1
|
Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands. BIOLOGY 2023; 12:biology12020305. [PMID: 36829582 PMCID: PMC9953449 DOI: 10.3390/biology12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Radiotherapy is a standard treatment for head and neck cancer patients worldwide. However, millions of patients who received radiotherapy consequently suffer from xerostomia because of irreversible damage to salivary glands (SGs) caused by irradiation (IR). Current treatments for IR-induced SG hypofunction only provide temporary symptom alleviation but do not repair the damaged SG, thus resulting in limited treatment efficacy. Therefore, there has recently been a growing interest in regenerative treatments, such as cell-free therapies. This review aims to summarize cell-free therapies for IR-induced SG, with a particular emphasis on utilizing diverse cell extract (CE) administrations. Cell extract is a group of heterogeneous mixtures containing multifunctional inter-cellular molecules. This review discusses the current knowledge of CE's components and efficacy. We propose optimal approaches to improve cell extract treatment from multiple perspectives (e.g., delivery routes, preparation methods, and other details regarding CE administration). In addition, the advantages and limitations of CE treatment are systematically discussed by comparing it to other cell-free (such as conditioned media and exosomes) and cell-based therapies. Although a comprehensive identification of the bioactive factors within CEs and their mechanisms of action have yet to be fully understood, we propose cell extract therapy as an effective, practical, user-friendly, and safe option to conventional therapies in IR-induced SG.
Collapse
|
2
|
Hasegawa K, Raudales JLM, I T, Yoshida T, Honma R, Iwatake M, Tran SD, Seki M, Asahina I, Sumita Y. Effective-mononuclear cell (E-MNC) therapy alleviates salivary gland damage by suppressing lymphocyte infiltration in Sjögren-like disease. Front Bioeng Biotechnol 2023; 11:1144624. [PMID: 37168614 PMCID: PMC10164970 DOI: 10.3389/fbioe.2023.1144624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Sjögren syndrome (SS) is an autoimmune disease characterized by salivary gland (SG) destruction leading to loss of secretory function. A hallmark of the disease is the presence of focal lymphocyte infiltration in SGs, which is predominantly composed of T cells. Currently, there are no effective therapies for SS. Recently, we demonstrated that a newly developed therapy using effective-mononuclear cells (E-MNCs) improved the function of radiation-injured SGs due to anti-inflammatory and regenerative effects. In this study, we investigated whether E-MNCs could ameliorate disease development in non-obese diabetic (NOD) mice as a model for primary SS. Methods: E-MNCs were obtained from peripheral blood mononuclear cells (PBMNCs) cultured for 7 days in serum-free medium supplemented with five specific recombinant proteins (5G culture). The anti-inflammatory characteristics of E-MNCs were then analyzed using a co-culture system with CD3/CD28-stimulated PBMNCs. To evaluate the therapeutic efficacy of E-MNCs against SS onset, E-MNCs were transplanted into SGs of NOD mice. Subsequently, saliva secretion, histological, and gene expression analyses of harvested SG were performed to investigate if E-MNCs therapy delays disease development. Results: First, we characterized that both human and mouse E-MNCs exhibited induction of CD11b/CD206-positive cells (M2 macrophages) and that human E-MNCs could inhibit inflammatory gene expressions in CD3/CD28- stimulated PBMNCs. Further analyses revealed that Msr1-and galectin3-positive macrophages (immunomodulatory M2c phenotype) were specifically induced in E-MNCs of both NOD and MHC class I-matched mice. Transplanted E-MNCs induced M2 macrophages and reduced the expression of T cell-derived chemokine-related and inflammatory genes in SG tissue of NOD mice at SS-onset. Then, E-MNCs suppressed the infiltration of CD4-positive T cells and facilitated the maintenance of saliva secretion for up to 12 weeks after E-MNC administration. Discussion: Thus, the immunomodulatory actions of E-MNCs could be part of a therapeutic strategy targeting the early stage of primary SS.
Collapse
Affiliation(s)
- Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jorge Luis Montenegro Raudales
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takako Yoshida
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Honma
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mayumi Iwatake
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Simon D. Tran
- Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Izumi Asahina
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Depatment of Oral and Maxillofacial Surgery, Juntendo University Hospital, Tokyo, Japan
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- *Correspondence: Yoshinori Sumita,
| |
Collapse
|
3
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
4
|
D’Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020; 9:cells9061547. [PMID: 32630469 PMCID: PMC7349754 DOI: 10.3390/cells9061547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren's syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Osama A. Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
- Correspondence: ; Tel.: +32-2-5556210
| |
Collapse
|
5
|
Abughanam G, Elkashty OA, Liu Y, Bakkar MO, Tran SD. Mesenchymal Stem Cells Extract (MSCsE)-Based Therapy Alleviates Xerostomia and Keratoconjunctivitis Sicca in Sjogren's Syndrome-Like Disease. Int J Mol Sci 2019; 20:ijms20194750. [PMID: 31557796 PMCID: PMC6801785 DOI: 10.3390/ijms20194750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022] Open
Abstract
Sjogren’s syndrome (SS) is an autoimmune disease that manifests primarily in salivary and lacrimal glands leading to dry mouth and eyes. Unfortunately, there is no cure for SS due to its complex etiopathogenesis. Mesenchymal stem cells (MSCs) were successfully tested for SS, but some risks and limitations remained for their clinical use. This study combined cell- and biologic-based therapies by utilizing the MSCs extract (MSCsE) to treat SS-like disease in NOD mice. We found that MSCsE and MSCs therapies were successful and comparable in preserving salivary and lacrimal glands function in NOD mice when compared to control group. Cells positive for AQP5, AQP4, α-SMA, CK5, and c-Kit were preserved. Gene expression of AQP5, EGF, FGF2, BMP7, LYZ1 and IL-10 were upregulated, and downregulated for TNF-α, TGF-β1, MMP2, CASP3, and IL-1β. The proliferation rate of the glands and serum levels of EGF were also higher. Cornea integrity and epithelial thickness were maintained due to tear flow rate preservation. Peripheral tolerance was re-established, as indicated by lower lymphocytic infiltration and anti-SS-A antibodies, less BAFF secretion, higher serum IL-10 levels and FoxP3+ Treg cells, and selective inhibition of B220+ B cells. These promising results opened new venues for a safer and more convenient combined biologic- and cell-based therapy.
Collapse
Affiliation(s)
- Ghada Abughanam
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Younan Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Mohammed O Bakkar
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| |
Collapse
|
6
|
Su X, Fang D, Liu Y, Ruan G, Seuntjens J, Kinsella JM, Tran SD. Lyophilized bone marrow cell extract functionally restores irradiation-injured salivary glands. Oral Dis 2018; 24:202-206. [PMID: 29480601 DOI: 10.1111/odi.12728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bone marrow cell extract (BMCE) was previously reported to restore salivary gland hypofunction caused by irradiation injury. Proteins were shown to be the main active factors in BMCE. However, BMCE therapy requires multiple injections and protein denaturation is a concern during BMCE storage. This study aimed to preserve, by lyophilization (freeze-drying), the bioactive factors in BMCE. METHODS We developed a method to freeze-dry BMCE and then to analyze its ingredients and functions in vivo. Freeze-dried (FD) BMCE, freshly prepared BMCE (positive control), or saline (vehicle control) was injected into the tail vein of mice that had received irradiation to damage their salivary glands. RESULTS Results demonstrated that the presence of angiogenesis-related factors and cytokines in FD-BMCE remained comparable to those found in fresh BMCE. Both fresh and FD-BMCE restored comparably saliva secretion, increased cell proliferation, upregulated regenerative/repair genes, protected salivary acinar cells, parasympathetic nerves, and blood vessels from irradiation-damaged salivary glands. CONCLUSION Lyophilization of BMCE maintained its bioactivity and therapeutic effect on irradiation-injured salivary glands. The advantages of freeze-drying BMCE are its storage and transport at ambient temperature.
Collapse
Affiliation(s)
- X Su
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - D Fang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Y Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - G Ruan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - J Seuntjens
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, QC, Canada
| | - J M Kinsella
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - S D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Inhibitory Effects of iPSC-MSCs and Their Extracellular Vesicles on the Onset of Sialadenitis in a Mouse Model of Sjögren's Syndrome. Stem Cells Int 2018; 2018:2092315. [PMID: 29736173 PMCID: PMC5875028 DOI: 10.1155/2018/2092315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023] Open
Abstract
No effective treatment for Sjögren's syndrome (SS), a chronic autoimmune disease affecting mainly salivary and lacrimal glands, is available now. Systemic infusion of allogeneic mesenchymal stem cells (MSCs) isolated from tissues such as bone marrow (BM) alleviated SS in mouse models and a small clinical trial, but further research and application of this MSC therapy were hindered by limited expandability, significant donor variations, and safety concerns of tissue-derived MSCs. To circumvent these issues, we derived MSCs from human iPSCs using an optimized protocol that can be easily scaled up to produce a huge amount of standardized MSCs. Our iPSC-MSCs inhibited the onset of lymphocyte infiltration into salivary glands in the NOD mouse model of SS in the same way as BM-MSCs. Extracellular vesicles (EVs) carry bioactive molecules in the same way as their originating cells and are more stable and considered much safer than cells for therapies. We found that EVs derived from BM-MSCs and iPSC-MSCs suppressed activation of immune cells and expression of proinflammation factors essential for SS progression in vitro and that infusion of iPSC-MSC EVs at the predisease stage decreased the lymphocyte infiltration in salivary glands and serum autoantibody levels in the same way as infusion of BM-MSCs and iPSC-MSCs. These data suggested that iPSC-MSC EVs have the potential to prevent the progression of SS before the onset of sialadenitis.
Collapse
|
8
|
Ji EH, Diep C, Liu T, Li H, Merrill R, Messadi D, Hu S. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics. Mol Pain 2017; 13:1744806916686796. [PMID: 28326926 PMCID: PMC5302177 DOI: 10.1177/1744806916686796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients’ saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects (p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.
Collapse
Affiliation(s)
- Eoon Hye Ji
- 1 School of Dentistry, University of California, Los Angeles, CA, USA
| | - Cynthia Diep
- 1 School of Dentistry, University of California, Los Angeles, CA, USA
| | - Tong Liu
- 2 Center for Advanced Proteomics Research, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hong Li
- 2 Center for Advanced Proteomics Research, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Robert Merrill
- 1 School of Dentistry, University of California, Los Angeles, CA, USA
| | - Diana Messadi
- 1 School of Dentistry, University of California, Los Angeles, CA, USA
| | - Shen Hu
- 1 School of Dentistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Michel G, Blery P, Henoux M, Guicheux J, Weiss P, Brouard S, Malard O, Espitalier F. Bone marrow cell extract promotes the regeneration of irradiated bone. PLoS One 2017; 12:e0178060. [PMID: 28542343 PMCID: PMC5436862 DOI: 10.1371/journal.pone.0178060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/08/2017] [Indexed: 11/21/2022] Open
Abstract
Mandibular osteoradionecrosis is a severe side effect of radiotherapy after the treatment of squamous cell carcinomas of the upper aerodigestive tract. As an alternative to its treatment by micro-anastomosed free-flaps, preclinical tissular engineering studies have been developed. Total bone marrow (TBM) associated with biphasic calcium phosphate (BCP) significantly enhanced bone formation in irradiated bone. One mechanism, explaining how bone marrow cells can help regenerate tissues like this, is the paracrine effect. The bone marrow cell extract (BMCE) makes use of this paracrine mechanism by keeping only the soluble factors such as growth factors and cytokines. It has provided significant results in repairing various tissues, but has not yet been studied in irradiated bone reconstruction. The purpose of this study was to evaluate the effect of BMCE via an intraosseous or intravenous delivery, with a calcium phosphate scaffold, in irradiated bone reconstruction. Twenty rats were irradiated on their hind limbs with a single 80-Gy dose. Three weeks later, surgery was performed to create osseous defects. The intraosseous group (n = 12) studied the effect of BMCE in situ, with six combinations (empty defect, BCP, TBM, BCP-TBM, lysate only, BCP-lysate). After four different combinations of implantation (empty defect, BCP, TBM, BCP-TBM), the intravenous group (n = 8) received four intravenous injections of BMCE for 2 weeks. Five weeks after implantation, samples were explanted for histological and scanning electron microscopy analysis. Lysate immunogenicity was studied with various mixed lymphocyte reactions. Intravenous injections of BMCE led to a significant new bone formation compared to the intraosseous group. The BCP-TBM mixture remained the most effective in the intraosseous group. However, intravenous injections were more effective, with TBM placed in the defect, with or without biomaterials. Histologically, highly cellularized bone marrow was observed in the defects after intravenous injections, and not after an in situ use of the lysate. The mixed lymphocyte reactions did not show any proliferation after 3, 5, or 7 days of lysate incubation with lymphocytes from another species. This study evaluated the role of BMCE in irradiated bone reconstruction. There were significant results arguing in favor of BMCE intravenous injections. This could open new perspectives to irradiated bone reconstruction.
Collapse
Affiliation(s)
- Guillaume Michel
- Service d'O.R.L. et de chirurgie cervico-faciale, Centre Hospitalier Universitaire, Nantes, France
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
- * E-mail:
| | - Pauline Blery
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
- Service d’Odontologie Restauratrice et Chirurgicale, Centre Hospitalier Universitaire, Nantes, France
| | - Michaël Henoux
- Service d'O.R.L. et de chirurgie cervico-faciale, Centre Hospitalier Universitaire, Nantes, France
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
| | - Jérôme Guicheux
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
| | - Pierre Weiss
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
- Service d’Odontologie Restauratrice et Chirurgicale, Centre Hospitalier Universitaire, Nantes, France
| | - Sophie Brouard
- INSERM UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Olivier Malard
- Service d'O.R.L. et de chirurgie cervico-faciale, Centre Hospitalier Universitaire, Nantes, France
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
| | - Florent Espitalier
- Service d'O.R.L. et de chirurgie cervico-faciale, Centre Hospitalier Universitaire, Nantes, France
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
| |
Collapse
|
10
|
Xu T, Xie W, Ma Y, Zhou S, Zhang L, Chen J, Cai M, Sun R, Zhang P, Yu S, Xu Z, Jiang W, Wu M. Leptin/OB-R signaling is elevated in mice with Sjögren's syndrome and is implicated in disease pathogenesis. Biochem Biophys Res Commun 2017; 482:835-842. [DOI: 10.1016/j.bbrc.2016.11.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022]
|
11
|
Identification of the active components in Bone Marrow Soup: a mitigator against irradiation-injury to salivary glands. Sci Rep 2015; 5:16017. [PMID: 26526154 PMCID: PMC4630618 DOI: 10.1038/srep16017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022] Open
Abstract
In separate studies, an extract of soluble intracellular contents from whole bone marrow cells, named “Bone Marrow (BM) Soup”, was reported to either improve cardiac or salivary functions post-myocardial infarction or irradiation (IR), respectively. However, the active components in BM Soup are unknown. To demonstrate that proteins were the active ingredients, we devised a method using proteinase K followed by heating to deactivate proteins and for safe injections into mice. BM Soup and “deactivated BM Soup” were injected into mice that had their salivary glands injured with 15Gy IR. Control mice received either injections of saline or were not IR. Results at week 8 post-IR showed the ‘deactivated BM Soup’ was no better than injections of saline, while injections of native BM Soup restored saliva flow, protected salivary cells and blood vessels from IR-damage. Protein arrays detected several angiogenesis-related factors (CD26, FGF, HGF, MMP-8, MMP-9, OPN, PF4, SDF-1) and cytokines (IL-1ra, IL-16) in BM Soup. In conclusion, the native proteins (but not the nucleic acids, lipids or carbohydrates) were the therapeutic ingredients in BM Soup for functional salivary restoration following IR. This molecular therapy approach has clinical potential because it is theoretically less tumorigenic and immunogenic than cell therapies.
Collapse
|