1
|
Canniff NP, Graham JB, Guay KP, Lubicki DA, Eyles SJ, Rauch JN, Hebert DN. TTC17 is an endoplasmic reticulum resident TPR-containing adaptor protein. J Biol Chem 2023; 299:105450. [PMID: 37949225 PMCID: PMC10783571 DOI: 10.1016/j.jbc.2023.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
Protein folding, quality control, maturation, and trafficking are essential processes for proper cellular homeostasis. Around one-third of the human proteome is targeted to the endoplasmic reticulum (ER), the organelle that serves as entrance into the secretory pathway. Successful protein trafficking is paramount for proper cellular function and to that end there are many ER resident proteins that ensure efficient secretion. Here, biochemical and cell biological analysis was used to determine that TTC17 is a large, soluble, ER-localized protein that plays an important role in secretory trafficking. Transcriptional analysis identified the predominantly expressed protein isoform of TTC17 in various cell lines. Further, TTC17 localizes to the ER and interacts with a wide variety of chaperones and cochaperones normally associated with ER protein folding, quality control, and maturation processes. TTC17 was found to be significantly upregulated by ER stress and through the creation and use of TTC17-/- cell lines, quantitative mass spectrometry identified secretory pathway wide trafficking defects in the absence of TTC17. Notably, trafficking of insulin-like growth factor type 1 receptor, glycoprotein nonmetastatic melanoma protein B, clusterin, and UDP-glucose:glycoprotein glucosyltransferase 1 were significantly altered in H4 neuroglioma cells. This study defines a novel ER trafficking factor and provides insight into the protein-protein assisted trafficking in the early secretory pathway.
Collapse
Affiliation(s)
- Nathan P Canniff
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA
| | - Jill B Graham
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA
| | - Kevin P Guay
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA
| | - Daniel A Lubicki
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA
| | - Stephen J Eyles
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA; Institute for Applied Life Sciences, Mass Spectrometry Center, University of Massachusetts Amherst, USA
| | - Jennifer N Rauch
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA
| | - Daniel N Hebert
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, USA.
| |
Collapse
|
2
|
Colleselli K, Ebeyer-Masotta M, Neuditschko B, Stierschneider A, Pollhammer C, Potocnjak M, Hundsberger H, Herzog F, Wiesner C. Beyond Pattern Recognition: TLR2 Promotes Chemotaxis, Cell Adhesion, and Migration in THP-1 Cells. Cells 2023; 12:1425. [PMID: 37408259 DOI: 10.3390/cells12101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The interaction between monocytes and endothelial cells in inflammation is central to chemoattraction, adhesion, and transendothelial migration. Key players, such as selectins and their ligands, integrins, and other adhesion molecules, and their functions in these processes are well studied. Toll-like receptor 2 (TLR2), expressed in monocytes, is critical for sensing invading pathogens and initiating a rapid and effective immune response. However, the extended role of TLR2 in monocyte adhesion and migration has only been partially elucidated. To address this question, we performed several functional cell-based assays using monocyte-like wild type (WT), TLR2 knock-out (KO), and TLR2 knock-in (KI) THP-1 cells. We found that TLR2 promotes the faster and stronger adhesion of monocytes to the endothelium and a more intense endothelial barrier disruption after endothelial activation. In addition, we performed quantitative mass spectrometry, STRING protein analysis, and RT-qPCR, which not only revealed the association of TLR2 with specific integrins but also uncovered novel proteins affected by TLR2. In conclusion, we show that unstimulated TLR2 influences cell adhesion, endothelial barrier disruption, migration, and actin polymerization.
Collapse
Affiliation(s)
- Katrin Colleselli
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Marie Ebeyer-Masotta
- Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Anna Stierschneider
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Christopher Pollhammer
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Mia Potocnjak
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Harald Hundsberger
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
3
|
Zhang J, Guo F, Li C, Wang Y, Wang J, Sun F, Zhou Y, Ma F, Zhang B, Qian H. Loss of TTC17 promotes breast cancer metastasis through RAP1/CDC42 signaling and sensitizes it to rapamycin and paclitaxel. Cell Biosci 2023; 13:50. [PMID: 36895029 PMCID: PMC9996991 DOI: 10.1186/s13578-023-01004-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Breast cancer (BC) metastasis is the leading cause of poor prognosis and therapeutic failure. However, the mechanisms underlying cancer metastasis are far from clear. METHODS We screened candidate genes related to metastasis through genome-wide CRISPR screening and high-throughput sequencing of patients with metastatic BC, followed by a panel of metastatic model assays. The effects of tetratricopeptide repeat domain 17 (TTC17) on migration, invasion, and colony formation ability together with the responses to anticancer drugs were investigated in vitro and in vivo. The mechanism mediated by TTC17 was determined by RNA sequencing, Western blotting, immunohistochemistry, and immunofluorescence. The clinical significance of TTC17 was evaluated using BC tissue samples combined with clinicopathological data. RESULTS We identified the loss of TTC17 as a metastasis driver in BC, and its expression was negatively correlated with malignancy and positively correlated with patient prognosis. TTC17 loss in BC cells promoted their migration, invasion, and colony formation capacity in vitro and lung metastasis in vivo. Conversely, overexpressing TTC17 suppressed these aggressive phenotypes. Mechanistically, TTC17 knockdown in BC cells resulted in the activation of the RAP1/CDC42 pathway along with a disordered cytoskeleton in BC cells, and pharmacological blockade of CDC42 abolished the potentiation of motility and invasiveness caused by TTC17 silencing. Research on BC specimens demonstrated reduced TTC17 and increased CDC42 in metastatic tumors and lymph nodes, and low TTC17 expression was linked to more aggressive clinicopathologic characteristics. Through screening the anticancer drug library, the CDC42 inhibitor rapamycin and the microtubule-stabilizing drug paclitaxel showed stronger inhibition of TTC17-silenced BC cells, which was confirmed by more favorable efficacy in BC patients and tumor-bearing mice receiving rapamycin or paclitaxel in the TTC17Low arm. CONCLUSIONS TTC17 loss is a novel factor promoting BC metastasis, that enhances migration and invasion by activating RAP1/CDC42 signaling and sensitizes BC to rapamycin and paclitaxel, which may improve stratified treatment strategies under the concept of molecular phenotyping-based precision therapy of BC.
Collapse
Affiliation(s)
- Jingyao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fengzhu Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangzhou Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Bailin Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Chen W, Wang F, Zeng W, Zhang X, Shen L, Zhang Y, Zhou X. Biallelic mutations of TTC12 and TTC21B were identified in Chinese patients with multisystem ciliopathy syndromes. Hum Genomics 2022; 16:48. [PMID: 36273201 PMCID: PMC9587637 DOI: 10.1186/s40246-022-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Abnormalities in cilia ultrastructure and function lead to a range of human phenotypes termed ciliopathies. Many tetratricopeptide repeat domain (TTC) family members have been reported to play critical roles in cilium organization and function.
Results Here, we describe five unrelated family trios with multisystem ciliopathy syndromes, including situs abnormality, complex congenital heart disease, nephronophthisis or neonatal cholestasis. Through whole-exome sequencing and Sanger sequencing confirmation, we identified compound heterozygous mutations of TTC12 and TTC21B in six affected individuals of Chinese origin. These nonsynonymous mutations affected highly conserved residues and were consistently predicted to be pathogenic. Furthermore, ex vivo cDNA amplification demonstrated that homozygous c.1464 + 2 T > C of TTC12 would cause a whole exon 16 skipping. Both mRNA and protein levels of TTC12 were significantly downregulated in the cells derived from the patient carrying TTC12 mutation c.1464 + 2 T > C by real-time qPCR and immunofluorescence assays when compared with two healthy controls. Transmission electron microscopy analysis further identified ultrastructural defects of the inner dynein arms in this patient. Finally, the effect of TTC12 deficiency on cardiac LR patterning was recapitulated by employing a morpholino-mediated knockdown of ttc12 in zebrafish. Conclusions To the best of our knowledge, this is the first study reporting the association between TTC12 variants and ciliopathies in a Chinese population. In addition to nephronophthisis and laterality defects, our findings demonstrated that TTC21B should also be considered a candidate gene for biliary ciliopathy, such as TTC26, which further expands the phenotypic spectrum of TTC21B deficiency in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00421-z.
Collapse
Affiliation(s)
- Weicheng Chen
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Feifei Wang
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Weijia Zeng
- State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyan Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Libing Shen
- International Human Phenome Institutes (IHPI), Shanghai, 200433, China
| | - Yuan Zhang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China. .,, Shanghai, China.
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China. .,Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China. .,, Shanghai, China.
| |
Collapse
|
5
|
Heat Shock Alters the Proteomic Profile of Equine Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23137233. [PMID: 35806237 PMCID: PMC9267023 DOI: 10.3390/ijms23137233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this research was to determine the impact of heat stress on cell differentiation in an equine mesenchymal stem cell model (EMSC) through the application of heat stress to primary EMSCs as they progressed through the cell specialization process. A proteomic analysis was performed using mass spectrometry to compare relative protein abundances among the proteomes of three cell types: progenitor EMSCs and differentiated osteoblasts and adipocytes, maintained at 37 °C and 42 °C during the process of cell differentiation. A cell-type and temperature-specific response to heat stress was observed, and many of the specific differentially expressed proteins were involved in cell-signaling pathways such as Notch and Wnt signaling, which are known to regulate cellular development. Furthermore, cytoskeletal proteins profilin, DSTN, SPECC1, and DAAM2 showed increased protein levels in osteoblasts differentiated at 42 °C as compared with 37 °C, and these cells, while they appeared to accumulate calcium, did not organize into a whorl agglomerate as is typically seen at physiological temperatures. This altered proteome composition observed suggests that heat stress could have long-term impacts on cellular development. We propose that this in vitro stem cell culture model of cell differentiation is useful for investigating molecular mechanisms that impact cell development in response to stressors.
Collapse
|
6
|
Li J, Yang Z, Qi Y, Liu X, Liu Y, Gao X, Li S, Zhu J, Zhang C, Du E, Zhang Z. STIL Acts as an Oncogenetic Driver in a Primary Cilia-Dependent Manner in Human Cancer. Front Cell Dev Biol 2022; 10:804419. [PMID: 35155425 PMCID: PMC8826476 DOI: 10.3389/fcell.2022.804419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
SCL/TAL1 Interrupting locus (STIL) is a ciliary-related gene involved in regulating the cell cycle and duplication of centrioles in dividing cells. STIL has been found disordered in multiple cancers and driven carcinogenesis. However, the molecular mechanisms and biological functions of STIL in cancers remain ambiguous. Here, we systematically analyzed the genetic alterations, molecular mechanisms, and clinical relevance of STIL across >10,000 samples representing 33 cancer types in The Cancer Genome Atlas (TCGA) dataset. We found that STIL expression is up-regulated in most cancer types compared with their adjacent normal tissues. The expression dysregulation of STIL was affected by copy number variation, mutation, and DNA methylation. High STIL expression was associated with worse outcomes and promoted the progression of cancers. Gene Ontology (GO) enrichment analysis and Gene Set Variation Analysis (GSVA) further revealed that STIL is involved in cell cycle progression, Mitotic spindle, G2M checkpoint, and E2F targets pathways across cancer types. STIL expression was negatively correlated with multiple genes taking part in ciliogenesis and was positively correlated with several genes which participated with centrosomal duplication or cilia degradation. Moreover, STIL silencing could promote primary cilia formation and inhibit cell cycle protein expression in prostate and kidney cancer cell lines. The phenotype and protein expression alteration due to STIL silencing could be reversed by IFT88 silencing in cancer cells. These results revealed that STIL could regulate the cell cycle through primary cilia in tumor cells. In summary, our results revealed the importance of STIL in cancers. Targeting STIL might be a novel therapeutic approach for cancers.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zikun Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xun Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyu Gao
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Shuai Li
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changwen Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: E Du, ; Zhihong Zhang,
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: E Du, ; Zhihong Zhang,
| |
Collapse
|
7
|
Sui L, Sanders A, Jiang WG, Ye L. Deregulated molecules and pathways in the predisposition and dissemination of breast cancer cells to bone. Comput Struct Biotechnol J 2022; 20:2745-2758. [PMID: 35685372 PMCID: PMC9168524 DOI: 10.1016/j.csbj.2022.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/28/2022] Open
|
8
|
Lam WY, Tang CSM, So MT, Yue H, Hsu JS, Chung PHY, Nicholls JM, Yeung F, Lee CWD, Ngo DN, Nguyen PAH, Mitchison HM, Jenkins D, O'Callaghan C, Garcia-Barceló MM, Lee SL, Sham PC, Lui VCH, Tam PKH. Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary atresia patients implicates ciliary dysfunction as a novel disease mechanism. EBioMedicine 2021; 71:103530. [PMID: 34455394 PMCID: PMC8403738 DOI: 10.1016/j.ebiom.2021.103530] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Biliary atresia (BA) is the most common obstructive cholangiopathy in neonates, often progressing to end-stage cirrhosis. BA pathogenesis is believed to be multifactorial, but the genetic contribution, especially for nonsyndromic BA (common form: > 85%) remains poorly defined. Methods We conducted whole exome sequencing on 89 nonsyndromic BA trios to identify rare variants contributing to BA etiology. Functional evaluation using patients’ liver biopsies, human cell and zebrafish models were performed. Clinical impact on respiratory system was assessed with clinical evaluation, nasal nitric oxide (nNO), high speed video analysis and transmission electron microscopy. Findings We detected rare, deleterious de novo or biallelic variants in liver-expressed ciliary genes in 31.5% (28/89) of the BA patients. Burden test revealed 2.6-fold (odds ratio (OR) [95% confidence intervals (CI)]= 2.58 [1.15–6.07], adjusted p = 0.034) over-representation of rare, deleterious mutations in liver-expressed ciliary gene set in patients compared to controls. Functional analyses further demonstrated absence of cilia in the BA livers with KIF3B and TTC17 mutations, and knockdown of PCNT, KIF3B and TTC17 in human control fibroblasts and cholangiocytes resulted in reduced number of cilia. Additionally, CRISPR/Cas9-engineered zebrafish knockouts of KIF3B, PCNT and TTC17 displayed reduced biliary flow. Abnormally low level of nNO was detected in 80% (8/10) of BA patients carrying deleterious ciliary mutations, implicating the intrinsic ciliary defects. Interpretation Our findings support strong genetic susceptibility for nonsyndromic BA. Ciliary gene mutations leading to cholangiocyte cilia malformation and dysfunction could be a key biological mechanism in BA pathogenesis. Funding The study is supported by General Research Fund, HMRF Commissioned Paediatric Research at HKCH and Li Ka Shing Faculty of Medicine Enhanced New Staff Start-up Fund.
Collapse
Affiliation(s)
- Wai-Yee Lam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Clara Sze-Man Tang
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Man-Ting So
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - Haibing Yue
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - Jacob Shujui Hsu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ho-Yu Chung
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - John M Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fanny Yeung
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - Chun-Wai Davy Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | | | - Hannah M Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dagan Jenkins
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Christopher O'Callaghan
- Respiratory, Critical Care & Anaesthesia Section, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Maria-Mercè Garcia-Barceló
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China
| | - So-Lun Lee
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong SAR, China
| | - Pak-Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent Chi-Hang Lui
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Paul Kwong-Hang Tam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Hong Kong SAR, China; Dr Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Duek P, Mary C, Zahn-Zabal M, Bairoch A, Lane L. Functionathon: a manual data mining workflow to generate functional hypotheses for uncharacterized human proteins and its application by undergraduate students. Database (Oxford) 2021; 2021:baab046. [PMID: 34318869 PMCID: PMC8317215 DOI: 10.1093/database/baab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
About 10% of human proteins have no annotated function in protein knowledge bases. A workflow to generate hypotheses for the function of these uncharacterized proteins has been developed, based on predicted and experimental information on protein properties, interactions, tissular expression, subcellular localization, conservation in other organisms, as well as phenotypic data in mutant model organisms. This workflow has been applied to seven uncharacterized human proteins (C6orf118, C7orf25, CXorf58, RSRP1, SMLR1, TMEM53 and TMEM232) in the frame of a course-based undergraduate research experience named Functionathon organized at the University of Geneva to teach undergraduate students how to use biological databases and bioinformatics tools and interpret the results. C6orf118, CXorf58 and TMEM232 were proposed to be involved in cilia-related functions; TMEM53 and SMLR1 were proposed to be involved in lipid metabolism and C7orf25 and RSRP1 were proposed to be involved in RNA metabolism and gene expression. Experimental strategies to test these hypotheses were also discussed. The results of this manual data mining study may contribute to the project recently launched by the Human Proteome Organization (HUPO) Human Proteome Project aiming to fill gaps in the functional annotation of human proteins. Database URL: http://www.nextprot.org.
Collapse
Affiliation(s)
- Paula Duek
- CALIPHO group, SIB Swiss Institute of Bioinformatics
- Department of microbiology and molecular medicine, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | - Camille Mary
- Department of microbiology and molecular medicine, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | | | - Amos Bairoch
- CALIPHO group, SIB Swiss Institute of Bioinformatics
- Department of microbiology and molecular medicine, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | - Lydie Lane
- CALIPHO group, SIB Swiss Institute of Bioinformatics
- Department of microbiology and molecular medicine, Faculty of medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Zurbrigg K, Bertolini F, Walugembe M, van Dreumel T, Alves D, Friendship R, O'Sullivan TL, Rothschild MF. A genome-wide analysis of cardiac lesions of pigs that die during transport: Is heart failure of in-transit-loss pigs associated with a heritable cardiomyopathy? CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2021; 85:119-126. [PMID: 33883819 PMCID: PMC7995549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
While heart failure is a primary cause of death for many in-transit-loss (ITL) pigs, the underlying cause of these deaths is not known. Cardiomyopathies are considered a common cause of heart failure in humans and often have a genetic component. The objective of this study was to determine if genes associated with cardiomyopathies could be identified in ITL pigs. Samples from the hearts of pigs that died during transport to an abattoir in Ontario, Canada were collected and genotyped along with samples from pigs that did not die during transport (ILT hearts: n = 149; non-ITL/control hearts: n = 387). Genome-wide analyses were carried out on each of the determined phenotypes (gross cardiac lesions) using a medium density single nucleotide polymorphism (SNP) chip and 500 kb windows/regions for analysis, with 250 kb regions of overlap. The distribution derived by a multidimensional scaling (MDS) analysis of all phenotypes demonstrated a lack of complete separation between phenotypes of affected and unaffected animals, which made diagnosis difficult. Although genetic differences were small, a few genes associated with dilated cardiomyopathy (DCM) and arrhythmogenic right ventricular cardiomyopathy (ARVM) were identified. In addition, multiple genes associated with cardiac arrhythmias and ventricular hypertrophy were identified that can possibly result in heart failure. The results of this preliminary study did not provide convincing evidence that a single, heritable cardiomyopathy is the cause of heart failure in ITL pigs.
Collapse
Affiliation(s)
- Katherine Zurbrigg
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Francesca Bertolini
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Muhammed Walugembe
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Toni van Dreumel
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - David Alves
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Robert Friendship
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Terri L O'Sullivan
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Max F Rothschild
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| |
Collapse
|
11
|
Vandenbrouck Y, Pineau C, Lane L. The Functionally Unannotated Proteome of Human Male Tissues: A Shared Resource to Uncover New Protein Functions Associated with Reproductive Biology. J Proteome Res 2020; 19:4782-4794. [PMID: 33064489 DOI: 10.1021/acs.jproteome.0c00516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the context of the Human Proteome Project, we built an inventory of 412 functionally unannotated human proteins for which experimental evidence at the protein level exists (uPE1) and which are highly expressed in tissues involved in human male reproduction. We implemented a strategy combining literature mining, bioinformatics tools to collate annotation and experimental information from specific molecular public resources, and efficient visualization tools to put these unknown proteins into their biological context (protein complexes, tissue and subcellular location, expression pattern). The gathered knowledge allowed pinpointing five uPE1 for which a function has recently been proposed and which should be updated in protein knowledge bases. Furthermore, this bioinformatics strategy allowed to build new functional hypotheses for five other uPE1s in link with phenotypic traits that are specific to male reproductive function such as ciliogenesis/flagellum formation in germ cells (CCDC112 and TEX9), chromatin remodeling (C3orf62) and spermatozoon maturation (CCDC183). We also discussed the enigmatic case of MAGEB proteins, a poorly documented cancer/testis antigen subtype. Tools used and computational outputs produced during this study are freely accessible via ProteoRE (http://www.proteore.org), a Galaxy-based instance, for reuse purposes. We propose these five uPE1s should be investigated in priority by expert laboratories and hope that this inventory and shared resources will stimulate the interest of the community of reproductive biology.
Collapse
Affiliation(s)
- Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, IRIG-BGE, U1038, F-38000 Grenoble, France
| | - Charles Pineau
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35042 Rennes cedex, France
| | - Lydie Lane
- SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
12
|
Sävilammi T, Papakostas S, Leder EH, Vøllestad LA, Debes PV, Primmer CR. Cytosine methylation patterns suggest a role of methylation in plastic and adaptive responses to temperature in European grayling ( Thymallus thymallus) populations. Epigenetics 2020; 16:271-288. [PMID: 32660325 DOI: 10.1080/15592294.2020.1795597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Temperature is a key environmental parameter affecting both the phenotypes and distributions of organisms, particularly ectotherms. Rapid organismal responses to thermal environmental changes have been described for several ectotherms; however, the underlying molecular mechanisms often remain unclear. Here, we studied whole genome cytosine methylation patterns of European grayling (Thymallus thymallus) embryos from five populations with contemporary adaptations of early life history traits at either 'colder' or 'warmer' spawning grounds. We reared fish embryos in a common garden experiment using two temperatures that resembled the 'colder' and 'warmer' conditions of the natal natural environments. Genome-wide methylation patterns were similar in populations originating from colder thermal origin subpopulations, whereas single nucleotide polymorphisms uncovered from the same data identified strong population structure among isolated populations, but limited structure among interconnected populations. This was surprising because the previously studied gene expression response among populations was mostly plastic, and mainly influenced by the developmental temperature. These findings support the hypothesis of the magnified role of epigenetic mechanisms in modulating plasticity. The abundance of consistently changing methylation loci between two warmer-to-colder thermal origin population pairs suggests that local adaptation has shaped the observed methylation patterns. The dynamic nature of the methylomes was further highlighted by genome-wide and site-specific plastic responses. Our findings support both the presence of a plastic response in a subset of CpG loci, and the evolutionary role of methylation divergence between populations adapting to contrasting thermal environments.
Collapse
Affiliation(s)
- Tiina Sävilammi
- Department of Biology, University of Turku , Turku, Finland.,Department of Biological and Environmental Science, University of Jyväskylä , Jyväskylä, Finland
| | | | - Erica H Leder
- Department of Biology, University of Turku , Turku, Finland.,Natural History Museum, University of Oslo , Oslo, Norway
| | - L Asbjørn Vøllestad
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo , Oslo, Norway
| | - Paul V Debes
- Organismal & Evolutionary Biology Research Program, Faculty of Biological & Environmental Sciences, University of Helsinki , Helsinki, Finland.,Institute of Biotechnology, University of Helsinki , Helsinki, Finland.,Department of Aquaculture and Fish Biology, Hólar University College , Sauðárkrókur, Iceland
| | - Craig R Primmer
- Organismal & Evolutionary Biology Research Program, Faculty of Biological & Environmental Sciences, University of Helsinki , Helsinki, Finland.,Institute of Biotechnology, University of Helsinki , Helsinki, Finland
| |
Collapse
|
13
|
Arafat M, Harlev A, Har-Vardi I, Levitas E, Priel T, Gershoni M, Searby C, Sheffield VC, Lunenfeld E, Parvari R. Mutation in CATIP (C2orf62) causes oligoteratoasthenozoospermia by affecting actin dynamics. J Med Genet 2020; 58:jmedgenet-2019-106825. [PMID: 32503832 DOI: 10.1136/jmedgenet-2019-106825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oligoteratoasthenozoospermia (OTA) combines deteriorated quantity, morphology and motility of the sperm, resulting in male factor infertility. METHODS We used whole genome genotyping and exome sequencing to identify the mutation causing OTA in four men in a consanguineous Bedouin family. We expressed the normal and mutated proteins tagged with c-Myc at the carboxy termini by transfection with pCDNA3.1 plasmid constructs to evaluate the effects on protein stability in HEK293 cells and on the kinetics of actin repolymerisation in retinal pigment epithelium cells. Patients' sperm samples were visualised by transmission electron microscopy to determine axoneme structures and were stained with fluorescent phalloidin to visualise the fibrillar (F)-actin. RESULTS A homozygous missense mutation in Ciliogenesis Associated TTC17 Interacting Protein (CATIP): c. T103A, p. Phe35Ile, a gene encoding a protein important in actin organisation and ciliogenesis, was identified as the causative mutation with a LOD score of 3.25. The mutation reduces the protein stability compared with the normal protein. Furthermore, overexpression of the normal protein, but not the mutated protein, inhibits repolymerisation of actin after disruption with cytochalasin D. A high percentage of spermatozoa axonemes from patients have abnormalities, as well as disturbances in the distribution of F-actin. CONCLUSION This is the first report of a recessive mutation in CATIP in humans. The identified mutation may contribute to asthenozoospermia by its involvement in actin polymerisation and on the actin cytoskeleton. A mouse knockout homozygote for CATIP was reported to demonstrate male infertility as the sole phenotype.
Collapse
Affiliation(s)
- Maram Arafat
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avi Harlev
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Iris Har-Vardi
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eliahu Levitas
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tsvia Priel
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moran Gershoni
- ARO- The Volcani Center, Institute of Animal Science, Rehovot - Faculty of Agriculture Bet Dagan, Rishon LeZion, Israel
| | - Charles Searby
- Department of Pediatrics and Ophthalmology, Division of Medical Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Val C Sheffield
- Department of Pediatrics and Ophthalmology, Division of Medical Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Eitan Lunenfeld
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruti Parvari
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
14
|
Meng Q, Valentini D, Rao M, Moro CF, Paraschoudi G, Jäger E, Dodoo E, Rangelova E, Del Chiaro M, Maeurer M. Neoepitope targets of tumour-infiltrating lymphocytes from patients with pancreatic cancer. Br J Cancer 2019; 120:97-108. [PMID: 30377343 PMCID: PMC6325142 DOI: 10.1038/s41416-018-0262-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/05/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pancreatic cancer exhibits a poor prognosis and often presents with metastasis at diagnosis. Immunotherapeutic approaches targeting private cancer mutations (neoantigens) are a clinically viable option to improve clinical outcomes. METHODS 3/40 TIL lines (PanTT26, PanTT39, PanTT77) were more closely examined for neoantigen recognition. Whole-exome sequencing was performed to identify non-synonymous somatic mutations. Mutant peptides were synthesised and assessed for antigen-specific IFN-γ production and specific tumour killing in a standard Cr51 assay. TIL phenotype was tested by flow cytometry. Lymphocytes and HLA molecules in tumour tissue were visualised by immunohistochemistry. RESULTS PanTT26 and PanTT39 TILs recognised and killed the autologous tumour cells. PanTT26 TIL recognised the KRASG12v mutation, while a PanTT39 CD4+ TIL clone recognised the neoepitope (GLLRYWRTERLF) from an aquaporin 1-like protein (gene: K7N7A8). Repeated stimulation of TILs with the autologous tumour cells line lead to focused recognition of several mutated targets, based on IFN-γ production. TILs and corresponding PBMCs from PanTT77 showed shared as well as mutually exclusively tumour epitope recognition (TIL-responsive or PBMC-responsive). CONCLUSION This study provides methods to robustly screen T-cell targets for pancreatic cancer. Pancreatic cancer is immunogenic and immunotherapeutic approaches can be used to develop improved, targeted therapies.
Collapse
Affiliation(s)
- Qingda Meng
- Department of Laboratory Medicine (LABMED), Division of Therapeutic Immunology (TIM), Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Department of Laboratory Medicine (LABMED), Division of Therapeutic Immunology (TIM), Karolinska Institutet, Stockholm, Sweden
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Rao
- Department of Laboratory Medicine (LABMED), Division of Therapeutic Immunology (TIM), Karolinska Institutet, Stockholm, Sweden
| | - Carlos Fernández Moro
- Department of Laboratory Medicine (LABMED), Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Paraschoudi
- Department of Laboratory Medicine (LABMED), Division of Therapeutic Immunology (TIM), Karolinska Institutet, Stockholm, Sweden
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Elke Jäger
- Krankenhaus Nordwest, Division of Oncology and Haematology, Frankfurt, Germany
| | - Ernest Dodoo
- Department of Laboratory Medicine (LABMED), Division of Therapeutic Immunology (TIM), Karolinska Institutet, Stockholm, Sweden
| | - Elena Rangelova
- Department of Clinical Science, Pancreatic Surgery Unit, Division of Surgery, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Marco Del Chiaro
- Department of Clinical Science, Pancreatic Surgery Unit, Division of Surgery, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Department of Laboratory Medicine (LABMED), Division of Therapeutic Immunology (TIM), Karolinska Institutet, Stockholm, Sweden.
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Department of Oncology/Haematology, KHNW, Frankfurt, Germany & ImmunoSurgery Unit, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
15
|
Paik YK, Lane L, Kawamura T, Chen YJ, Cho JY, LaBaer J, Yoo JS, Domont G, Corrales F, Omenn GS, Archakov A, Encarnación-Guevara S, Lui S, Salekdeh GH, Cho JY, Kim CY, Overall CM. Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function. J Proteome Res 2018; 17:4042-4050. [PMID: 30269496 PMCID: PMC6693327 DOI: 10.1021/acs.jproteome.8b00383] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An important goal of the Human Proteome Organization (HUPO) Chromosome-centric Human Proteome Project (C-HPP) is to correctly define the number of canonical proteins encoded by their cognate open reading frames on each chromosome in the human genome. When identified with high confidence of protein evidence (PE), such proteins are termed PE1 proteins in the online database resource, neXtProt. However, proteins that have not been identified unequivocally at the protein level but that have other evidence suggestive of their existence (PE2-4) are termed missing proteins (MPs). The number of MPs has been reduced from 5511 in 2012 to 2186 in 2018 (neXtProt 2018-01-17 release). Although the annotation of the human proteome has made significant progress, the "parts list" alone does not inform function. Indeed, 1937 proteins representing ∼10% of the human proteome have no function either annotated from experimental characterization or predicted by homology to other proteins. Specifically, these 1937 "dark proteins" of the so-called dark proteome are composed of 1260 functionally uncharacterized but identified PE1 proteins, designated as uPE1, plus 677 MPs from categories PE2-PE4, which also have no known or predicted function and are termed uMPs. At the HUPO-2017 Annual Meeting, the C-HPP officially adopted the uPE1 pilot initiative, with 14 participating international teams later committing to demonstrate the feasibility of the functional characterization of large numbers of dark proteins (CP), starting first with 50 uPE1 proteins, in a stepwise chromosome-centric organizational manner. The second aim of the feasibility phase to characterize protein (CP) functions of 50 uPE1 proteins, termed the neXt-CP50 initiative, is to utilize a variety of approaches and workflows according to individual team expertise, interest, and resources so as to enable the C-HPP to recommend experimentally proven workflows to the proteome community within 3 years. The results from this pilot will not only be the cornerstone of a larger characterization initiative but also enhance understanding of the human proteome and integrated cellular networks for the discovery of new mechanisms of pathology, mechanistically informative biomarkers, and rational drug targets.
Collapse
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Lydie Lane
- CALIPHO group, Swiss Institute of Bioinformatics & Department of Microbiology and Molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0032 Japan
| | - Yu-Ju Chen
- Institute of Chemistry Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei 115 Taiwan
| | - Je-Yoel Cho
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul University, 1 Gwanak-, Gwanak-gu, 151-742 Seoul, South Korea
| | - Joshua LaBaer
- McAllister Ave. Arizona State University, Tempe, Arizona, 85287-5001, USA
| | - Jong Shin Yoo
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Korea
| | - Gilberto Domont
- Federal University of Rio de Janeiro Institute of Chemistry, Rio de Janeiro, RJ Brazil
| | - Fernando Corrales
- Functional Proteomics Laboratory National Center of Biotechnology, CSIC 28049 Madrid, Spain
| | - Gilbert S. Omenn
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | | | | | - Siqi Lui
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, 1665659911, Tehran, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Jin-Young Cho
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Christopher M. Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry & Molecular Biology, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Ek WE, Tobi EW, Ahsan M, Lampa E, Ponzi E, Kyrtopoulos SA, Georgiadis P, Lumey L, Heijmans BT, Botsivali M, Bergdahl IA, Karlsson T, Rask-Andersen M, Palli D, Ingelsson E, Hedman ÅK, Nilsson LM, Vineis P, Lind L, Flanagan JM, Johansson Å. Tea and coffee consumption in relation to DNA methylation in four European cohorts. Hum Mol Genet 2017; 26:3221-3231. [PMID: 28535255 PMCID: PMC6455036 DOI: 10.1093/hmg/ddx194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/29/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023] Open
Abstract
Lifestyle factors, such as food choices and exposure to chemicals, can alter DNA methylation and lead to changes in gene activity. Two such exposures with pharmacologically active components are coffee and tea consumption. Both coffee and tea have been suggested to play an important role in modulating disease-risk in humans by suppressing tumour progression, decreasing inflammation and influencing estrogen metabolism. These mechanisms may be mediated by changes in DNA methylation. To investigate if DNA methylation in blood is associated with coffee and tea consumption, we performed a genome-wide DNA methylation study for coffee and tea consumption in four European cohorts (N = 3,096). DNA methylation was measured from whole blood at 421,695 CpG sites distributed throughout the genome and analysed in men and women both separately and together in each cohort. Meta-analyses of the results and additional regional-level analyses were performed. After adjusting for multiple testing, the meta-analysis revealed that two individual CpG-sites, mapping to DNAJC16 and TTC17, were differentially methylated in relation to tea consumption in women. No individual sites were associated with men or with the sex-combined analysis for tea or coffee. The regional analysis revealed that 28 regions were differentially methylated in relation to tea consumption in women. These regions contained genes known to interact with estradiol metabolism and cancer. No significant regions were found in the sex-combined and male-only analysis for either tea or coffee consumption.
Collapse
Affiliation(s)
- Weronica E. Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Elmar W. Tobi
- Department of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Muhammad Ahsan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Erik Lampa
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Erica Ponzi
- Department of Evolutionary Biology and Environmental Studies
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Soterios A. Kyrtopoulos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Panagiotis Georgiadis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - L.H. Lumey
- Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Botsivali
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Ingvar A. Bergdahl
- Department of Biobank Research, and Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Torgny Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Domenico Palli
- The Institute for Cancer Research and Prevention, Florence, Italy
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Åsa K. Hedman
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lena M. Nilsson
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, MRC-HPA Centre for Environment and Health, Imperial College London, St Mary's Campus, London, UK
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University Hospital, 75185 Uppsala, Sweden
| | - James M. Flanagan
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | | |
Collapse
|
17
|
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes. BIOLOGY 2017; 6:biology6020028. [PMID: 28467369 PMCID: PMC5485475 DOI: 10.3390/biology6020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression.
Collapse
|
18
|
Com E, Melaine N, Chalmel F, Pineau C. Proteomics and integrative genomics for unraveling the mysteries of spermatogenesis: the strategies of a team. J Proteomics 2014; 107:128-43. [PMID: 24751586 DOI: 10.1016/j.jprot.2014.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED The strikingly complex structural organization of the mammalian testis in vivo creates particular difficulties for studies of its organization, function and regulation. These difficulties are particularly pronounced for investigations of the molecular communication networks within the seminiferous tubules that govern spermatogenesis. The use of classical molecular and cell biology approaches to unravel this complexity has proved problematic, due to difficulties in maintaining differentiated germ cells in vitro, in particular. The lack of a suitable testing ground has led to a greater reliance on high-quality proteomic and genomic analyses as a prelude to the in vitro antx1d in vivo testing of hypotheses. In this study, we highlight the options currently available for research, as used in our laboratory, in which proteomic and integrative genomic strategies are applied to the study of spermatogenesis in mammals. We will comment on results providing insight into the molecular mechanisms underlying normal and pathological spermatogenesis and new perspectives for the treatment of male infertility in humans. Finally, we will discuss the relevance of our strategies and the unexpected potential and perspectives they offer to teams involved in the study of male reproduction, within the framework of the Human Proteome Project. SIGNIFICANCE Integrative genomics is becoming a powerful strategy for discovering the biological significance hidden in proteomic datasets. This work introduces some of the integrative genomic concepts and works used by our team to gain new insight into mammalian spermatogenesis, a remarkably sophisticated process. We demonstrate the relevance of these integrative approaches to understand the cellular cross talks established between the somatic Sertoli cells and the germ cell lineage, within the seminiferous epithelium. Our work also contributes to new knowledge on the pathophysiology of testicular function, with promising clinical applications. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.
Collapse
Affiliation(s)
- Emmanuelle Com
- IRSET, Inserm U1085, Campus de Beaulieu, Rennes F-35042, France; Proteomics Core Facility Biogenouest, Campus de Beaulieu, Rennes F-35042, France
| | - Nathalie Melaine
- IRSET, Inserm U1085, Campus de Beaulieu, Rennes F-35042, France; Proteomics Core Facility Biogenouest, Campus de Beaulieu, Rennes F-35042, France
| | | | - Charles Pineau
- IRSET, Inserm U1085, Campus de Beaulieu, Rennes F-35042, France; Proteomics Core Facility Biogenouest, Campus de Beaulieu, Rennes F-35042, France.
| |
Collapse
|