genes (DEGs) were expressed in tomato at 12 h post Cg-2 inoculation as compared with control plants and among these 922 DEGs had a fold change of -2 to +2 with p < 0.05. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the DEGs were belonging to metabolic pathways, biosynthesis of secondary metabolites, plant-pathogen interaction, chlorophyll metabolism, and plant hormone signal transduction. Gene Ontology (GO) analysis revealed that DEGs were enriched mainly related to binding activity (GO:0005488), catalytic activity (GO:0003824), metabolic process (GO:0008152), cellular process (GO:0009987), response to stimulus (GO:0050896), biological regulation (GO:0065007), and transcription regulator activity (GO:0140110). The gene modulations in hormone signaling transduction, phenylpropanoid biosynthesis, and mitogen-activated protein kinases (MPK) signaling indicated the upregulation of genes in these pathways. The results revealed active participation of jasmonic acid (JA) and salicylic acid (SA) signaling transduction pathways which further indicated the involvement of induced systemic resistance (ISR) and systemic acquired resistance (SAR) in the systemic resistance induced by Cg-2 in tomato.
Collapse
Affiliation(s)
- Jagmohan Singh
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Aggarwal
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bishnu Maya Bashyal
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K Darshan
- Forest Protection Division, IC FRE-Tropical Forest Research Institute, Jabalpur, India
| | - Pooja Parmar
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M S Saharan
- Fungal Molecular Biology Laboratory, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Zakir Hussain
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, ICAR-IARI, New Delhi, India
| |
Collapse
|
5
|
He M, Song S, Zhu X, Lin Y, Pan Z, Chen L, Chen D, Hu G, Huang B, Chen M, Wu C, Chen R, Bouzayen M, Zouine M, Hao Y. SlTPL1 Silencing Induces Facultative Parthenocarpy in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:672232. [PMID: 34093628 PMCID: PMC8174789 DOI: 10.3389/fpls.2021.672232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 05/07/2023]
Abstract
Facultative parthenocarpy is of great practical value. However, the molecular mechanism underlying facultative parthenocarpy remains elusive. Transcriptional co-repressors (TPL) act as a central regulatory hub controlling all nine phytohormone pathways. Previously, we proved that SlTPLs participate in the auxin signaling pathway by interacting with auxin/indole acetic acid (Aux/IAAs) in tomato; however, their function in fruit development has not been studied. In addition to their high expression levels during flower development, the interaction between SlTPL1 and SlIAA9 stimulated the investigation of its functional significance via RNA interference (RNAi) technology, whereby the translation of a protein is prevented by selective degradation of its encoded mRNA. Down-regulation of SlTPL1 resulted in facultative parthenocarpy. Plants of SlTPL1-RNAi transgenic lines produced similar fruits which did not show any pleiotropic effects under normal conditions. However, they produced seedless fruits upon emasculation and under heat stress conditions. Furthermore, SlTPL1-RNAi flower buds contained higher levels of cytokinins and lower levels of abscisic acid. To reveal how SlTPL1 regulates facultative parthenocarpy, RNA-seq was performed to identify genes regulated by SlTPL1 in ovaries before and after fruit set. The results showed that down-regulation of SlTPL1 resulted in reduced expression levels of cytokinin metabolism-related genes, and all transcription factors such as MYB, CDF, and ERFs. Conversely, down-regulation of SlTPL1 induced the expression of genes related to cell wall and cytoskeleton organization. These data provide novel insights into the molecular mechanism of facultative tomato parthenocarpy and identify SlTPL1 as a key factor regulating these processes.
Collapse
Affiliation(s)
- Mi He
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Zhu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuxiang Lin
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zanlin Pan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Lin Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Da Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guojian Hu
- Laboratory Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Toulouse, France
| | - Baowen Huang
- Laboratory Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Toulouse, France
| | - Mengyi Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Caiyu Wu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mondher Bouzayen
- Laboratory Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Toulouse, France
| | - Mohammed Zouine
- Laboratory Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Toulouse, France
- *Correspondence: Mohammed Zouine,
| | - Yanwei Hao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Yanwei Hao,
| |
Collapse
|
6
|
Gupta P, Dholaniya PS, Devulapalli S, Tawari NR, Sreelakshmi Y, Sharma R. Reanalysis of genome sequences of tomato accessions and its wild relatives: development of Tomato Genomic Variation (TGV) database integrating SNPs and INDELs polymorphisms. Bioinformatics 2020; 36:4984-4990. [PMID: 32829394 DOI: 10.1093/bioinformatics/btaa617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Facilitated by technological advances and expeditious decrease in the sequencing costs, whole-genome sequencing is increasingly implemented to uncover variations in cultivars/accessions of many crop plants. In tomato (Solanum lycopersicum), the availability of the genome sequence, followed by the resequencing of tomato cultivars and its wild relatives, has provided a prodigious resource for the improvement of traits. A high-quality genome resequencing of 84 tomato accessions and wild relatives generated a dataset that can be used as a resource to identify agronomically important alleles across the genome. Converting this dataset into a searchable database, including information about the influence of single-nucleotide polymorphisms (SNPs) on protein function, provides valuable information about the genetic variations. The database will assist in searching for functional variants of a gene for introgression into tomato cultivars. RESULTS A recent release of better-quality tomato genome reference assembly SL3.0, and new annotation ITAG3.2 of SL3.0, dropped 3857 genes, added 4900 novel genes and updated 20 766 genes. Using the above version, we remapped the data from the tomato lines resequenced under the '100 tomato genome resequencing project' on new tomato genome assembly SL3.0 and made an online searchable Tomato Genomic Variations (TGVs) database. The TGV contains information about SNPs and insertion/deletion events and expands it by functional annotation of variants with new ITAG3.2 using SIFT4G software. This database with search function assists in inferring the influence of SNPs on the function of a target gene. This database can be used for selecting SNPs, which can be potentially deployed for improving tomato traits. AVAILABILITY AND IMPLEMENTATION TGV is freely available at http://psd.uohyd.ac.in/tgv.
Collapse
Affiliation(s)
- Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | | | - Nilesh Ramesh Tawari
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences
| |
Collapse
|
7
|
Makrodimitris S, Reinders M, van Ham R. A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins. PLoS One 2020; 15:e0242723. [PMID: 33237964 PMCID: PMC7688180 DOI: 10.1371/journal.pone.0242723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-model species. Here, we tested to what extent these incomplete networks are still useful for genome-wide function prediction. We used two network-based classifiers to predict Biological Process Gene Ontology terms from protein interaction data in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Solanum lycopersicum (tomato). The classifiers had reasonable performance in the well-studied yeast, but performed poorly in the other species. We showed that this poor performance can be considerably improved by adding edges predicted from various data sources, such as text mining, and that associations from the STRING database are more useful than interactions predicted by a neural network from sequence-based features.
Collapse
Affiliation(s)
- Stavros Makrodimitris
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
- Keygene N.V., Wageningen, the Netherlands
| | - Marcel Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Roeland van Ham
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
- Keygene N.V., Wageningen, the Netherlands
| |
Collapse
|
8
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. Tomato Fruit Development and Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:1554. [PMID: 31850035 PMCID: PMC6895250 DOI: 10.3389/fpls.2019.01554] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important fruit or vegetable crop next to potato (Solanum tuberosum L.). It is cultivated for fresh fruit and processed products. Tomatoes contain many health-promoting compounds including vitamins, carotenoids, and phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic metabolic changes occur during its fruit development. In this review, we provide an overview of our current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal control of fruit development and ripening, after which we document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and quality.
Collapse
Affiliation(s)
- Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rémi Blanchard-Gros
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Chaudhary J, Khatri P, Singla P, Kumawat S, Kumari A, R V, Vikram A, Jindal SK, Kardile H, Kumar R, Sonah H, Deshmukh R. Advances in Omics Approaches for Abiotic Stress Tolerance in Tomato. BIOLOGY 2019; 8:biology8040090. [PMID: 31775241 PMCID: PMC6956103 DOI: 10.3390/biology8040090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Tomato, one of the most important crops worldwide, has a high demand in the fresh fruit market and processed food industries. Despite having considerably high productivity, continuous supply as per the market demand is hard to achieve, mostly because of periodic losses occurring due to biotic as well as abiotic stresses. Although tomato is a temperate crop, it is grown in almost all the climatic zones because of widespread demand, which makes it challenge to adapt in diverse conditions. Development of tomato cultivars with enhanced abiotic stress tolerance is one of the most sustainable approaches for its successful production. In this regard, efforts are being made to understand the stress tolerance mechanism, gene discovery, and interaction of genetic and environmental factors. Several omics approaches, tools, and resources have already been developed for tomato growing. Modern sequencing technologies have greatly accelerated genomics and transcriptomics studies in tomato. These advancements facilitate Quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). However, limited efforts have been made in other omics branches like proteomics, metabolomics, and ionomics. Extensive cataloging of omics resources made here has highlighted the need for integration of omics approaches for efficient utilization of resources and a better understanding of the molecular mechanism. The information provided here will be helpful to understand the plant responses and the genetic regulatory networks involved in abiotic stress tolerance and efficient utilization of omics resources for tomato crop improvement.
Collapse
Affiliation(s)
- Juhi Chaudhary
- Department of Biology, Oberlin College, Oberlin, OH 44074, USA;
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Pankaj Singla
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Anu Kumari
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Vinaykumar R
- Department of Vegetable Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (V.R.); (A.V.)
| | - Amit Vikram
- Department of Vegetable Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (V.R.); (A.V.)
| | - Salesh Kumar Jindal
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Hemant Kardile
- Division of Crop Improvement, ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh 171001, India;
| | - Rahul Kumar
- Department of Plant Science, University of Hyderabad, Hyderabad 500046, India;
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
- Correspondence: (H.S.); (R.D.)
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
- Correspondence: (H.S.); (R.D.)
| |
Collapse
|
10
|
Wang Y, Zeng Z, Li F, Yang X, Gao X, Ma Y, Rao J, Wang H, Liu T. A genomic resource derived from the integration of genome sequences, expressed transcripts and genetic markers in ramie. BMC Genomics 2019; 20:476. [PMID: 31185891 PMCID: PMC6558782 DOI: 10.1186/s12864-019-5878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background The redundancy of genomic resources, including transcript and molecular markers, and their uncertain position in the genome have dramatically hindered the study of traits in ramie, an important natural fiber crop. Results We obtained a high-quality transcriptome consisting of 30,591 non-redundant transcripts using single-molecule long-read sequencing and proposed it as a universal ramie transcriptome. Additionally, 55,882 single nucleotide polymorphisms (SNPs) were identified and a high-density genetic map was developed. Based on this genetic map, 181.7 Mb ramie genome sequences were assembled into 14 chromosomes. For the convenient use of these resources, 29,286 (~ 95.7%) of the transcripts and all 55,882 SNPs, along with 1827 previously reported sequence repeat markers (SSRs), were mapped into the ramie genome, and 22,343 (~ 73.0%) transcripts, 50,154 (~ 89.7%) SNPs, and 1466 (~ 80.3%) SSRs were assigned to a specific location in the corresponding chromosome. Conclusion This is the first study to characterize the ramie transcriptome by long-read sequencing, and the substantial number of transcripts of significant length obtained will accelerate our understanding of ramie growth and development. This integration of genome sequences, expressed transcripts, and genetic markers will provide an extremely useful resource for genetic, molecular, and breeding studies of ramie. Electronic supplementary material The online version of this article (10.1186/s12864-019-5878-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanzhou Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Fu Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | | | - Xinyue Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yonghong Ma
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jing Rao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | | | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
11
|
Li Y, Wang H, Zhang Y, Martin C. Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? PLANT CELL REPORTS 2018; 37:1443-1450. [PMID: 29594330 PMCID: PMC6153642 DOI: 10.1007/s00299-018-2283-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 05/02/2023]
Abstract
Tomato has a relatively short growth cycle (fruit ready to pick within 65-85 days from planting) and a relatively high yield (the average for globe tomatoes is 3-9 kg fruit per plant rising to as much as 40 kg fruit per plant). Tomatoes also produce large amounts of important primary and secondary metabolites which can serve as intermediates or substrates for producing valuable new compounds. As a model crop, tomato already has a broad range of tools and resources available for biotechnological applications, either increased nutrients for health-promoting biofortified foods or as a production system for high-value compounds. These advantages make tomato an excellent chassis for the production of important metabolites. We summarize recent achievements in metabolic engineering of tomato and suggest new candidate metabolites which could be targets for metabolic engineering. We offer a scheme for how to establish tomato as a chassis for industrial-scale production of high-value metabolites.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Hsihua Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Cathie Martin
- Metabolic Biology Department, The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
12
|
Khatun K, Nath UK, Robin AHK, Park JI, Lee DJ, Kim MB, Kim CK, Lim KB, Nou IS, Chung MY. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato. BMC Genomics 2017; 18:695. [PMID: 28874115 PMCID: PMC5585987 DOI: 10.1186/s12864-017-4082-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/21/2017] [Indexed: 01/23/2023] Open
Abstract
Background Zinc finger homeodomain proteins (ZHD) constitute a plant-specific transcription factor family with a conserved DNA binding homeodomain and a zinc finger motif. Members of the ZHD protein family play important roles in plant growth, development, and stress responses. Genome-wide characterization of ZHD genes has been carried out in several model plants, including Arabidopsis thaliana and Oryza sativa, but not yet in tomato (Solanum lycopersicum). Results In this study, we performed the first comprehensive genome-wide characterization and expression profiling of the ZHD gene family in tomato (Solanum lycopersicum). We identified 22 SlZHD genes and classified them into six subfamilies based on phylogeny. The SlZHD genes were generally conserved in each subfamily, with minor variations in gene structure and motif distribution. The 22 SlZHD genes were distributed on six of the 12 tomato chromosomes, with segmental duplication detected in four genes. Analysis of Ka/Ks ratios revealed that the duplicated genes are under negative or purifying selection. Comprehensive expression analysis revealed that the SlZHD genes are widely expressed in various tissues, with most genes preferentially expressed in flower buds compared to other tissues. Moreover, many of the genes are responsive to abiotic stress and phytohormone treatment. Conclusion Systematic analysis revealed structural diversity among tomato ZHD proteins, which indicates the possibility for diverse roles of SlZHD genes in different developmental stages as well as in response to abiotic stresses. Our expression analysis of SlZHD genes in various tissues/organs and under various abiotic stress and phytohormone treatments sheds light on their functional divergence. Our findings represent a valuable resource for further analysis to explore the biological functions of tomato ZHD genes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4082-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khadiza Khatun
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea
| | - Do-Jin Lee
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea.,Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea
| | - Min-Bae Kim
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea.,Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, South Korea
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, South Korea
| | - Ill Sup Nou
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea
| | - Mi-Young Chung
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea. .,Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 57922, South Korea.
| |
Collapse
|
13
|
Coneva V, Frank MH, Balaguer MADL, Li M, Sozzani R, Chitwood DH. Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii. PLANT PHYSIOLOGY 2017; 175:376-391. [PMID: 28794258 PMCID: PMC5580771 DOI: 10.1104/pp.17.00790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/01/2017] [Indexed: 05/05/2023]
Abstract
Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato.
Collapse
Affiliation(s)
| | | | - Maria A de Luis Balaguer
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Mao Li
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | | |
Collapse
|
14
|
Bhardwaj A, Dhar YV, Asif MH, Bag SK. In Silico identification of SNP diversity in cultivated and wild tomato species: insight from molecular simulations. Sci Rep 2016; 6:38715. [PMID: 27929054 PMCID: PMC5144076 DOI: 10.1038/srep38715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Single Nucleotide Polymorphisms (SNPs), an important source of genetic variations, are often used in crop improvement programme. The present study represented comprehensive In silico analysis of nucleotide polymorphisms in wild (Solanum habrochaites) and cultivated (Solanum lycopersicum) species of tomato to explore the consequence of substitutions both at sequence and structure level. A total of 8978 SNPs having Ts/Tv (Transition/Transversion) ratio 1.75 were identified from the Expressed Sequence Tag (EST) and Next Generation Sequence (NGS) data of both the species available in public databases. Out of these, 1838 SNPs were non-synonymous and distributed in 988 protein coding genes. Among these, 23 genes containing 96 SNPs were involved in traits markedly different between the two species. Furthermore, there were 28 deleterious SNPs distributed in 27 genes and a few of these genes were involved in plant pathogen interaction and plant hormone pathways. Molecular docking and simulations of several selected proteins showed the effect of SNPs in terms of compactness, conformation and interaction ability. Observed SNPs exhibited various types of motif binding effects due to nucleotide changes. SNPs that provide the evidence of differential motif binding and interaction behaviour could be effectively used for the crop improvement program.
Collapse
Affiliation(s)
- Archana Bhardwaj
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Yogeshwar Vikram Dhar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Mehar Hasan Asif
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sumit K Bag
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| |
Collapse
|
15
|
Calafiore R, Ruggieri V, Raiola A, Rigano MM, Sacco A, Hassan MI, Frusciante L, Barone A. Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2016; 7:397. [PMID: 27092148 PMCID: PMC4824784 DOI: 10.3389/fpls.2016.00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
|
16
|
Shikata M, Hoshikawa K, Ariizumi T, Fukuda N, Yamazaki Y, Ezura H. TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource. PLANT & CELL PHYSIOLOGY 2016; 57:e11. [PMID: 26719120 DOI: 10.1093/pcp/pcv194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/23/2015] [Indexed: 05/19/2023]
Abstract
TOMATOMA (http://tomatoma.nbrp.jp/) is a tomato mutant database providing visible phenotypic data of tomato mutant lines generated by ethylmethane sulfonate (EMS) treatment or γ-ray irradiation in the genetic background of Micro-Tom, a small and rapidly growing variety. To increase mutation efficiency further, mutagenized M3 seeds were subjected to a second round of EMS treatment; M3M1 populations were generated. These plants were self-pollinated, and 4,952 lines of M3M2 mutagenized seeds were generated. We checked for visible phenotypes in the M3M2 plants, and 618 mutant lines with 1,194 phenotypic categories were identified. In addition to the phenotypic information, we investigated Brix values and carotenoid contents in the fruits of individual mutants. Of 466 samples from 171 mutant lines, Brix values and carotenoid contents were between 3.2% and 11.6% and 6.9 and 37.3 µg g(-1) FW, respectively. This metabolite information concerning the mutant fruits would be useful in breeding programs as well as for the elucidation of metabolic regulation. Researchers are able to browse and search this phenotypic and metabolite information and order seeds of individual mutants via TOMATOMA. Our new Micro-Tom double-mutagenized populations and the metabolic information could provide a valuable genetic toolkit to accelerate tomato research and potential breeding programs.
Collapse
Affiliation(s)
- Masahito Shikata
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Ken Hoshikawa
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Tohru Ariizumi
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Naoya Fukuda
- Agricultural and Forestry Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Hiroshi Ezura
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| |
Collapse
|
17
|
Iovieno P, Punzo P, Guida G, Mistretta C, Van Oosten MJ, Nurcato R, Bostan H, Colantuono C, Costa A, Bagnaresi P, Chiusano ML, Albrizio R, Giorio P, Batelli G, Grillo S. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:371. [PMID: 27066027 PMCID: PMC4814702 DOI: 10.3389/fpls.2016.00371] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/10/2016] [Indexed: 05/07/2023]
Abstract
Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts putatively involved in stomatal movements. This transcriptomic study has yielded promising candidate genes that merit further functional studies to confirm their involvement in drought tolerance and recovery. Together, our results contribute to a better understanding of the coordinated responses taking place under drought stress and recovery in adult plants of tomato.
Collapse
Affiliation(s)
- Paolo Iovieno
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR) Portici, Italy
| | - Paola Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR) Portici, Italy
| | - Gianpiero Guida
- National Research Council of Italy, Institute for Agricultural and Forestry Systems in the Mediterranean (CNR-ISAFoM) Ercolano, Italy
| | - Carmela Mistretta
- National Research Council of Italy, Institute for Agricultural and Forestry Systems in the Mediterranean (CNR-ISAFoM) Ercolano, Italy
| | | | - Roberta Nurcato
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR) Portici, Italy
| | - Hamed Bostan
- Department of Agriculture, University of Naples "Federico II," Portici, Italy
| | - Chiara Colantuono
- Department of Agriculture, University of Naples "Federico II," Portici, Italy
| | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR) Portici, Italy
| | - Paolo Bagnaresi
- CREA - Council for Agricultural Research and Economics, Genomics Research Centre Fiorenzuola d'Arda, Italy
| | - Maria L Chiusano
- Department of Agriculture, University of Naples "Federico II," Portici, Italy
| | - Rossella Albrizio
- National Research Council of Italy, Institute for Agricultural and Forestry Systems in the Mediterranean (CNR-ISAFoM) Ercolano, Italy
| | - Pasquale Giorio
- National Research Council of Italy, Institute for Agricultural and Forestry Systems in the Mediterranean (CNR-ISAFoM) Ercolano, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR) Portici, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR) Portici, Italy
| |
Collapse
|
18
|
de Vries S, Kloesges T, Rose LE. Evolutionarily Dynamic, but Robust, Targeting of Resistance Genes by the miR482/2118 Gene Family in the Solanaceae. Genome Biol Evol 2015; 7:3307-21. [PMID: 26590211 PMCID: PMC4700956 DOI: 10.1093/gbe/evv225] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plants are exposed to pathogens around the clock. A common resistance response in plants upon pathogen detection is localized cell death. Given the irreversible nature of this response, multiple layers of negative regulation are present to prevent the untimely or misexpression of resistance genes. One layer of negative regulation is provided by a recently discovered microRNA (miRNA) gene family, miR482/2118. This family targets the transcripts of resistance genes in plants. We investigated the evolutionary history and specificity of this miRNA gene family within the Solanaceae. This plant family includes many important crop species, providing a set of well-defined resistance gene repertoires. Across 14 species from the Solanaceae, we identified eight distinct miR482/2118 gene family members. Our studies show conservation of miRNA type and number in the group of wild tomatoes and, to a lesser extent, throughout the Solanaceae. The eight orthologous miRNA gene clusters evolved under different evolutionary constraints, allowing for individual subfunctionalization of the miRNAs. Despite differences in the predicted targeting behavior of each miRNA, the miRNA-R-gene network is robust due to its high degree of interconnectivity and redundant targeting. Our data suggest that the miR482/2118 gene family acts as an evolutionary buffer for R-gene sequence diversity.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Germany iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Germany
| | - Thorsten Kloesges
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Germany iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Germany Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Germany
| |
Collapse
|
19
|
Kalidhasan N, Joshi D, Bhatt TK, Gupta AK. Identification of key genes involved in root development of tomato using expressed sequence tag analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:491-503. [PMID: 26600676 PMCID: PMC4646861 DOI: 10.1007/s12298-015-0304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/19/2015] [Accepted: 06/09/2015] [Indexed: 05/11/2023]
Abstract
Root system of plants are actually fascinating structures, not only critical for plant development, but also important for storage and conduction. Due to its agronomic importance, identification of genes involved in root development has been a subject of intense study. Tomato is the one of the most consumed vegetables in the world. Tomato has been used as model system for dicot plants because of its small genome, well-established transformation techniques and well-constructed physical map. The present study is targeted to identify of root specific genes expressed temporally and also gene(s) involved in lateral root and profuse root development. A total of 890 ESTs were identified from five EST libraries constructed using SSH approach which included temporal gene regulation (early and late) and genes involved in morphogenetic traits (lateral and profuse rooting). One hundred sixty-one unique ESTs identified from various libraries were categorized based on their putative functions and deposited in NCBI-dbEST database. In addition, 36 ESTs were selected for validation of their expression by RT-PCR. The present findings will help in shedding light to the unexplored developmental process of root growth in tomato and plant in general.
Collapse
Affiliation(s)
- N. Kalidhasan
- />Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 India
| | - Deepti Joshi
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| | - Tarun Kumar Bhatt
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| | - Aditya Kumar Gupta
- />Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 India
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| |
Collapse
|
20
|
Bokszczanin KL, Krezdorn N, Fragkostefanakis S, Müller S, Rycak L, Chen Y, Hoffmeier K, Kreutz J, Paupière MJ, Chaturvedi P, Iannacone R, Müller F, Bostan H, Chiusano ML, Scharf KD, Rotter B, Schleiff E, Winter P. Identification of novel small ncRNAs in pollen of tomato. BMC Genomics 2015; 16:714. [PMID: 26385469 PMCID: PMC4575465 DOI: 10.1186/s12864-015-1901-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The unprecedented role of sncRNAs in the regulation of pollen biogenesis on both transcriptional and epigenetic levels has been experimentally proven. However, little is known about their global regulation, especially under stress conditions. We used tomato pollen in order to identify pollen stage-specific sncRNAs and their target mRNAs. We further deployed elevated temperatures to discern stress responsive sncRNAs. For this purpose high throughput sncRNA-sequencing as well as Massive Analysis of cDNA Ends (MACE) were performed for three-replicated sncRNAs libraries derived from tomato tetrad, post-meiotic, and mature pollen under control and heat stress conditions. RESULTS Using the omiRas analysis pipeline we identified known and predicted novel miRNAs as well as sncRNAs from other classes, responsive or not to heat. Differential expression analysis revealed that post-meiotic and mature pollen react most strongly by regulation of the expression of coding and non-coding genomic regions in response to heat. To gain insight to the function of these miRNAs, we predicted targets and annotated them to Gene Ontology terms. This approach revealed that most of them belong to protein binding, transcription, and Serine/Threonine kinase activity GO categories. Beside miRNAs, we observed differential expression of both tRNAs and snoRNAs in tetrad, post-meiotic, and mature pollen when comparing normal and heat stress conditions. CONCLUSIONS Thus, we describe a global spectrum of sncRNAs expressed in pollen as well as unveiled those which are regulated at specific time-points during pollen biogenesis. We integrated the small RNAs into the regulatory network of tomato heat stress response in pollen.
Collapse
Affiliation(s)
| | | | - Sotirios Fragkostefanakis
- Cluster of Excellence Frankfurt, Centre of Membrane Proteomics, Department of Biosciences, Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | - Marine J Paupière
- Department of Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Palak Chaturvedi
- Department for Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Rina Iannacone
- ALSIA Research Center Metapontum Agrobios Metaponto (MT), Metaponto, Italy
| | - Florian Müller
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Klaus-Dieter Scharf
- Cluster of Excellence Frankfurt, Centre of Membrane Proteomics, Department of Biosciences, Goethe University, Frankfurt am Main, Germany
| | | | - Enrico Schleiff
- Cluster of Excellence Frankfurt, Centre of Membrane Proteomics, Department of Biosciences, Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
21
|
Mansoori N, Schultink A, Schubert J, Pauly M. Expression of heterologous xyloglucan xylosyltransferases in Arabidopsis to investigate their role in determining xyloglucan xylosylation substitution patterns. PLANTA 2015; 241:1145-1158. [PMID: 25604050 DOI: 10.1007/s00425-015-2243-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Putative XyG xylosyltransferases from Tropaeolum majus (nasturtium) and Solanum lycopersicum (tomato) homologous to characterized Arabidopsis genes were identified and shown to functionally complement Arabidopsis mutants lacking xyloglucan demonstrating they represent xyloglucan xylosyltransferases. Xyloglucan is a major hemicellulose in the plant cell wall and is important for the structural organization of the wall. The fine structure of xyloglucan can vary dependent on plant species and tissue type. Most vascular seed-bearing plants including Arabidopsis thaliana and nasturtium (Tropaeolum majus) have a xyloglucan structure, in which three out of four backbone glucosyl-residues are substituted with xylosyl-residues. In contrast, the xyloglucan found in plants of the Solanaceae family, which includes tomato (Solanum lycopersicum), is typically less xylosylated with only two of the four backbone glucosyl-residues substituted with xylosyl-residues. To investigate the genetics of xyloglucan xylosylation, candidate xyloglucan xylosyltransferase genes (XXTs) homologous to known A. thaliana XXTs were cloned from nasturtium and tomato. These candidate XXTs were expressed in the A. thaliana xxt1/2 double and xxt1/2/5 triple mutant, whose walls lack detectable xyloglucan. Expression of the orthologs of XXT5 resulted in no detectable xyloglucan in the transgenic A. thaliana plants, consistent with a lack of xyloglucan in the A. thaliana xxt1/2 double mutant. However, transformation of both the tomato and nasturtium orthologs of AtXXT1 and AtXXT2 resulted in the production of xyloglucan with a xylosylation pattern similar to wild type A. thaliana indicating that both SlXXT2 and TmXXT2 likely have xylosyltransferase activity. As the expression of the SlXXT2 did not result in xyloglucan with a decreased xylosylation frequency found in tomato, this gene is not responsible for the unique xylosylation pattern found in the solanaceous plants.
Collapse
Affiliation(s)
- Nasim Mansoori
- Energy Biosciences Institute, University of California-Berkeley, Berkeley, CA, 94704, USA
| | | | | | | |
Collapse
|
22
|
Kremkow BG, Baik JY, MacDonald ML, Lee KH. CHOgenome.org 2.0: Genome resources and website updates. Biotechnol J 2015; 10:931-8. [DOI: 10.1002/biot.201400646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/20/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022]
|
23
|
CmMDb: a versatile database for Cucumis melo microsatellite markers and other horticulture crop research. PLoS One 2015; 10:e0118630. [PMID: 25885062 PMCID: PMC4401682 DOI: 10.1371/journal.pone.0118630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 12/02/2022] Open
Abstract
Cucumis melo L. that belongs to Cucurbitaceae family ranks among one of the highest valued horticulture crops being cultivated across the globe. Besides its economical and medicinal importance, Cucumis melo L. is a valuable resource and model system for the evolutionary studies of cucurbit family. However, very limited numbers of molecular markers were reported for Cucumis melo L. so far that limits the pace of functional genomic research in melon and other similar horticulture crops. We developed the first whole genome based microsatellite DNA marker database of Cucumis melo L. and comprehensive web resource that aids in variety identification and physical mapping of Cucurbitaceae family. The Cucumis melo L. microsatellite database (CmMDb: http://65.181.125.102/cmmdb2/index.html) encompasses 39,072 SSR markers along with its motif repeat, motif length, motif sequence, marker ID, motif type and chromosomal locations. The database is featured with novel automated primer designing facility to meet the needs of wet lab researchers. CmMDb is a freely available web resource that facilitates the researchers to select the most appropriate markers for marker-assisted selection in melons and to improve breeding strategies.
Collapse
|
24
|
Abstract
Tomato (Solanum lycopersicum), along with many other economically valuable species, belongs to the Solanaceae family. Understanding how plants in this family defend themselves against pathogens offers the opportunity of improving yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques that allow determination of changes in transcript abundance during pathogen attack. Such changes can implicate the affected gene as participating in plant defense. Testing the involvement of these candidate genes in defense has relied largely on posttranscriptional gene silencing, particularly virus-induced gene silencing. We discuss how functional genomics has played a key role in our current understanding of the defense response in tomato and related species and what are the challenges and opportunities for the future.
Collapse
|
25
|
Bostan H, Chiusano ML. NexGenEx-Tom: a gene expression platform to investigate the functionalities of the tomato genome. BMC PLANT BIOLOGY 2015; 15:48. [PMID: 25849067 PMCID: PMC4340097 DOI: 10.1186/s12870-014-0412-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Next Generation Sequencing technologies (NGS) unexpectedly pushed forward the capability of solving genome organization and of widely depicting gene expression. However, although the flourishing of tools to process the NGS data, versatile and user-friendly computational environments for integrative and comparative analyses of the results from the increasing amount of collections are still required. DESCRIPTION Here we present the architecture and the facilities of NexGenEx-, a web based platform that offers processed NGS transcriptome collections and enables immediate analyses of the results. The platform allows gene expression investigations, profiling and comparisons, and exploits different resources. CONCLUSION In the current version, NexGenEx-Tom includes processed and normalized NGS expression data from three collections covering several tissue/stages from different genotypes. Beyond providing a user-friendly interface, the platform was designed with the aim to easily be expanded to include other NGS based transcriptome collections. It can also integrate different genome releases, possibly from different cultivars or genotypes, but even from different species. The platform is proposed as an example effort in tomato, and is described as a profitable approach for the exploitation of these challenging and precious datasets.
Collapse
Affiliation(s)
- Hamed Bostan
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici, Italy
| |
Collapse
|