1
|
van den Berg M, Shi Z, Claassen WJ, Hooijman P, Lewis CTA, Andersen JL, van der Pijl RJ, Bogaards SJP, Conijn S, Peters EL, Begthel LPL, Uijterwijk B, Lindqvist J, Langlais PR, Girbes ARJ, Stapel S, Granzier H, Campbell KS, Ma W, Irving T, Hwee DT, Hartman JJ, Malik FI, Paul M, Beishuizen A, Ochala J, Heunks L, Ottenheijm CAC. Super-relaxed myosins contribute to respiratory muscle hibernation in mechanically ventilated patients. Sci Transl Med 2024; 16:eadg3894. [PMID: 39083588 DOI: 10.1126/scitranslmed.adg3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Patients receiving mechanical ventilation in the intensive care unit (ICU) frequently develop contractile weakness of the diaphragm. Consequently, they may experience difficulty weaning from mechanical ventilation, which increases mortality and poses a high economic burden. Because of a lack of knowledge regarding the molecular changes in the diaphragm, no treatment is currently available to improve diaphragm contractility. We compared diaphragm biopsies from ventilated ICU patients (N = 54) to those of non-ICU patients undergoing thoracic surgery (N = 27). By integrating data from myofiber force measurements, x-ray diffraction experiments, and biochemical assays with clinical data, we found that in myofibers isolated from the diaphragm of ventilated ICU patients, myosin is trapped in an energy-sparing, super-relaxed state, which impairs the binding of myosin to actin during diaphragm contraction. Studies on quadriceps biopsies of ICU patients and on the diaphragm of previously healthy mechanically ventilated rats suggested that the super-relaxed myosins are specific to the diaphragm and not a result of critical illness. Exposing slow- and fast-twitch myofibers isolated from the diaphragm biopsies to small-molecule compounds activating troponin restored contractile force in vitro. These findings support the continued development of drugs that target sarcomere proteins to increase the calcium sensitivity of myofibers for the treatment of ICU-acquired diaphragm weakness.
Collapse
Affiliation(s)
- Marloes van den Berg
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen 2400, Denmark
| | - Zhonghua Shi
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
- Sanbo Brain Hospital, Capital Medical University, Intensive Care Medicine, Beijing 100093, China
| | - Wout J Claassen
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Pleuni Hooijman
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Christopher T A Lewis
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen 2200, Denmark
- Research and Early Development, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Jesper L Andersen
- Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen 2400, Denmark
| | - Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Sylvia J P Bogaards
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Stefan Conijn
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Eva L Peters
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Leon P L Begthel
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Bas Uijterwijk
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Paul R Langlais
- Department of Endocrinology, University of Arizona, Tucson, AZ 85721, USA
| | - Armand R J Girbes
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
| | - Sandra Stapel
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Weikang Ma
- BioCAT, Illinois Institute of Technology, Lemont, IL 60439, USA
| | - Thomas Irving
- BioCAT, Illinois Institute of Technology, Lemont, IL 60439, USA
| | - Darren T Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - James J Hartman
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Marinus Paul
- Amsterdam UMC, Location VUmc, Department of Cardiothoracic Surgery, Amsterdam 1081, HV, Netherlands
| | - Albertus Beishuizen
- Medisch Spectrum Twente, Intensive Care Center, Enschede 7511, HN, Netherlands
| | - Julien Ochala
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen 2200, Denmark
| | - Leo Heunks
- Radboud UMC, Department of Intensive Care, Nijmegen 6525, GA, Netherlands
| | - Coen A C Ottenheijm
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| |
Collapse
|
2
|
Nakai H, Hirata Y, Furue H, Oku Y. Electrical stimulation mitigates muscle degradation shift in gene expressions during 12-h mechanical ventilation. Sci Rep 2023; 13:20136. [PMID: 37978221 PMCID: PMC10656540 DOI: 10.1038/s41598-023-47093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Ventilator-induced diaphragm dysfunction (VIDD), a dysfunction of the diaphragm muscle caused by prolonged mechanical ventilation (MV), is an important factor that hinders successful weaning from ventilation. We evaluated the effects of electrical stimulation of the diaphragm muscle (pulsed current with off-time intervals) on genetic changes during 12 h of MV (E-V12). Rats were divided into four groups: control, 12-h MV, sham operation, and E-V12 groups. Transcriptome analysis using an RNA microarray revealed that 12-h MV caused upregulation of genes promoting muscle atrophy and downregulation of genes facilitating muscle synthesis, suggesting that 12-h MV is a reasonable method for establishing a VIDD rat model. Of the genes upregulated by 12-h MV, 18 genes were not affected by the sham operation but were downregulated by E-V12. These included genes related to catabolic processes, inflammatory cytokines, and skeletal muscle homeostasis. Of the genes downregulated by 12-h MV, 6 genes were not affected by the sham operation but were upregulated by E-V12. These included genes related to oxygen transport and mitochondrial respiration. These results suggested that 12-h MV shifted gene expression in the diaphragm muscle toward muscle degradation and that electrical stimulation counteracted this shift by suppressing catabolic processes and increasing mitochondrial respiration.
Collapse
Affiliation(s)
- Hideki Nakai
- Physiome, Department of Physiology, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
- Department of Rehabilitation, Hyogo Prefectural Nishinomiya Hospital, 13-9, Rokutanji, Nishinomiya, Hyogo, 662-0918, Japan
| | - Yutaka Hirata
- Physiome, Department of Physiology, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshitaka Oku
- Physiome, Department of Physiology, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
3
|
Abstract
OBJECTIVES Mechanical ventilation is associated with primary diaphragmatic dysfunction, also termed ventilator-induced diaphragmatic dysfunction. Studies evaluating diaphragmatic function recovery after extubation are lacking. We evaluated early and late recoveries from ventilator-induced diaphragmatic dysfunction in a mouse model. DESIGN Experimental randomized study. SETTING Research laboratory. SUBJECTS C57/BL6 mice. INTERVENTIONS Six groups of C57/BL6 mice. Mice were ventilated for 6 hours and then euthanatized immediately (n = 18), or 1 (n = 18) or 10 days after extubation with (n = 5) and without S107 (n = 16) treatment. Mice euthanatized immediately after 6 hours of anesthesia (n = 15) or after 6 hours of anesthesia and 10 days of recovery (n = 5) served as controls. MEASUREMENTS AND MAIN RESULTS For each group, diaphragm force production, posttranslational modification of ryanodine receptor, oxidative stress, proteolysis, and cross-sectional areas were evaluated. After 6 hours of mechanical ventilation, diaphragm force production was decreased by 25-30%, restored to the control levels 1 day after extubation, and secondarily decreased by 20% 10 days after extubation compared with controls. Ryanodine receptor was protein kinase A-hyperphosphorylated, S-nitrosylated, oxidized, and depleted of its stabilizing subunit calstabin-1 6 hours after the onset of the mechanical ventilation, 1 and 10 days after extubation. Post extubation treatment with S107, a Rycal drug that stabilizes the ryanodine complex, did reverse the loss of diaphragmatic force associated with mechanical ventilation. Total protein oxidation was restored to the control levels 1 day after extubation. Markers of proteolysis including calpain 1 and calpain 2 remained activated 10 days after extubation without significant changes in cross-sectional areas. CONCLUSIONS We report that mechanical ventilation is associated with a late diaphragmatic dysfunction related to a structural alteration of the ryanodine complex that is reversed with the S107 treatment.
Collapse
|
4
|
Effect of Long-Term Polytrauma on Ventilator-Induced Diaphragmatic Dysfunction in a Piglet Model. Shock 2020; 52:443-448. [PMID: 30300316 DOI: 10.1097/shk.0000000000001272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Mechanical ventilation is known to activate oxidative stress and proteolytic pathways in the diaphragm. Trauma by inducing inflammation and activating proteolytic pathways may potentiate the effects of mechanical ventilation on the diaphragm. In a blunt chest trauma with concomitant injuries we tested the hypothesis that trauma via inflammation further activates the proteolytic pathways and worsens atrophy in the diaphragm. MATERIAL AND METHODS Piglets were separated into two groups and underwent 72 h of mechanical ventilation. One group received a polytrauma (PT) by unilateral femur fracture, blunt chest trauma with lung contusion, laparotomy with standardized liver incision, and a predefined hemorrhagic shock. The second mechanically ventilated group (MV) did not receive any trauma. A non-ventilated group (Con) served as control.Diaphragmatic fiber dimensions, Western Blot analyses of proteolytic pathways, and lipid peroxidation and messenger ribonucleic acid (mRNA) levels of cytokines and nuclear factor kappa b subunit p65 were measured. RESULTS Active Caspase-3 was significantly increased in MV (P = 0.019), and in PT (P = 0.02) compared with Con. Nuclear factor kappa b subunit p65, was upregulated in PT (P = 0.010) compared with Con. IL-6 mRNA increased significantly in PT compared with Con (P = 0.0024) but did not differ between Con and MV. CONCLUSION Trauma and mechanical ventilation induced proteolysis and atrophy in the diaphragm, but only polytrauma induced an inflammatory response in the diaphragm. The additional traumatic inflammatory stimulus did not increase the levels of the prementioned variables. These data underline that inflammation is not a major contributor to ventilator-induced diaphragmatic dysfunction. TRIAL REGISTRY NUMBER AZ 84-02.04.2014.A265 (Landesamt für Natur-, Umwelt- und Verbraucherschutz, LANUV NRW, Germany).
Collapse
|
5
|
Ataya A, Silverman EP, Bagchi A, Sarwal A, Criner GJ, McDonagh DL. Temporary Transvenous Diaphragmatic Neurostimulation in Prolonged Mechanically Ventilated Patients: A Feasibility Trial (RESCUE 1). Crit Care Explor 2020; 2:e0106. [PMID: 32426748 PMCID: PMC7188416 DOI: 10.1097/cce.0000000000000106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Prolonged mechanical ventilation promotes diaphragmatic atrophy and weaning difficulty. The study uses a novel device containing a transvenous phrenic nerve stimulating catheter (Lungpacer IntraVenous Electrode Catheter) to stimulate the diaphragm in ventilated patients. We set out to determine the feasibility of temporary transvenous diaphragmatic neurostimulation using this device. DESIGN Multicenter, prospective open-label single group feasibility study. SETTING ICUs of tertiary care hospitals. PATIENTS Adults on mechanical ventilation for greater than or equal to 7 days that had failed two weaning trials. INTERVENTIONS Stimulation catheter insertion and transvenous diaphragmatic neurostimulation therapy up to tid, along with standard of care. MEASUREMENTS AND MAIN RESULTS Primary outcomes were successful insertion and removal of the catheter and safe application of transvenous diaphragmatic neurostimulation. Change in maximal inspiratory pressure and rapid shallow breathing index were also evaluated. Eleven patients met all entry criteria with a mean mechanical ventilation duration of 19.7 days; nine underwent successful catheter insertion. All nine had successful mapping of one or both phrenic nerves, demonstrated diaphragmatic contractions during therapy, and underwent successful catheter removal. Seven of nine met successful weaning criteria. Mean maximal inspiratory pressure increased by 105% in those successfully weaned (mean change 19.7 ± 17.9 cm H2O; p = 0.03), while mean rapid shallow breathing index improved by 44% (mean change -63.5 ± 64.4; p = 0.04). CONCLUSIONS The transvenous diaphragmatic neurostimulation system is a feasible and safe therapy to stimulate the phrenic nerves and induce diaphragmatic contractions. Randomized clinical trials are underway to compare it to standard-of-care therapy for mechanical ventilation weaning.
Collapse
Affiliation(s)
- Ali Ataya
- Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL
| | - Erin P Silverman
- Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL
| | - Aranya Bagchi
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA
| | - Aarti Sarwal
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery at the Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | |
Collapse
|
6
|
Dexmedetomidine Impairs Diaphragm Function and Increases Oxidative Stress but Does Not Aggravate Diaphragmatic Atrophy in Mechanically Ventilated Rats. Anesthesiology 2019; 128:784-795. [PMID: 29346133 DOI: 10.1097/aln.0000000000002081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Anesthetics in ventilated patients are critical as any cofactor hampering diaphragmatic function may have a negative impact on the weaning progress and therefore on patients' mortality. Dexmedetomidine may display antioxidant and antiproteolytic properties, but it also reduced glucose uptake by the muscle, which may impair diaphragm force production. This study tested the hypothesis that dexmedetomidine could inhibit ventilator-induced diaphragmatic dysfunction. METHODS Twenty-four rats were separated into three groups (n = 8/group). Two groups were mechanically ventilated during either dexmedetomidine or pentobarbital exposure for 24 h, referred to as interventional groups. A third group of directly euthanized rats served as control. Force generation, fiber dimensions, proteolysis markers, protein oxidation and lipid peroxidation, calcium homeostasis markers, and glucose transporter-4 (Glut-4) translocation were measured in the diaphragm. RESULTS Diaphragm force, corrected for cross-sectional area, was significantly decreased in both interventional groups compared to controls and was significantly lower with dexmedetomidine compared to pentobarbital (e.g., 100 Hz: -18%, P < 0.0001). In contrast to pentobarbital, dexmedetomidine did not lead to diaphragmatic atrophy, but it induced more protein oxidation (200% vs. 73% in pentobarbital, P = 0.0015), induced less upregulation of muscle atrophy F-box (149% vs. 374% in pentobarbital, P < 0.001) and impaired Glut-4 translocation (-73%, P < 0.0005). It activated autophagy, the calcium-dependent proteases, and caused lipid peroxidation similarly to pentobarbital. CONCLUSIONS Twenty-four hours of mechanical ventilation during dexmedetomidine sedation led to a worsening of ventilation-induced diaphragm dysfunction, possibly through impaired Glut-4 translocation. Although dexmedetomidine prevented diaphragmatic fiber atrophy, it did not inhibit oxidative stress and activation of the proteolytic pathways.
Collapse
|
7
|
Structural differences in the diaphragm of patients following controlled vs assisted and spontaneous mechanical ventilation. Intensive Care Med 2019; 45:488-500. [PMID: 30790029 DOI: 10.1007/s00134-019-05566-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Ventilator-induced diaphragm dysfunction or damage (VIDD) is highly prevalent in patients under mechanical ventilation (MV), but its analysis is limited by the difficulty of obtaining histological samples. In this study we compared diaphragm histological characteristics in Maastricht III (MSIII) and brain-dead (BD) organ donors and in control subjects undergoing thoracic surgery (CTL) after a period of either controlled or spontaneous MV (CMV or SMV). METHODS In this prospective study, biopsies were obtained from diaphragm and quadriceps. Demographic variables, comorbidities, severity on admission, treatment, and ventilatory variables were evaluated. Immunohistochemical analysis (fiber size and type percentages) and quantification of abnormal fibers (a surrogate of muscle damage) were performed. RESULTS Muscle samples were obtained from 35 patients. MSIII (n = 16) had more hours on MV (either CMV or SMV) than BD (n = 14) and also spent more hours and a greater percentage of time with diaphragm stimuli (time in assisted and spontaneous modalities). Cross-sectional area (CSA) was significantly reduced in the diaphragm and quadriceps in both groups in comparison with CTL (n = 5). Quadriceps CSA was significantly decreased in MSIII compared to BD but there were no differences in the diaphragm CSA between the two groups. Those MSIII who spent 100 h or more without diaphragm stimuli presented reduced diaphragm CSA without changes in their quadriceps CSA. The proportion of internal nuclei in MSIII diaphragms tended to be higher than in BD diaphragms, and their proportion of lipofuscin deposits tended to be lower, though there were no differences in the quadriceps fiber evaluation. CONCLUSIONS This study provides the first evidence in humans regarding the effects of different modes of MV (controlled, assisted, and spontaneous) on diaphragm myofiber damage, and shows that diaphragm inactivity during mechanical ventilation is associated with the development of VIDD.
Collapse
|
8
|
Diaphragm Weakness in the Critically Ill: Basic Mechanisms Reveal Therapeutic Opportunities. Chest 2018; 154:1395-1403. [PMID: 30144420 DOI: 10.1016/j.chest.2018.08.1028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The diaphragm is the primary muscle of inspiration. Its capacity to respond to the load imposed by pulmonary disease is a major determining factor both in the onset of ventilatory failure and in the ability to successfully separate patients from ventilator support. It has recently been established that a very large proportion of critically ill patients exhibit major weakness of the diaphragm, which is associated with poor clinical outcomes. The two greatest risk factors for the development of diaphragm weakness in critical illness are the use of mechanical ventilation and the presence of sepsis. Loss of force production by the diaphragm under these conditions is caused by a combination of defective contractility and reduced diaphragm muscle mass. Importantly, many of the same molecular mechanisms are implicated in the diaphragm dysfunction associated with both mechanical ventilation and sepsis. This review outlines the primary cellular mechanisms identified thus far at the nexus of diaphragm dysfunction associated with mechanical ventilation and/or sepsis, and explores the potential for treatment or prevention of diaphragm weakness in critically ill patients through therapeutic manipulation of these final common pathway targets.
Collapse
|
9
|
Bruells CS, Marx G. [Diaphragm dysfunction : Facts for clinicians]. Med Klin Intensivmed Notfmed 2016; 113:526-532. [PMID: 27766377 DOI: 10.1007/s00063-016-0226-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 01/29/2023]
Abstract
Diaphragm function is crucial for patient outcome in the ICU setting and during the treatment period. The occurrence of an insufficiency of the respiratory pump, which is predominantly formed by the diaphragm, may result in intubation after failure of noninvasive ventilation. Especially patients suffering from chronic obstructive pulmonary disease are in danger of hypercapnic respiratory failure. Changes in biomechanical properties and fiber texture of the diaphragm are further cofactors directly leading to a need for intubation and mechanical ventilation. After intubation and the following inactivity the diaphragm is subject to profound pathophysiologic changes resulting in atrophy and dysfunction. Besides this inactivity-triggered mechanism (termed as ventilator-induced diaphragmatic dysfunction) multiple factors, comorbidities, pharmaceutical agents and additional hits during the ICU treatment, especially the occurrence of sepsis, influence diaphragm homeostasis and can lead to weaning failure. During the weaning process monitoring of diaphragm function can be done with invasive methods - ultrasound is increasingly established to monitor diaphragm contraction, but further and better powered studies are in need to prove its value as a diagnostic tool.
Collapse
Affiliation(s)
- C S Bruells
- Klinik für Operative Intensivmedizin und Intermediate Care, Universitätsklinik der RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland.
| | - G Marx
- Klinik für Operative Intensivmedizin und Intermediate Care, Universitätsklinik der RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| |
Collapse
|
10
|
Breuer T, Hatam N, Grabiger B, Marx G, Behnke BJ, Weis J, Kopp R, Gayan-Ramirez G, Zoremba N, Bruells CS. Kinetics of ventilation-induced changes in diaphragmatic metabolism by bilateral phrenic pacing in a piglet model. Sci Rep 2016; 6:35725. [PMID: 27759115 PMCID: PMC5069624 DOI: 10.1038/srep35725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
Perioperative necessity of deep sedation is inevitably associated with diaphragmatic inactivation. This study investigated 1) the feasibility of a new phrenic nerve stimulation method allowing early diaphragmatic activation even in deep sedation and, 2) metabolic changes within the diaphragm during mechanical ventilation compared to artificial activity. 12 piglets were separated into 2 groups. One group was mechanically ventilated for 12 hrs (CMV) and in the second group both phrenic nerves were stimulated via pacer wires inserted near the phrenic nerves to mimic spontaneous breathing (STIM). Lactate, pyruvate and glucose levels were measured continuously using microdialysis. Oxygen delivery and blood gases were measured during both conditions. Diaphragmatic stimulation generated sufficient tidal volumes in all STIM animals. Diaphragm lactate release increased in CMV transiently whereas in STIM lactate dropped during this same time point (2.6 vs. 0.9 mmol L-1 after 5:20 hrs; p < 0.001). CMV increased diaphragmatic pyruvate (40 vs. 146 μmol L-1 after 5:20 hrs between CMV and STIM; p < 0.0001), but not the lactate/pyruvate ratio. Diaphragmatic stimulation via regular electrodes is feasible to generate sufficient ventilation, even in deep sedation. Mechanical ventilation alters the metabolic state of the diaphragm, which might be one pathophysiologic origin of ventilator-induced diaphragmatic dysfunction. Occurrence of hypoxia was unlikely.
Collapse
Affiliation(s)
- Thomas Breuer
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany.,Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Nima Hatam
- Department of Thoracic and Cardiovascular Surgery, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Benjamin Grabiger
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Bradley J Behnke
- Department of Kinesiology, Johnson Cancer Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Joachim Weis
- Institute of Neuropathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Ruedger Kopp
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Aachen, Germany
| | | | - Norbert Zoremba
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Aachen, Germany.,Department of Anaesthesiology, Sankt Elisabeth Hospital, Gütersloh, Germany
| | - Christian S Bruells
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Aachen, Germany
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize and discuss recent research regarding the role of mechanical ventilation in producing weakness and atrophy of the diaphragm in critically ill patients, an entity termed ventilator-induced diaphragmatic dysfunction (VIDD). RECENT FINDINGS Severe weakness of the diaphragm is frequent in mechanically ventilated patients, in whom it contributes to poor outcomes including increased mortality. Significant progress has been made in identifying the molecular mechanisms responsible for VIDD in animal models, and there is accumulating evidence for occurrence of the same cellular processes in the diaphragms of human patients undergoing prolonged mechanical ventilation. SUMMARY Recent research is pointing the way to novel pharmacologic therapies as well as nonpharmacologic methods for preventing VIDD. The next major challenge in the field will be to move these findings from the bench to the bedside in critically ill patients.
Collapse
|
12
|
Wilcox SR. Corticosteroids and neuromuscular blockers in development of critical illness neuromuscular abnormalities: A historical review. J Crit Care 2016; 37:149-155. [PMID: 27736708 DOI: 10.1016/j.jcrc.2016.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023]
Abstract
Weakness is common in critically ill patients, associated with prolonged mechanical ventilation and increased mortality. Corticosteroids and neuromuscular blockade (NMB) administration have been implicated as etiologies of acquired weakness in the intensive care unit. Medical literature since the 1970s is replete with case reports and small case series of patients with weakness after receiving high-dose corticosteroids, prolonged NMB, or both. Several risk factors for weakness appear in the early literature, including large doses of steroids, the dose and duration of NMB, hyperglycemia, and the duration of mechanical ventilation. With improved quality of data, however, the association between weakness and steroids or NMB wanes. This may reflect changes in clinical practice, such as a reduction in steroid dosing, use of cisatracurium besylate instead of aminosteroid NMBs, improved glycemic control, or trends in minimizing mechanical ventilatory support. Thus, based on the most recent and high-quality literature, neither corticosteroids in commonly used doses nor NMB is associated with increased duration of mechanical ventilation, the greatest morbidity of weakness. Minimizing ventilator support as soon as the patient's condition allows may be associated with a reduction in weakness-related morbidity.
Collapse
Affiliation(s)
- Susan R Wilcox
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine and Division of Emergency Medicine, Department of Medicine, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
13
|
Berger D, Bloechlinger S, von Haehling S, Doehner W, Takala J, Z'Graggen WJ, Schefold JC. Dysfunction of respiratory muscles in critically ill patients on the intensive care unit. J Cachexia Sarcopenia Muscle 2016; 7:403-12. [PMID: 27030815 PMCID: PMC4788634 DOI: 10.1002/jcsm.12108] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/18/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Stefan Bloechlinger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland; Department of Clinical Cardiology, Inselspital University Hospital of Bern Bern Switzerland
| | - Stephan von Haehling
- Department of Cardiology and Center for Innovative Clinical Trials University of Göttingen Göttingen Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin Charite Universitätsmedizin Berlin Berlin Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Werner J Z'Graggen
- Department of Neurosurgery and Dept. of Neurology, Inselspital University Hospital of Bern Bern Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| |
Collapse
|
14
|
Bruells CS, Breuer T, Maes K, Bergs I, Bleilevens C, Marx G, Weis J, Gayan-Ramirez G, Rossaint R. Influence of weaning methods on the diaphragm after mechanical ventilation in a rat model. BMC Pulm Med 2016; 16:127. [PMID: 27558126 PMCID: PMC4997706 DOI: 10.1186/s12890-016-0285-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/11/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mechanical ventilation (MV) is associated with diaphragm weakness, a phenomenon termed ventilator-induced diaphragmatic dysfunction. Weaning should balance diaphragmatic loading as well as prevention of overload after MV. The weaning methods pressure support ventilation (PSV) and spontaneous breathing trials (SBT) lead to gradual or intermittent reloading of a weak diaphragm, respectively. This study investigated which weaning method allows more efficient restoration of diaphragm homeostasis. METHODS Rats (n = 8 per group) received 12 h of MV followed by either 12 h of pressure support ventilation (PSV) or intermittent spontaneous breathing trials (SBT) and were compared to rats euthanized after 12 h MV (CMV) and to acutely euthanized rats (CON). Force generation, activity of calpain-1 and caspase-3, oxidative stress, and markers of protein synthesis (phosphorylated AKT to total AKT) were measured in the diaphragm. RESULTS Reduction of diaphragmatic force caused by CMV compared to CON was worsened with PSV and SBT (both p < 0.05 vs. CON and CMV). Both PSV and SBT reversed oxidative stress and calpain-1 activation caused by CMV. Reduced pAKT/AKT was observed after CMV and both weaning procedures. CONCLUSIONS MV resulted in a loss of diaphragmatic contractility, which was aggravated in SBT and PSV despite reversal of oxidative stress and proteolysis.
Collapse
Affiliation(s)
- Christian S Bruells
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Thomas Breuer
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany. .,Department of Anaesthesiology, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Karen Maes
- Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ingmar Bergs
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Bleilevens
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | | | - Rolf Rossaint
- Department of Anaesthesiology, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
15
|
Medrinal C, Prieur G, Frenoy É, Robledo Quesada A, Poncet A, Bonnevie T, Gravier FE, Lamia B, Contal O. Respiratory weakness after mechanical ventilation is associated with one-year mortality - a prospective study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:231. [PMID: 27475524 PMCID: PMC4967510 DOI: 10.1186/s13054-016-1418-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Diaphragm dysfunction in mechanically ventilated patients is associated with poor outcome. Maximal inspiratory pressure (MIP) can be used to evaluate inspiratory muscle function. However, it is unclear whether respiratory weakness is independently associated with long-term mortality. The aim of this study was to determine if low MIP is independently associated with one-year mortality. METHODS We conducted a prospective observational cohort study in an 18-bed ICU. Adults requiring at least 24 hours of mechanical ventilation with scheduled extubation and no evidence of pre-existing muscle weakness underwent MIP evaluation just before extubation. Patients were divided into two groups: low MIP (MIP ≤30 cmH2O) and high MIP (MIP >30 cmH2O). Mortality was recorded for one year after extubation. For the survival analysis, the effect of low MIP was assessed using the log-rank test. The independent effect of low MIP on post mechanical ventilation mortality was analyzed using a multivariable Cox regression model. RESULTS One hundred and twenty-four patients underwent MIP evaluation (median age 66 years (25(th)-75(th) percentile 56-74), Simplified Acute Physiology Score (SAPS) 2 = 45 (33-57), duration of mechanical ventilation 7 days (4-10)). Fifty-four percent of patients had low MIP. One-year mortality was 31 % (95 % CI 0.21, 0.43) in the low MIP group and 7 % (95 % CI 0.02, 0.16) in the high MIP group. After adjustment for SAPS 2 score, body mass index and duration of mechanical ventilation, low MIP was independently associated with one-year mortality (hazard ratio 4.41, 95 % CI 1.5, 12.9, p = 0.007). Extubation failure was also associated with low MIP (relative risk 3.0, 95 % CI 1, -9.6; p = 0.03) but tracheostomy and ICU length of stay were not. CONCLUSION Low MIP is frequent in patients on mechanical ventilation and is an independent risk factor for long-term mortality in ICU patients requiring mechanical ventilation. MIP is easily evaluated at the patient's bedside. TRIAL REGISTRATION This study was retrospectively registered in www.clinicaltrials.gov (NCT02363231) in February 2015.
Collapse
Affiliation(s)
- Clément Medrinal
- Intensive Care Unit Department, Groupe Hospitalier du Havre, Avenue Pierre Mendes France, 76290, Montivilliers, France. .,Groupe de Recherche sur le Handicap Ventilatoire, UPRES EA 3830, Haute-Normandie Institute of Biomedical Research and Innovation, Rouen University, Rouen, France.
| | - Guillaume Prieur
- Intensive Care Unit Department, Groupe Hospitalier du Havre, Avenue Pierre Mendes France, 76290, Montivilliers, France
| | - Éric Frenoy
- Intensive Care Unit Department, Groupe Hospitalier du Havre, Avenue Pierre Mendes France, 76290, Montivilliers, France
| | - Aurora Robledo Quesada
- Intensive Care Unit Department, Groupe Hospitalier du Havre, Avenue Pierre Mendes France, 76290, Montivilliers, France
| | - Antoine Poncet
- Department of Health and Community Medicine, University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Bouchra Lamia
- Intensive Care Unit Department, Groupe Hospitalier du Havre, Avenue Pierre Mendes France, 76290, Montivilliers, France.,Groupe de Recherche sur le Handicap Ventilatoire, UPRES EA 3830, Haute-Normandie Institute of Biomedical Research and Innovation, Rouen University, Rouen, France
| | - Olivier Contal
- University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| |
Collapse
|
16
|
Breuer T, Maes K, Rossaint R, Marx G, Scheers H, Bergs I, Bleilevens C, Gayan-Ramirez G, Bruells CS. Sevoflurane Exposure Prevents Diaphragmatic Oxidative Stress During Mechanical Ventilation but Reduces Force and Affects Protein Metabolism Even During Spontaneous Breathing in a Rat Model. Anesth Analg 2015; 121:73-80. [DOI: 10.1213/ane.0000000000000736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Jung B, Gleeton D, Daurat A, Conseil M, Mahul M, Rao G, Matecki S, Lacampagne A, Jaber S. Conséquences de la ventilation mécanique sur le diaphragme. Rev Mal Respir 2015; 32:370-80. [DOI: 10.1016/j.rmr.2014.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023]
|