1
|
Aliakbari S, Hasanzadeh L, Sayyah M, Amini N, Pourbadie HG. Induced expression of rabies glycoprotein in the dorsal hippocampus enhances hippocampal dependent memory in a rat model of Alzheimer's disease. J Neurovirol 2024; 30:274-285. [PMID: 38943023 DOI: 10.1007/s13365-024-01221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
The Rabies virus is a neurotropic virus that manipulates the natural cell death processes of its host to ensure its own survival and replication. Studies have shown that the anti-apoptotic effect of the virus is mediated by one of its protein named, rabies glycoprotein (RVG). Alzheimer's disease (AD) is characterized by the loss of neural cells and memory impairment. We aim to examine whether expression of RVG in the hippocampal cells can shield the detrimental effects induced by Aβ. Oligomeric form of Aβ (oAβ) or vehicle was bilaterally microinjected into the dorsal hippocampus of male Wistar rats. One week later, two μl (108 T.U. /ml) of the lentiviral vector carrying RVG gene was injected into their dorsal hippocampus (post-treatment). In another experiment, the lentiviral vector was microinjected one week before Aβ injection (pre-treatment). One week later, the rat's brain was sliced into cross-sections, and the presence of RVG-expressing neuronal cells was confirmed using fluorescent microscopy. Rats were subjected to assessments of spatial learning and memory as well as passive avoidance using the Morris water maze (MWM) and the Shuttle box apparatuses, respectively. Protein expression of AMPA receptor subunit (GluA1) was determined using western blotting technique. In MWM, Aβ treated rats showed decelerated acquisition of the task and impairment of reference memory. RVG expression in the hippocampus prevented and restored the deficits in both pre- and post- treatment conditions, respectively. It also improved inhibitory memory in the oAβ treated rats. RVG increased the expression level of GluA1 level in the hippocampus. Based on our findings, the expression of RVG in the hippocampus has the potential to enhance both inhibitory and spatial learning abilities, ultimately improving memory performance in an AD rat model. This beneficial effect is likely attributed, at least in part, to the increased expression of GluA1-containing AMPA receptors.
Collapse
Affiliation(s)
- Shayan Aliakbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Hasanzadeh
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Niloufar Amini
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
2
|
Bappy SS, Haque Asim MM, Ahasan MM, Ahsan A, Sultana S, Khanam R, Shibly AZ, Kabir Y. Virus-induced host cell metabolic alteration. Rev Med Virol 2024; 34:e2505. [PMID: 38282396 DOI: 10.1002/rmv.2505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Viruses change the host cell metabolism to produce infectious particles and create optimal conditions for replication and reproduction. Numerous host cell pathways have been modified to ensure available biomolecules and sufficient energy. Metabolomics studies conducted over the past decade have revealed that eukaryotic viruses alter the metabolism of their host cells on a large scale. Modifying pathways like glycolysis, fatty acid synthesis and glutaminolysis could provide potential energy for virus multiplication. Thus, almost every virus has a unique metabolic signature and a different relationship between the viral life cycle and the individual metabolic processes. There are enormous research in virus induced metabolic reprogramming of host cells that is being conducted through numerous approaches using different vaccine candidates and antiviral drug substances. This review provides an overview of viral interference to different metabolic pathways and improved monitoring in this area will open up new ways for more effective antiviral therapies and combating virus induced oncogenesis.
Collapse
Affiliation(s)
| | | | | | - Asif Ahsan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Sorna Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Roksana Khanam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Zaffar Shibly
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Bastos V, Pacheco V, Rodrigues ÉDL, Moraes CNS, Nóbile AL, Fonseca DLM, Souza KBS, do Vale FYN, Filgueiras IS, Schimke LF, Giil LM, Moll G, Cabral-Miranda G, Ochs HD, Vasconcelos PFDC, de Melo GD, Bourhy H, Casseb LMN, Cabral-Marques O. Neuroimmunology of rabies: New insights into an ancient disease. J Med Virol 2023; 95:e29042. [PMID: 37885152 DOI: 10.1002/jmv.29042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Collapse
Affiliation(s)
- Victor Bastos
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Vinicius Pacheco
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Érika D L Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Cássia N S Moraes
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriel L Nóbile
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Kamilla B S Souza
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Fernando Y N do Vale
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Igor S Filgueiras
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | | | - Hans D Ochs
- School of Medicine and Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Pedro F da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
- Department of Pathology, University of the State of Pará, Belem, Brazil
| | - Guilherme D de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Otavio Cabral-Marques
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Korie GC, Sallau AB, Kanu B, Kia GSN, Kwaga JKP. Rabies virus infection is associated with variations in calbindin D-28K and calretinin mRNA expression levels in mouse brain tissue. Arch Virol 2023; 168:143. [PMID: 37069450 PMCID: PMC10110483 DOI: 10.1007/s00705-023-05753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/13/2023] [Indexed: 04/19/2023]
Abstract
Rabies virus (RABV) infection leads to a fatal neurological outcome in humans and animals and is associated with major alterations in cellular gene expression. In this study, we describe the effects of RABV infection on the mRNA expression levels of two genes, encoding the Ca2+-binding proteins (Ca-BPs) calbindin D-28K (Calb1) and calretinin (Calb2), in the brains of BALB/c mice. Sixty 4-week-old mice were divided into two test groups and one control group. Mice were inoculated intramuscularly with either a street rabies virus (SRV) strain or a challenge virus standard (CVS-11) strain and sacrificed at 3-day intervals up to day 18 postinfection. A direct fluorescent antibody test (DFAT) was used to verify the presence of RABV antigen in brain tissues, and real-time quantitative PCR (RT-PCR) was used to assess gene expression. Infection with both RABV strains resulted in significant (p < 0.05) increases in Calb1 and Calb2 expression in the test animals when compared with the controls at various time points in the study. Correlation analysis indicated very weak insignificant (p > 0.05) negative and positive relationships, respectively, between Calb1 expression (r = -0.04) and Calb2 expression (r = 0.08) with viral load (CVS-11 strain). Insignificant (p > 0.05) relationships were also observed Calb1 expression (r = -0.28) and Calb2 expression (r = 0.06) and viral load for the SRV strain.The observed alterations in Calb1 and Calb2 expression in this study indicate possible impairments in neuronal Ca2+ buffering and Ca2+ homeostasis as a result of RABV infection and, consequently, possible involvement of calbindin-D28K and calretinin in the neuropathogenesis of rabies.
Collapse
Affiliation(s)
- George C Korie
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
| | - Abdullahi B Sallau
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria.
| | - Brenda Kanu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
| | - Grace S N Kia
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
- Department of Veterinary Public Health, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Jacob K P Kwaga
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
- Department of Veterinary Public Health, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
5
|
Role of the glycoprotein thorns in anxious effects of rabies virus: Evidence from an animal study. Brain Res Bull 2022; 185:107-116. [DOI: 10.1016/j.brainresbull.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/17/2022]
|
6
|
Comprehensive analysis of protein acetylation and glucose metabolism inmouse brains infected with rabies virus. J Virol 2021; 96:e0194221. [PMID: 34878915 DOI: 10.1128/jvi.01942-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed that high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infection and suggest that OAA treatment could be a potential strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy-dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to the energy requirements after RABV infection. Our study also indicates the potential role OAA could play in neuronal protection by suppressing excessive neuroinflammation.
Collapse
|
7
|
Kanu B, Kia GSN, Aimola IA, Korie GC, Tekki IS. Rabies virus infection is associated with alterations in the expression of parvalbumin and secretagogin in mice brain. Metab Brain Dis 2021; 36:1267-1275. [PMID: 33783673 PMCID: PMC8008021 DOI: 10.1007/s11011-021-00717-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Infection with the deadly rabies virus (RABV) leads to alteration of cellular gene expression. The RABV, similar to other neurodegenerative diseases may be implicated in neuronal death due to an imbalance in Ca2+ homeostasis. Parvalbumin (PV) and Secretagogin (Scgn), two members of the Calcium-Binding Proteins (CBPs) are useful neuronal markers responsible for calcium regulation and buffering with possible protective roles against infections. This study investigated whether infection with rabies virus causes variance in expression levels of PV and Scgn using the Challenge virus standard (CVS) and Nigerian Street Rabies virus (SRV) strains. Forty-eight, 4-week-old BALB/c mice strains were divided into two test groups and challenged with Rabies virus (RABV) infection and one control group. The presence of RABV antigen was verified by direct fluorescent antibody test (DFAT) and real-time quantitative PCR (qRT-PCR) was used to assess PV and Scgn gene expression. Infection with both virus strains resulted in significant (p < 0.05) increases in expression during early infection. Mid-infection phase caused reduced expression for both genes. However, as infection progressed to the terminal phase, a lower increase in expression was measured. Gene expression and viral load correlation indicated no positive relationship. Neurons with these CBPs may have a greater capacity to buffer calcium and be more resistant to degenerative changes caused by RABV. This implies that, when PV and Scgn expression levels are kept adequately high, the integrity of neurons may be maintained and degeneration caused by RABV infection may be prevented or stopped, hence, these are possible constituents of effective rabies therapy.
Collapse
Affiliation(s)
- Brenda Kanu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria.
| | - Grace S N Kia
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
- Department of Veterinary Public Health, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Idowu A Aimola
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
| | - George C Korie
- Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University Centre, Zaria, Kaduna State, Nigeria
| | - Ishaya S Tekki
- Central Diagnostics Laboratory, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| |
Collapse
|
8
|
Zhao P, Hou K, Yang S, Xia X. Characterization of small metabolites alteration in mice brain tissues after infected by rabies virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104571. [PMID: 32980577 DOI: 10.1016/j.meegid.2020.104571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023]
Abstract
Rabies, caused by rabies virus (RABV), is still one of the deadliest infectious diseases. Host metabolomic changes against RABV infection has not yet been fully understood. We performed untargeted metabolomics to discover the metabolites associated with RABV infection. The brain tissues from 20 RABV infected mice and 10 mock infected mice were used for this method. A total of 1352 differential metabolites were identified after the first-run screen, and the number reduced to 75 after second-run screen. Multivariate analysis using PLS-DA and OPLS-DA clearly discriminated the RABV infected samples from controls. Pathways enrichment analysis revealed that most differential metabolites were associated with metabolism of nucleotide and amino acid, and aminoacyl - tRNA biosynthesis and purine metabolism were the most active pathways. The findings presented in our study would promote the understanding of metabolomics changes in brains of mice after RABV infection as well as a new perspective to study the relationship between RABV and host.
Collapse
Affiliation(s)
- Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Shaoguan 512025, China.
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| |
Collapse
|
9
|
Hu Y, Chen J, Xu Y, Zhou H, Huang P, Ma Y, Gao M, Cheng S, Zhou H, Lv Z. Alterations of Gut Microbiome and Metabolite Profiling in Mice Infected by Schistosoma japonicum. Front Immunol 2020; 11:569727. [PMID: 33162984 PMCID: PMC7580221 DOI: 10.3389/fimmu.2020.569727] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum (S. japonicum) is one of the etiological agents of schistosomiasis, a widespread zoonotic parasitic disease. However, the mechanism of the balanced co-existence between the host immune system and S. japonicum as well as their complex interaction remains unclear. In this study, 16S rRNA gene sequencing, combined with metagenomic sequencing approach as well as ultraperformance liquid chromatography–mass spectrometry metabolic profiling, was applied to demonstrate changes in the gut microbiome community structure during schistosomiasis progression, the functional interactions between the gut bacteria and S. japonicum infection in BALB/c mice, and the dynamic metabolite changes of the host. The results showed that both gut microbiome and the metabolites were significantly altered at different time points after the infection. Decrease in richness and diversity as well as differed composition of the gut microbiota was observed in the infected status when compared with the uninfected status. At the phylum level, the gut microbial communities in all samples were dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Deferribacteres, while at the genus level, Lactobacillus, Lachnospiraceae NK4A136 group, Bacteroides, Staphylococcus, and Alloprevotella were the most abundant. After exposure, Roseburia, and Ruminococcaceae UCG-014 decreased, while Staphylococcus, Alistipes, and Parabacteroides increased, which could raise the risk of infections. Furthermore, LEfSe demonstrated several bacterial taxa that could discriminate between each time point of S. japonicum infection. Besides that, metagenomic analysis illuminated that the AMP-activated protein kinase (AMPK) signaling pathway and the chemokine signaling pathway were significantly perturbed after the infection. Phosphatidylcholine and colfosceril palmitate in serum as well as xanthurenic acid, naphthalenesulfonic acid, and pimelylcarnitine in urine might be metabolic biomarkers due to their promising diagnostic potential at the early stage of the infection. Alterations of glycerophospholipid and purine metabolism were also discovered in the infection. The present study might provide further understanding of the mechanisms during schistosome infection in aspects of gut microbiome and metabolites, and facilitate the discovery of new targets for early diagnosis and prognostic purposes. Further validations of potential biomarkers in human populations are necessary, and the exploration of interactions among S. japonicum, gut microbiome, and metabolites is to be deepened in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiansong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Yiyue Xu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hongli Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ping Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yubin Ma
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Minzhao Gao
- Department of Gastroenterology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shaoyun Cheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Haiyun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Shen J, Xiang S, Peng M, Zhou Z, Wu Z. Mechanisms of Resistance to Schistosoma japonicum Infection in Microtus fortis, the Natural Non-permissive Host. Front Microbiol 2020; 11:2092. [PMID: 33013763 PMCID: PMC7494751 DOI: 10.3389/fmicb.2020.02092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Human schistosomiasis, which is caused by schistosomes, is a zoonosis that is difficult to control because of the many reservoir hosts. However, Microtus fortis is the only mammal that is naturally resistant to Schistosoma japonicum infection known in China, in which S. japonicum growth and development were arrested on day 12, and the worms eliminated on day 20 post-infection. In this review, we present an overview of the established and purported mechanisms of resistance to S. japonicum infection in M. fortis in comparison to Rattus norvegicus, a semi-permissive host. Clarifying the mechanism of this efficient resistance can help us to better understand host-parasite interaction and to provide better methods to control schistosomiasis.
Collapse
Affiliation(s)
- Jia Shen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Mei Peng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhijun Zhou
- Department of Laboratory Animal Science, Xiangya Medical College, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
11
|
Abstract
Recent technological advances have provided deeper insights into the role of small molecules in biological processes. Metabolic profiling has thus entered the arena of -omics studies and rapidly proven its value both as stand-alone and as complement to other more advanced approaches, notably transcriptomics. Here we describe the potential of metabolic profiling for vaccinology embedded in the context of infection and immunity. This discussion is preceded by a description of the relevant technical and analytical tools for biological interpretation of metabolic data. Although not as widely applied as other -omics technologies, we believe that metabolic profiling can make important contributions to the better understanding of mechanisms underlying vaccine-induced responses and their effects on the prevention of infection or disease.
Collapse
|
12
|
High throughput data analyses of the immune characteristics of Microtus fortis infected with Schistosoma japonicum. Sci Rep 2017; 7:11311. [PMID: 28900150 PMCID: PMC5595801 DOI: 10.1038/s41598-017-11532-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Microtus fortis exhibits natural resistance against Schistosoma japonicum, and the parasite cannot grow and develop in M. fortis. Extensive research has been carried out, however, the associated mechanism remains unclear. In the present study, we analysed the combined data obtained from a cytokine chip assay, transcriptome, and metabolome. The cytokine profile from C57BL/6 and M. fortis mice was assessed before and after infection. Several cytokines increased during the second and third week post-infection. Some transcripts related to cytokine genes and associated proteins were also highly expressed (i.e., Hgf, C3, and Lbp). The liver metabolism of M. fortis following infection with S. japonicum was assessed. We identified 25 different metabolites between the uninfected and infected M. fortis, and 22 different metabolites between infected M. fortis and C57BL/6 mice. The metabolomic pathways of these differential metabolites were then analysed with MetPA, revealing that they were involved in histidine metabolism, valine, leucine, and isoleucine biosyntheses, and lysine degradation. Thus, the elevated expression of these metabolites and pathways may promote the phagocytic function of the neutrophils and natural killer cell activity following TLR activation. These results provide novel insight into the resistance mechanism of M. fortis against S. japonicum.
Collapse
|
13
|
Scott TP, Nel LH. Subversion of the Immune Response by Rabies Virus. Viruses 2016; 8:v8080231. [PMID: 27548204 PMCID: PMC4997593 DOI: 10.3390/v8080231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.
Collapse
Affiliation(s)
- Terence P Scott
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
14
|
Sun X, Shi N, Li Y, Dong C, Zhang M, Guan Z, Duan M. Quantitative Proteome Profiling of Street Rabies Virus-Infected Mouse Hippocampal Synaptosomes. Curr Microbiol 2016; 73:301-311. [PMID: 27155843 DOI: 10.1007/s00284-016-1061-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
It is well established now that neuronal dysfunction rather than structural damage may be responsible for the development of rabies. In order to explore the underlying mechanisms in rabies virus (RABV) and synaptic dysfunctions, a quantitative proteome profiling was carried out on synaptosome samples from mice hippocampus. Synaptosome samples from mice hippocampus were isolated and confirmed by Western blot and transmission electron microscopy. Synaptosome protein content changes were quantitatively detected by Nano-LC-MS/MS. Protein functions were classified by the Gene Ontology (GO) and KEGG pathway. PSICQUIC was used to create a network. MCODE algorithm was applied to obtain subnetworks. Of these protein changes, 45 were upregulated and 14 were downregulated following RABV infection relative to non-infected (mock) synaptosomes. 28 proteins were unique to mock treatment and 12 were unique to RABV treatment. Proteins related to metabolism and synaptic vesicle showed the most changes in expression levels. Furthermore, protein-protein interaction (PPI) networks revealed that several key biological processes related to synaptic functions potentially were modulated by RABV, including energy metabolism, cytoskeleton organization, and synaptic transmission. These data will be useful for better understanding of neuronal dysfunction of rabies and provide the foundation for future research.
Collapse
Affiliation(s)
- Xiaoning Sun
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Ning Shi
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences CAAS, Changchun, 132109, China
| | - Ying Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Chunyan Dong
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Maolin Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Zhenhong Guan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Ming Duan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
15
|
Rupprecht CE, Kuzmin IV. Why we can prevent, control and possibly treat – but will not eradicate – rabies. Future Virol 2015. [DOI: 10.2217/fvl.15.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Rabies is an acute, progressive viral encephalitis. Despite historical recognition, millions still remain exposed annually. Most fatalities are of children, although this zoonosis is a vaccine-preventable disease. All developed countries interrupted canine transmission and increasingly, Asian and African communities recognize what Latin Americans demonstrated – dog rabies can be eliminated – by mass application of veterinary vaccines. Realistically, rabies is not a candidate for eradication. Management is lacking for major reservoirs, such as bats. Increasing pre-exposure immunization of individuals at risk, simplification of postexposure schedules, enhancing vaccine delivery by alternative routes, development of less expensive biologics and antiviral drugs, may lessen its impact if applied strategically in a One Health context.
Collapse
Affiliation(s)
| | - Ivan V Kuzmin
- University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|