1
|
Zarrabian M, Sherif SM. Silence is not always golden: A closer look at potential environmental and ecotoxicological impacts of large-scale dsRNA application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175311. [PMID: 39122031 DOI: 10.1016/j.scitotenv.2024.175311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
RNA interference (RNAi) technology has emerged as a pivotal strategy in sustainable pest management, offering a targeted approach that significantly mitigates the environmental and health risks associated with traditional insecticides. Originally implemented through genetically modified organisms (GMOs) to produce specific RNAi constructs, the technology has evolved in response to public and regulatory concerns over GMOs. This evolution has spurred the development of non-transgenic RNAi applications such as spray-induced gene silencing (SIGS), which employs double-stranded RNA (dsRNA) to silence pest genes directly without altering the plant's genetic makeup. Despite its advantages in specificity and reduced ecological footprint, SIGS faces significant obstacles, particularly the instability of dsRNA in field conditions, which limits its practical efficacy. To overcome these limitations, innovative delivery mechanisms have been developed. These include nanotechnology-based systems, minicells, and nanovesicles, which are designed to protect dsRNA from degradation and enhance its delivery to target organisms. While these advancements have improved the stability and application efficiency of dsRNA, comprehensive assessments of their environmental safety and the potential for increased exposure risks to non-target organisms remain incomplete. This comprehensive review aims to elucidate the environmental fate of dsRNA and evaluate the potential risks associated with its widespread application on non-target organisms, encompassing soil microorganisms, beneficial insects, host plants, and mammals. The objective is to establish a more refined framework for RNAi risk assessment within environmental and ecotoxicological contexts, thereby fostering the development of safer, non-transgenic RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Mohammad Zarrabian
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States
| | - Sherif M Sherif
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States.
| |
Collapse
|
2
|
Johnson NS, Lewandoski SA, Jubar AK, Symbal MJ, Solomon BM, Bravener GA, Barber JM, Siefkes MJ. A decade-long study demonstrates that a population of invasive sea lamprey (Petromyzon marinus) can be controlled by introducing sterilized males. Sci Rep 2024; 14:12689. [PMID: 38830863 PMCID: PMC11148153 DOI: 10.1038/s41598-024-61460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
The release of sterilized insects to control pest populations has been used successfully during the past 6 decades, but application of the method in vertebrates has largely been overlooked or met with failure. Here, we demonstrate for the first time in fish, that a small population of sea lamprey (Petromyzon marinus; Class Agnatha), arguably one of the most impactful invasive fish in the world, can be controlled by the release of sterilized males. Specifically, the release of high numbers of sterile males (~ 1000's) into a geographically isolated population of adult sea lamprey resulted in the first multiyear delay in pesticide treatment since treatments began during 1966. Estimates of percent reduction in recruitment of age-1 sea lamprey due to sterile male release ranged from 7 to 99.9% with the precision of the estimate being low because of substantial year-to-year variability in larval density and distribution. Additional monitoring that accounts for recruitment variability in time and space would reduce uncertainty in the degree to which sterile male release reduces recruitment rates. The results are relevant to vertebrate pest control programs worldwide, especially as technical opportunities to sterilize vertebrates and manipulate sex ratios expand.
Collapse
Affiliation(s)
- Nicholas S Johnson
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI, 49759, USA.
| | - Sean A Lewandoski
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI, 49759, USA
- U.S. Fish Wildlife Service, Marquette Biological Station, 1095 Cornerstone Drive, Marquette, MI, 49855, USA
| | - Aaron K Jubar
- U.S. Fish and Wildlife, Ludington Biological Station, 5050 Commerce Drive, Ludington, MI, 49660, USA
| | - Matthew J Symbal
- U.S. Fish Wildlife Service, Marquette Biological Station, 1095 Cornerstone Drive, Marquette, MI, 49855, USA
| | - Benson M Solomon
- U.S. Fish Wildlife Service, Marquette Biological Station, 1095 Cornerstone Drive, Marquette, MI, 49855, USA
| | - Gale A Bravener
- Fisheries and Oceans Canada, Sea Lamprey Control Centre, 1219 Queen Street East, Sault Ste., Marie, ON, P6A 2E5, Canada
| | - Jessica M Barber
- U.S. Fish Wildlife Service, Marquette Biological Station, 1095 Cornerstone Drive, Marquette, MI, 49855, USA
| | - Michael J Siefkes
- Great Lakes Fishery Commission, 2200 Commonwealth Blvd., Suite 100, Ann Arbor, MI, 48105, USA
| |
Collapse
|
3
|
Hernández Elizárraga VH, Ballantyne S, O'Brien LG, Americo JA, Suhr ST, Senut MC, Minerich B, Merkes CM, Edwards TM, Klymus K, Richter CA, Waller DL, Passamaneck YJ, Rebelo MF, Gohl DM. Toward invasive mussel genetic biocontrol: Approaches, challenges, and perspectives. iScience 2023; 26:108027. [PMID: 37860763 PMCID: PMC10583111 DOI: 10.1016/j.isci.2023.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Invasive freshwater mussels, such as the zebra (Dreissena polymorpha), quagga (Dreissena rostriformis bugensis), and golden (Limnoperna fortunei) mussel have spread outside their native ranges throughout many regions of the North American, South American, and European continents in recent decades, damaging infrastructure and the environment. This review describes ongoing efforts by multiple groups to develop genetic biocontrol methods for invasive mussels. First, we provide an overview of genetic biocontrol strategies that have been applied in other invasive or pest species. Next, we summarize physical and chemical methods that are currently in use for invasive mussel control. We then describe the multidisciplinary approaches our groups are employing to develop genetic biocontrol tools for invasive mussels. Finally, we discuss the challenges and limitations of applying genetic biocontrol tools to invasive mussels. Collectively, we aim to openly share information and combine expertise to develop practical tools to enable the management of invasive freshwater mussels.
Collapse
Affiliation(s)
| | - Scott Ballantyne
- Department of Biology, University of Wisconsin River Falls, River Falls, WI, USA
| | | | | | | | | | | | - Christopher M. Merkes
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Thea M. Edwards
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Katy Klymus
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Catherine A. Richter
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Diane L. Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - Yale J. Passamaneck
- Bureau of Reclamation, Technical Service Center, Hydraulic Investigations and Laboratory Services, Ecological Research Laboratory, Denver, CO, USA
| | - Mauro F. Rebelo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daryl M. Gohl
- University of Minnesota Genomics Center, Minneapolis, MN, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Hu G, Song M, Wang Y, Hao K, Wang J, Zhang Y. Using a modified piggyBac transposon-combined Cre/loxP system to produce selectable reporter-free transgenic bovine mammary epithelial cells for somatic cell nuclear transfer. Genesis 2023:e23510. [PMID: 36748563 DOI: 10.1002/dvg.23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Transposon systems are widely used for genetic engineering in various model organisms. PiggyBac (PB) has recently been confirmed to have highly efficient transposition in the mouse germ line and mammalian cell lines. In this study, we used a modified PB transposon system mediated by PB transposase (PBase) mRNA carrying the human lactoferrin gene driven by bovine β-casein promoter to transfect bovine mammary epithelial cells (BMECs), and the selectable reporter in two stable transgenic BMEC clones was removed using cell-permeant Cre recombinase. These reporter-free transgenic BMECs were used as donor cells for somatic cell nuclear transfer (SCNT) and exhibited a competence of SCNT embryos similar to stable transgenic BMECs and nontransgenic BMECs. The comprehensive information from this study provided a modified approach using an altered PB transposon system mediated by PBase mRNA in vitro and combined with the Cre/loxP system to produce transgenic and selectable reporter-free donor nuclei for SCNT. Consequently, the production of safe bovine mammary bioreactors can be promoted.
Collapse
Affiliation(s)
- Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Meijun Song
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Kexing Hao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Jaiwal A, Natarajaswamy K, Rajam MV. RNA silencing of hormonal biosynthetic genes impairs larval growth and development in cotton bollworm, Helicoverpa armigera. J Biosci 2020. [DOI: 10.1007/s12038-020-00079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Horak KE. RNAi: Applications in Vertebrate Pest Management. Trends Biotechnol 2020; 38:1200-1202. [PMID: 32466968 DOI: 10.1016/j.tibtech.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
Sequence-directed inhibition of protein synthesis by RNAi has potential as a means to control pest wildlife. Species specific by design, RNAi reduces impacts on nontarget species and the environment. Additional research advancing the field of RNAi-based management of vertebrate pest wildlife is timely.
Collapse
Affiliation(s)
- Katherine E Horak
- National Wildlife Research Center, Animal Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO, USA.
| |
Collapse
|
7
|
Rodrigues TB, Petrick JS. Safety Considerations for Humans and Other Vertebrates Regarding Agricultural Uses of Externally Applied RNA Molecules. FRONTIERS IN PLANT SCIENCE 2020; 11:407. [PMID: 32391029 PMCID: PMC7191066 DOI: 10.3389/fpls.2020.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 05/13/2023]
Abstract
The potential of double-stranded RNAs (dsRNAs) for use as topical biopesticides in agriculture was recently discussed during an OECD (Organisation for Economic Co-operation and Development) Conference on RNA interference (RNAi)-based pesticides. Several topics were presented and these covered different aspects of RNAi technology, its application, and its potential effects on target and non-target organisms (including both mammals and non-mammals). This review presents information relating to RNAi mechanisms in vertebrates, the history of safe RNA consumption, the biological barriers that contribute to the safety of its consumption, and effects related to humans and other vertebrates as discussed during the conference. We also review literature related to vertebrates exposed to RNA molecules and further consider human health safety assessments of RNAi-based biopesticides. This includes possible routes of exposure other than the ingestion of potential residual material in food and water (such as dermal and inhalation exposures during application in the field), the implications of different types of formulations and RNA structures, and the possibility of non-specific effects such as the activation of the innate immune system or saturation of the RNAi machinery.
Collapse
|
8
|
York JR, McCauley DW. Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates. J Exp Biol 2020; 223:223/Suppl_1/jeb206433. [DOI: 10.1242/jeb.206433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Lampreys and hagfishes are the only surviving relicts of an ancient but ecologically dominant group of jawless fishes that evolved in the seas of the Cambrian era over half a billion years ago. Because of their phylogenetic position as the sister group to all other vertebrates (jawed vertebrates), comparisons of embryonic development between jawless and jawed vertebrates offers researchers in the field of evolutionary developmental biology the unique opportunity to address fundamental questions related to the nature of our earliest vertebrate ancestors. Here, we describe how genetic analysis of embryogenesis in the sea lamprey (Petromyzon marinus) has provided insight into the origin and evolution of developmental-genetic programs in vertebrates. We focus on recent work involving CRISPR/Cas9-mediated genome editing to study gene regulatory mechanisms involved in the development and evolution of neural crest cells and new cell types in the vertebrate nervous system, and transient transgenic assays that have been instrumental in dissecting the evolution of cis-regulatory control of gene expression in vertebrates. Finally, we discuss the broad potential for these functional genomic tools to address previously unanswerable questions related to the evolution of genomic regulatory mechanisms as well as issues related to invasive sea lamprey population control.
Collapse
Affiliation(s)
- Joshua R. York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W. McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
9
|
Wilkie MP, Hubert TD, Boogaard MA, Birceanu O. Control of invasive sea lampreys using the piscicides TFM and niclosamide: Toxicology, successes & future prospects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:235-252. [PMID: 30770146 DOI: 10.1016/j.aquatox.2018.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
The invasion of the Laurentian Great Lakes of North America by sea lampreys (Petromyzon marinus) in the early 20th century contributed to the depletion of commercial, recreational and culturally important fish populations, devastating the economies of communities that relied on the fishery. Sea lamprey populations were subsequently controlled using an aggressive integrated pest-management program which employed barriers and traps to prevent sea lamprey from migrating to their spawning grounds and the use of the piscicides (lampricides) 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide to eliminate larval sea lampreys from their nursery streams. Although sea lampreys have not been eradicated from the Great Lakes, populations have been suppressed to less than 10% of their peak numbers in the mid-1900s. The ongoing use of lampricides provides the foundation for sea lamprey control in the Great Lakes, one of the most successful invasive species control programs in the world. Yet, significant gaps remain in our understanding of how lampricides are taken-up and handled by sea lampreys, how lampricides exert their toxic effects, and how they adversely affect non-target invertebrate and vertebrates species. In this review we examine what has been learned about the uptake, handling and elimination, and the mode of TFM and niclosamide toxicity in lampreys and in non-target animals, particularly in the last 10 years. It is now clear that the mode of TFM toxicity is the same in non-target fishes and lampreys, in which TFM interferes with oxidative phosphorylation by the mitochondria leading to decreased ATP production. Vulnerability to TFM is related to abiotic factors such as water pH and alkalinity, which we propose changes the relative amounts of the bioavailable un-ionized form of TFM in the gill microenvironment. Niclosamide, which is also a molluscicide used to control snails in areas prone to schistosomiasis infections of humans, also likely works by uncoupling oxidative phosphorylation, but less is known about other aspects of its toxicology. The effects of TFM include reductions in energy stores, particularly glycogen and high energy phosphagens. However, non-target fishes readily recover from sub-lethal TFM exposure as demonstrated by the rapid restoration of energy stores and clearance of TFM. Although both TFM and niclosamide are non-persistent in the environment and critical for sea lamprey control, increasing public and institutional concerns about pesticides in the environment makes it imperative to explore other means of sea lamprey control. Accordingly, we also address possible "next-generation" strategies of sea lamprey control including genetic tools such as RNA interference and CRISPR-Cas9 to impair critical physiological processes (e.g. reproduction, digestion, metamorphosis) in lamprey, and the use of green chemistry to develop more environmentally benign chemical methods of sea lamprey control.
Collapse
Affiliation(s)
- Michael P Wilkie
- Department of Biology & Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada.
| | - Terrance D Hubert
- Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse, WI, 54603, USA
| | - Michael A Boogaard
- Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse, WI, 54603, USA
| | - Oana Birceanu
- Department of Biology & Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| |
Collapse
|
10
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
11
|
Siefkes MJ. Use of physiological knowledge to control the invasive sea lamprey ( Petromyzon marinus) in the Laurentian Great Lakes. CONSERVATION PHYSIOLOGY 2017; 5:cox031. [PMID: 28580146 PMCID: PMC5448140 DOI: 10.1093/conphys/cox031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 05/14/2023]
Abstract
Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America is an example of using physiological knowledge to successfully control an invasive species and rehabilitate an ecosystem and valuable fishery. The parasitic sea lamprey contributed to the devastating collapse of native fish communities after invading the Great Lakes during the 1800s and early 1900s. Economic tragedy ensued with the loss of the fishery and severe impacts to property values and tourism resulting from sea lamprey-induced ecological changes. To control the sea lamprey and rehabilitate the once vibrant Great Lakes ecosystem and economy, the Great Lakes Fishery Commission (Commission) was formed by treaty between Canada and the United States in 1955. The Commission has developed a sea lamprey control programme based on their physiological vulnerabilities, which includes (i) the application of selective pesticides (lampricides), which successfully kill sedentary sea lamprey larvae in their natal streams; (ii) barriers to spawning migrations and associated traps to prevent infestations of upstream habitats and remove adult sea lamprey before they reproduce; and (iii) the release of sterilized males to reduce the reproductive potential of spawning populations in select streams. Since 1958, the application of the sea lamprey control programme has suppressed sea lamprey populations by ~90% from peak abundance. Great Lakes fish populations have rebounded and the economy is now thriving. In hopes of further enhancing the efficacy and selectivity of the sea lamprey control programme, the Commission is exploring the use of (i) sea lamprey chemosensory cues (pheromones and alarm cues) to manipulate behaviours and physiologies, and (ii) genetics to identify and manipulate genes associated with key physiological functions, for control purposes. Overall, the Commission capitalizes on the unique physiology of the sea lamprey and strives to develop a diverse integrated programme to successfully control a once devastating invasive species.
Collapse
Affiliation(s)
- Michael J. Siefkes
- Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI 48105, USA
- Corresponding author: Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI 48105, USA. Tel: +1 7346693013; Fax: +1 7347412010;
| |
Collapse
|
12
|
Biallelic editing of a lamprey genome using the CRISPR/Cas9 system. Sci Rep 2016; 6:23496. [PMID: 27005311 PMCID: PMC4804306 DOI: 10.1038/srep23496] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/07/2016] [Indexed: 12/31/2022] Open
Abstract
Lampreys are extant representatives of agnathans. Descriptions of lamprey development, physiology and genome have provided critical insights into early evolution of vertebrate traits. However, efficient means for genetic manipulation in agnathan species have not been developed, hindering functional studies of genes in these important Evo-Devo models. Here, we report a CRISPR/Cas system optimized for lamprey genomes and use it to disrupt genomic loci in the Northeast Chinese lamprey (Lethenteron morii) with efficiencies ranging between 84~99%. The frequencies of indels observed in the target loci of golden (gol), kctd10, wee1, soxe2, and wnt7b, estimated from direct sequencing of genomic DNA samples of injected lamprey larvae, were 68/69, 47/56, 38/39, 36/37 and 36/42, respectively. These indels often occurred in both alleles. In the CRISPR/Cas9 treatment for gol or kctd10, 38.6% or 85.3% of the targeted larvae had the respective recessive null-like phenotypes, further confirming the disruption of both loci. The kctd10 gRNA, designed against an essential functional region of Kctd10, resulted in null-like phenotypes and in-frame mutations in alleles. We suggest that the CRISPR/Cas-based approach has the potential for efficient genetic perturbation in organisms less amenable to germ line transmission based approaches.
Collapse
|
13
|
Abstract
Lampreys, one of the two surviving groups of ancient vertebrates, have become important models for study in diverse fields of biology. Lampreys (of which there are approximately 40 species) are being studied, for example, (a) to control pest sea lamprey in the North American Great Lakes and to restore declining populations of native species elsewhere; (b) in biomedical research, focusing particularly on the regenerative capability of lampreys; and (c) by developmental biologists studying the evolution of key vertebrate characters. Although a lack of genetic resources has hindered research on the mechanisms regulating many aspects of lamprey life history and development, formerly intractable questions are now amenable to investigation following the recent publication of the sea lamprey genome. Here, we provide an overview of the ways in which genomic tools are currently being deployed to tackle diverse research questions and suggest several areas that may benefit from the availability of the sea lamprey genome.
Collapse
Affiliation(s)
- David W McCauley
- David W. McCauley ( ) is affiliated with the Department of Biology at the University of Oklahoma, in Norman. Margaret F. Docker and Steve Whyard are affiliated with the Department of Biological Sciences at the University of Manitoba, in Winnipeg, Canada. Weiming Li is affiliated with the Department of Fisheries and Wildlife at Michigan State University, in East Lansing
| | - Margaret F Docker
- David W. McCauley ( ) is affiliated with the Department of Biology at the University of Oklahoma, in Norman. Margaret F. Docker and Steve Whyard are affiliated with the Department of Biological Sciences at the University of Manitoba, in Winnipeg, Canada. Weiming Li is affiliated with the Department of Fisheries and Wildlife at Michigan State University, in East Lansing
| | - Steve Whyard
- David W. McCauley ( ) is affiliated with the Department of Biology at the University of Oklahoma, in Norman. Margaret F. Docker and Steve Whyard are affiliated with the Department of Biological Sciences at the University of Manitoba, in Winnipeg, Canada. Weiming Li is affiliated with the Department of Fisheries and Wildlife at Michigan State University, in East Lansing
| | - Weiming Li
- David W. McCauley ( ) is affiliated with the Department of Biology at the University of Oklahoma, in Norman. Margaret F. Docker and Steve Whyard are affiliated with the Department of Biological Sciences at the University of Manitoba, in Winnipeg, Canada. Weiming Li is affiliated with the Department of Fisheries and Wildlife at Michigan State University, in East Lansing
| |
Collapse
|
14
|
Sengprasert P, Amparyup P, Tassanakajorn A, Wongpanya R. Characterization and identification of calmodulin and calmodulin binding proteins in hemocyte of the black tiger shrimp (Penaeus monodon). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:87-97. [PMID: 25681078 DOI: 10.1016/j.dci.2015.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Calmodulin (CaM), a ubiquitous intracellular calcium (Ca(2+)) sensor in all eukaryotic cells, is one of the well-known signaling proteins. Previously, CaM gene has shown a high transcriptional level in hemocyte of the pathogen infected shrimp, suggesting that shrimp CaM does not only regulate Ca(2+) metabolism, but is also involved in immune response cascade. In the present study, the CaM gene of shrimp Penaeus monodon was identified and the recombinant P.monodon CaM (rPmCaM) was produced and biochemically characterized. The identification of CaM-binding proteins was also performed. The PmCaM cDNA consisted of an open reading frame of 447 bp encoding for 149 amino acid residues with a calculated mass of 16,810 Da and an isoelectric point of 4.09. Tissue distribution showed that the PmCaM transcript was expressed in all examined tissues. The results of gel mobility shift assay, circular dichroism spectroscopy and fluorescence spectroscopy all confirmed that the conformational changes of the rPmCaM were observed after the calcium binding. According to the gene silencing of PmCaM transcript levels, the shrimp's susceptibility to pathogenic Vibrio harveyi infection increased in comparison with that of the control groups. Protein pull-down assay and LC-MS/MS analysis were performed to identify rPmCaM-binding proteins involved in shrimp immune responses and transglutaminase, elongation factor 1-alpha, elongation factor 2 and actin were found. However, by computational analysis, only the first three proteins contained CaM-binding domain. These findings suggested that PmCaM may play an important role in regulation of shrimp immune system.
Collapse
Affiliation(s)
- Panjana Sengprasert
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahonyothin, Bangkok 10900, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Anchalee Tassanakajorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahonyothin, Bangkok 10900, Thailand.
| |
Collapse
|
15
|
Chung-Davidson YW, Yeh CY, Li W. The Sea Lamprey as an Etiological Model for Biliary Atresia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:832943. [PMID: 26101777 PMCID: PMC4460204 DOI: 10.1155/2015/832943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/17/2015] [Indexed: 12/14/2022]
Abstract
Biliary atresia (BA) is a progressive, inflammatory, and fibrosclerosing cholangiopathy in infants that results in obstruction of both extrahepatic and intrahepatic bile ducts. It is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult with steatohepatitis and fibrosis in the liver. In this paper, we present new histological evidence and compare the sea lamprey to existing animal models to highlight the advantages and possible limitations of using the sea lamprey to study the etiology and compensatory mechanisms of BA and other liver diseases. Understanding the signaling factors and genetic networks underlying lamprey BA can provide insights into BA etiology and possible targets to prevent biliary degeneration and to clear fibrosis. In addition, information from lamprey BA can be used to develop adjunct treatments for patients awaiting or receiving surgical treatments. Furthermore, the cholestatic adult lamprey has unique adaptive mechanisms that can be used to explore potential treatments for cholestasis and nonalcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Chu-Yin Yeh
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Lennox R, Choi K, Harrison PM, Paterson JE, Peat TB, Ward TD, Cooke SJ. Improving science-based invasive species management with physiological knowledge, concepts, and tools. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0884-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|