1
|
Houston S, Schovanek E, Conway KME, Mustafa S, Gomez A, Ramaswamy R, Haimour A, Boulanger MJ, Reynolds LA, Cameron CE. Identification and Functional Characterization of Peptides With Antimicrobial Activity From the Syphilis Spirochete, Treponema pallidum. Front Microbiol 2022; 13:888525. [PMID: 35722306 PMCID: PMC9200625 DOI: 10.3389/fmicb.2022.888525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
The etiological agent of syphilis, Treponema pallidum ssp. pallidum, is a highly invasive “stealth” pathogen that can evade the host immune response and persist within the host for decades. This obligate human pathogen is adept at establishing infection and surviving at sites within the host that have a multitude of competing microbes, sometimes including pathogens. One survival strategy employed by bacteria found at polymicrobial sites is elimination of competing microorganisms by production of antimicrobial peptides (AMPs). Antimicrobial peptides are low molecular weight proteins (miniproteins) that function directly via inhibition and killing of microbes and/or indirectly via modulation of the host immune response, which can facilitate immune evasion. In the current study, we used bioinformatics to show that approximately 7% of the T. pallidum proteome is comprised of miniproteins of 150 amino acids or less with unknown functions. To investigate the possibility that AMP production is an unrecognized defense strategy used by T. pallidum during infection, we developed a bioinformatics pipeline to analyze the complement of T. pallidum miniproteins of unknown function for the identification of potential AMPs. This analysis identified 45 T. pallidum AMP candidates; of these, Tp0451a and Tp0749 were subjected to further bioinformatic analyses to identify AMP critical core regions (AMPCCRs). Four potential AMPCCRs from the two predicted AMPs were identified and peptides corresponding to these AMPCCRs were experimentally confirmed to exhibit bacteriostatic and bactericidal activity against a panel of biologically relevant Gram-positive and Gram-negative bacteria. Immunomodulation assays performed under inflammatory conditions demonstrated that one of the AMPCCRs was also capable of differentially regulating expression of two pro-inflammatory chemokines [monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8)]. These findings demonstrate proof-of-concept for our developed AMP identification pipeline and are consistent with the novel concept that T. pallidum expresses AMPs to defend against competing microbes and modulate the host immune response.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Ethan Schovanek
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Kate M. E. Conway
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Sarah Mustafa
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Raghavendran Ramaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Ayman Haimour
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
- *Correspondence: Caroline E. Cameron,
| |
Collapse
|
2
|
Aass KR, Kastnes MH, Standal T. Molecular interactions and functions of IL-32. J Leukoc Biol 2020; 109:143-159. [PMID: 32869391 DOI: 10.1002/jlb.3mr0620-550r] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a multifaceted cytokine associated with several diseases and inflammatory conditions. Its expression is induced in response to cellular stress such as hypoxia, infections, and pro-inflammatory cytokines. IL-32 can be secreted from cells and can induce the production of pro-inflammatory cytokines from several cell types but are also described to have anti-inflammatory functions. The intracellular form of IL-32 is shown to play an important role in various cellular processes, including the defense against intracellular bacteria and viruses and in modulation of cell metabolism. In this review, we discuss current literature on molecular interactions of IL-32 with other proteins. We also review data on the role of intracellular IL-32 as a metabolic regulator and its role in antimicrobial host defense.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Martin H Kastnes
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
3
|
Pavlovic M, Jovanovic I, Arsenijevic N. Interleukin-32 in Infection, Inflammation and Cancer Biology. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.1515/sjecr-2016-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Cytokines are small pleiotropic polypeptids secreted dominantly by the cells of the immune system. These polypeptids are main mediators of innate and acquired immunity, responsible for clonal expansion and differentiation of immune cells, initiation of immune response and enhancing of effector functions of leukocytes. Cytokine-related effects are most studied in the fields of inflammation, immunology, and cancer biology. In this review we discuss one of the most intriguing, recently discovered proinflammatory cytokine, interleukin 32.
Collapse
Affiliation(s)
- Mladen Pavlovic
- Department of Surgery, Faculty of Medical Sciences , University of Kragujevac , Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research , Faculty of Medical Sciences , University of Kragujevac , Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research , Faculty of Medical Sciences , University of Kragujevac , Serbia
| |
Collapse
|
4
|
Dang Y, Zhang Y, Xu L, Zhou X, Gu Y, Yu J, Jin S, Ji H, Shu Y, Zhang G, Cui S, Sun J. PUMA-mediated epithelial cell apoptosis promotes Helicobacter pylori infection-mediated gastritis. Cell Death Dis 2020; 11:139. [PMID: 32080167 PMCID: PMC7033162 DOI: 10.1038/s41419-020-2339-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/23/2023]
Abstract
The molecular mechanism responsible for Helicobacter pylori infection-mediated gastritis and carcinogenesis is not yet clear. Increased evidence suggests that chronic gastritis and elevated gastric epithelial cell (GEC) apoptosis are crucial events during stomach carcinoma transformation. PUMA is a potent proapoptotic Bcl-2 protein and mediates acute tissue injury. In this study, we aimed to investigate the role of PUMA in GEC apoptosis and inflammation induced by H. pylori infection. As a result, we found that PUMA expression was elevated in gastritis tissues compared with uninvolved tissues, and it was correlated with the severity of apoptosis and gastritis. In mice, PUMA mRNA and protein were markedly induced in GECs upon induction of gastritis by H. pylori. PUMA-deficient mice were highly resistant to apoptosis and gastritis induced by H. pylori. Furthermore, the transcription factor NF-κB p65 binds to PUMA promoter to activate PUMA transcription after H. pylori infection. In addition, NF-κB inhibitor could rescue H. pylori-induced apoptosis and gastritis. Finally, H. pylori-induced activation of p-p65 and PUMA was mediated via Toll-like receptor 2 (TLR2) and blocked in TLR2 knockout mice. Taken together, these results verified the pro-inflammatory effect of PUMA in H. pylori-infected gastric tissue. Moreover, TLR2/NF-κB-mediated transcriptional regulation of PUMA contributes to the pathogenesis of H. pylori-infected gastritis.
Collapse
Affiliation(s)
- Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yifeng Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210001, China
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jian Yu
- Department of Pathology and Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Shidai Jin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoming Ji
- Department of Oncology, Haian People's Hospital, Nantong, 226630, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Shiyun Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jing Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Li W, Li Q, Wei L, Pan X, Huang D, Gan J, Tang S. Rosmarinic Acid Analogue-11 Induces Apoptosis of Human Gastric Cancer SGC-7901 Cells via the Epidermal Growth Factor Receptor (EGFR)/Akt/Nuclear Factor kappa B (NF-κB) Pathway. Med Sci Monit Basic Res 2019; 25:63-75. [PMID: 30799435 PMCID: PMC6404632 DOI: 10.12659/msmbr.913331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND According to the latest statistics from the American Cancer Society, there will be 1.73 million cancer cases and more than 600 000 cancer deaths in the United States in 2018, among which there will be 26 240 new cases of gastric cancer and around 10 800 deaths arising from gastric cancer. The objective of this study was to use RAA-11 to intervene in SGC-7901 cells to understand its effects on cell proliferation and apoptosis, and to explore the apoptosis mechanism. MATERIAL AND METHODS MTT assay was used to detect the survival of human gastric mucosal epithelial GES-1 cells and human gastric cancer SGC-7901 cells. Colony formation assay was used to observe the colony forming ability in SGC-7901 cells. The apoptotic rate of SGC-7901 cells was evaluated by Hoechst33258 staining and flow cytometry. qRT-PCR was used to analyze the epidermal growth factor receptor (EGFR) mRNA expression level in SGC-7901 cells. Western blot was used to examine the expression levels of caspase-3, Bcl-2, BAX, EGFR, Akt, p-Akt, and NF-κB in SGC-7901 cells. RESULTS RAA-11 is capable of inhibiting the proliferation and inducing the apoptosis of SGC-7901 cells in a time- and dose-dependent manner. Western blot showed that the expression levels of caspase-3 and BAX were upregulated, while the expression levels of Bcl-2, EGFR, Akt, p-Akt, and NF-κB in the SGC-7901 cells were downregulated. CONCLUSIONS Apoptosis can be induced in SGC-7901 cells by RAA-11, potentially via the EGFR/Akt/NF-κB pathway, indicating that RAA-11 might be a potent agent for cancer treatment.
Collapse
Affiliation(s)
- Wanting Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Qing Li
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Liqun Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Xiaohang Pan
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Daohang Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Jialiang Gan
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Shuangyi Tang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| |
Collapse
|
6
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
7
|
Morsaljahan Z, Rafiei A, Valadan R, Abedini M, Pakseresht M, Khajavi R. Association between interleukin-32 polymorphism and multiple sclerosis. J Neurol Sci 2017; 379:144-150. [PMID: 28716229 DOI: 10.1016/j.jns.2017.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Zaher Morsaljahan
- Department of Immunology, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Molecular and Cell Biology Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Valadan
- Molecular and Cell Biology Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Abedini
- Department of Neurology, Buali Sina Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoumeh Pakseresht
- Department of Immunology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Khajavi
- Molecular and Cell Biology Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32α: A Novel Inhibitory Cytokine of NK Cell Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:1290-1300. [PMID: 28701509 DOI: 10.4049/jimmunol.1601477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 06/11/2017] [Indexed: 12/15/2022]
Abstract
Cytokines produced by dendritic cells (DCs) can largely determine the direction of immunity. Transcriptional analysis revealed that besides IL-15, IL-32 was the only other cytokine expressed by human Langerhans cells. IL-32 is a human cytokine that exists in four main isoforms. Currently, little is known about the regulation and function of the various IL-32 isoforms. In this study, we found that IL-15 is a potent inducer of IL-32α in DCs. Because IL-15 promotes NK cell activation, we investigated the interplay between IL-32 and IL-15 and their role in NK cell activity. We show that IL-32α acts on NK cells to inhibit IL-15-mediated STAT5 phosphorylation and to suppress their IL-15-induced effector molecule expression and cytolytic capacity. IL-32α also acted on DCs by downregulating IL-15-induced IL-18 production, an important cytokine in NK cell activity. Blocking IL-32α during DC:NK cell coculture enhanced NK cell effector molecule expression as well as their cytolytic capacity. Taken together, our findings suggest a feedback inhibition of IL-15-mediated NK cell activity by IL-32α.
Collapse
Affiliation(s)
- Laurent Gorvel
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Daniel Korenfeld
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Thomas Tung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | - Eynav Klechevsky
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
9
|
Cui Y, Sun Z, Li X, Leng C, Zhang L, Fu X, Li L, Zhang X, Chang YU, Nan F, Li Z, Yan J, Zhang M, Li W, Wang G, Zhang D, Ma Y. Expression and clinical significance of cyclooxygenase-2 and interleukin-32 in primary gastric B-cell lymphoma. Oncol Lett 2015; 11:693-698. [PMID: 26870269 DOI: 10.3892/ol.2015.3950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) and interleukin-32 (IL-32) expression has been examined in various carcinomas and inflammations, and has been suggested to be significant in tumor progression and prognosis. The present study was conducted to investigate the expression of COX-2 and IL-32 in primary gastric B-cell lymphoma in order to define their clinical significance and their association with Helicobacter pylori (Hp) infection. COX-2 and IL-32 protein expression was detected in 31 primary gastric B-cell lymphoma patients and 19 chronic gastritis patients with immunohistochemistry. COX-2 and IL-32 expression was significantly higher in primary gastric lymphoma (PGL) tissues compared with gastritis tissues (51.6 vs. 21.1% for COX-2, P=0.032; and 58.1 vs. 26.3% for IL-32, P=0.029) and was significantly higher in Hp+ lymphoma tissues compared with Hp- lymphoma tissues (66.7 vs. 20% for COX-2, P=0.015; and 71.4 vs. 30% for IL-32, P=0.029). In the PGL tissues, the expression level of COX-2 was positively correlated with the expression level of IL-32, and the two were each positively correlated with Hp infection (P=0.004 for COX-2 and IL-32; P=0.01 for COX-2 and Hp infection; and P=0.003 for IL-32 and Hp infection). COX-2 expression was found to be significantly associated (P<0.05) with an aggressive tumor type, higher expression of Ki-67, frequent lymph node metastasis and advanced stage. IL-32 expression was found to be significantly correlated (P<0.05) with frequent lymph node metastasis and an advanced stage. The survival time was longer in the COX-2- and IL-32- lymphoma patients compared with the COX-2+ and IL-32+ lymphoma patients, but these differences were not statistically significant. These results suggested that Hp infection and the expression of COX-2 and IL-32 were closely linked with each other, and that the overexpression of COX-2 and IL-32 was correlated with tumor progression in primary gastric B-cell lymphoma, thus indicating potential novel therapeutic target.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Changsen Leng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Y U Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feifei Nan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yaozhen Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
Piktel E, Niemirowicz K, Wnorowska U, Wątek M, Wollny T, Głuszek K, Góźdź S, Levental I, Bucki R. The Role of Cathelicidin LL-37 in Cancer Development. Arch Immunol Ther Exp (Warsz) 2015; 64:33-46. [PMID: 26395996 PMCID: PMC4713713 DOI: 10.1007/s00005-015-0359-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 01/04/2023]
Abstract
LL-37 is a C-terminal peptide proteolytically released from 18 kDa human cathelicidin protein (hCAP18). Chronic infections, inflammation, tissue injury and tissue regeneration are all linked with neoplastic growth, and involve LL-37 antibacterial and immunomodulatory functions. Such a link points to the possible involvement of LL-37 peptide in carcinogenesis. An increasing amount of evidence suggests that LL-37 can have two different and contradictory effects--promotion or inhibition of tumor growth. The mechanisms are tissue-specific, complex, and depend mostly on the ability of LL-37 to act as a ligand for different membrane receptors whose expression varies on different cancer cells. Overexpression of LL-37 was found to promote development and progression of ovarian, lung and breast cancers, and to suppress tumorigenesis in colon and gastric cancer. This review explores and summarizes the current views on how LL-37 contributes to immunity, pathophysiology and cell signaling involved in malignant tumor growth.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Marzena Wątek
- Holy Cross Oncology Center of Kielce, Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Kielce, Poland
| | | | - Stanisław Góźdź
- The Faculty of Health Sciences of The Jan Kochanowski University in Kielce, Kielce, Poland
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, TX, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland.
- Department of Physiology, Pathophysiology and Microbiology of Infections, Faculty of Health Sciences of The Jan Kochanowski University in Kielce, Kielce, Poland.
| |
Collapse
|
11
|
Lin Q, Xu H, Chen X, Tang G, Gu L, Wang Y. Helicobacter pylori cytotoxin-associated gene A activates tumor necrosis factor-α and interleukin-6 in gastric epithelial cells through P300/CBP-associated factor-mediated nuclear factor-κB p65 acetylation. Mol Med Rep 2015; 12:6337-45. [PMID: 26238217 DOI: 10.3892/mmr.2015.4143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 07/02/2015] [Indexed: 01/28/2023] Open
Abstract
Helicobacter pylori‑initiated chronic gastritis is characterized by the cytotoxin‑associated gene (Cag) pathogenicity island‑dependent upregulation of pro‑inflammatory cytokines in gastric epithelial cells, which is largely mediated by the activation of nuclear factor (NF)‑κB as a transcription factor. However, the precise regulation of NF‑κB activation, particularly post‑translational modifications in the CagA‑induced inflammatory response, has remained elusive. The present study showed that Helicobacter pylori CagA, an important virulence factor, induced the expression of P300/CBP‑associated factor (PCAF) in gastric epithelial cells. Further study revealed that PCAF was able to physically associate with the NF‑κB p65 sub‑unit and enhance its acetylation. More importantly, PCAF‑induced p65 acetylation was shown to contribute to p65 phosphorylation and further upregulation of tumor necrosis factor (TNF)‑α and interleukin (IL)‑6 in gastric adenocarcinoma cells. In conclusion, the results of the present study indicated that Helicobacter pylori CagA enhanced TNF‑α and IL‑6 in gastric adenocarcinoma cells through PCAF‑mediated NF‑κB p65 sub‑unit acetylation.
Collapse
Affiliation(s)
- Qiong Lin
- Department of Gastroenterology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Hui Xu
- Department of Gastroenterology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Xintao Chen
- Department of Gastroenterology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Guorong Tang
- Department of Gastroenterology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Lan Gu
- Department of Gastroenterology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Yehong Wang
- Department of Gastroenterology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|