1
|
Peng H, Guo D, Shan W, Tan S, Wang C, Wang H, Liu Z, Xu B, Guo X, Wang Y. Identification of the AccCDK7 and AccCDK9 genes and their involvement in the response to resist external stress in Apis cerana cerana. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104117. [PMID: 37019323 DOI: 10.1016/j.etap.2023.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 06/15/2023]
Abstract
Previous studies examining the functions of cyclin-dependent kinases (CDKs) have mainly focused on the regulation of the cell cycle. Recent studies have found that cyclin-dependent kinase 7 (CDK7) and cyclin-dependent kinase 9 (CDK9) play important roles in cell stress, metabolism of toxic substances and maintaining the stability of the internal environment. Here, we found that under stress conditions, the transcription and protein expression of AccCDK7 and AccCDK9 were induced to varying degrees. Meanwhile, the silencing of AccCDK7 and AccCDK9 also affected the expression of antioxidant genes and the activity of antioxidant enzymes, and reduced the survival rate of bees under high temperature stress. Furthermore, the exogenous overexpression of AccCDK7 and AccCDK9 improved the viability of yeast under stress conditions. Therefore, AccCDK7 and AccCDK9 may play roles in A.cerana cerana resistance to oxidative stress caused by external stimuli, potentially revealing a new mechanism of the honeybee response to oxidative stress.
Collapse
Affiliation(s)
- Hongyan Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
2
|
Functionally active cyclin-dependent kinase 9 is essential for porcine reproductive and respiratory syndrome virus subgenomic RNA synthesis. Mol Immunol 2021; 135:351-364. [PMID: 33990004 DOI: 10.1016/j.molimm.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a key regulator of RNA-polymerase II and a candidate therapeutic target for various virus infections such as respiratory syncytial virus, herpes simplex virus, human adenovirus, human cytomegalovirus, hepatitis virus B, and human papillomavirus. We employed CDK9-IN-1, a selective CDK9 inhibitor, to investigate the role of CDK9 in porcine reproductive and respiratory syndrome virus (PRRSV) infection. CDK9-IN-1 dose-dependently reduced PRRSV replication without cytotoxicity in the infected cells. The antiviral activity of CDK9-IN-1 was further confirmed by evaluating the effects of lentivirus-mediated CDK9 knockdown or CDK9 overexpression on PRRSV infection. Briefly, the depletion of CDK9 significantly inhibited viral replication, while the overexpression of CDK9 promoted viral replication. PRRSV infection also enhanced the nuclear export of CDK9 without affecting CDK9 protein expression. Viral replication cycle analyses further revealed that functionally active CDK9 in the cytosol advanced viral subgenomic RNA synthesis. Collectively, our data illustrated that CDK9 was a new host factor that was involved in PRRSV subgenomic RNA synthesis, and CDK9 inhibitor, CDK9-IN-1 was a promising antiviral candidate for PRRSV infection.
Collapse
|
3
|
Chen J, Wang YK, Gao Y, Hu LS, Yang JW, Wang JR, Sun WJ, Liang ZQ, Cao YM, Cao YB. Protection against COVID-19 injury by qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming. Biomed Pharmacother 2020; 129:110281. [PMID: 32554251 PMCID: PMC7247521 DOI: 10.1016/j.biopha.2020.110281] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 01/08/2023] Open
Abstract
A novel FUNP analysis on QFPD function. QFPD act on COVID-19 via anti-viral, anti-inflammatory and metabolic programming. 9 QFPD ingredients presented good molecular docking score for 2019-nCov. SGMH, MXSG and Others are the top 3 efficient formula for COVID-19.
Qingfei Paidu decoction (QFPD), a multi-component herbal formula, has been widely used to treat COVID-19 in China. However, its active compounds and mechanisms of action are still unknown. Firstly, we divided QFPD into five functional units (FUs) according to the compatibility theory of traditional Chinese medicine. The corresponding common targets of the five FUs were all significantly enriched in Go Ontology (oxidoreductase activity, lipid metabolic process, homeostatic process, etc.), KEGG pathways (steroid biosynthesis, PPAR signaling pathway, adipocytokine signaling pathway, etc.), TTD diseases (chronic inflammatory diseases, asthma, chronic obstructive pulmonary Disease, etc.), miRNA (MIR183), kinase (CDK7) and TF (LXR). QFPD contained 257 specific targets in addition to HCoV, pneumonia and ACE2 co-expression proteins. Then, network topology analysis of the five components-target-pathway-disease networks yielded 67 active ingredients. In addition, ADMET estimations showed that 20 compounds passed the stringent lead-like criteria and in silico drug-likeness test with high gastrointestinal absorption and the median lethal dose (LD50 > 1600 mg/kg). Moreover, 4 specific ingredients (M3, S1, X2 and O2) and 5 common ingredients (MS1, MX16, SX1, WO1 and XO1) of QFPD presented good molecular docking score for 2019-nCov structure and non-structure proteins. Finally, drug perturbation of COVID-19 network robustness showed that all five FUs may protect COVID-19 independently, and target 8 specifically expressed drug-attacked nodes which were related to the bacterial and viral responses, immune system, signaling transduction, etc. In conclusion, our new FUNP analysis showed that QFPD had a protection effect on COVID-19 by regulating a complex molecular network with safety and efficacy. Part of the mechanism was associated with the regulation of anti-viral, anti-inflammatory activity and metabolic programming.
Collapse
Affiliation(s)
- Jian Chen
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Yong-Kui Wang
- The Department of Orthopaedics, the first affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuan Gao
- Traditional Chinese Recovery and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou 310053, China
| | - Ling-San Hu
- Bao an Hospital of Traditional Chinese Medicine, Shenzhen 518133, China
| | - Jiang-Wei Yang
- Mental Health Center, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Jian-Ru Wang
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 China
| | - Wen-Jie Sun
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zhi-Qiang Liang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| | - Ye-Min Cao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, China.
| | - Yong-Bing Cao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China; Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, China.
| |
Collapse
|
4
|
Temporal Proteomic Analysis of BK Polyomavirus Infection Reveals Virus-Induced G 2 Arrest and Highly Effective Evasion of Innate Immune Sensing. J Virol 2019; 93:JVI.00595-19. [PMID: 31142673 PMCID: PMC6675895 DOI: 10.1128/jvi.00595-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022] Open
Abstract
BK polyomavirus (BKPyV) is a small DNA virus that establishes a life-long persistent infection in the urinary tract of most people. BKPyV is known to cause severe morbidity in renal transplant recipients and can lead to graft rejection. The simple 5.2-kbp double-stranded DNA (dsDNA) genome expresses just seven known proteins; thus, it relies heavily on the host machinery to replicate. How the host proteome changes over the course of infection is key to understanding this host-virus interplay. Here, for the first time quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cells throughout 72 h of BKPyV infection. These data demonstrate the importance of cell cycle progression and pseudo-G2 arrest in effective BKPyV replication, along with a surprising lack of an innate immune response throughout the whole virus replication cycle. BKPyV thus evades pathogen recognition to prevent activation of innate immune responses in a sophisticated manner.IMPORTANCE BK polyomavirus can cause serious problems in immune-suppressed patients, in particular, kidney transplant recipients who can develop polyomavirus-associated kidney disease. In this work, we have used advanced proteomics techniques to determine the changes to protein expression caused by infection of two independent primary cell types of the human urinary tract (kidney and bladder) throughout the replication cycle of this virus. Our findings have uncovered new details of a specific form of cell cycle arrest caused by this virus, and, importantly, we have identified that this virus has a remarkable ability to evade detection by host cell defense systems. In addition, our data provide an important resource for the future study of kidney epithelial cells and their infection by urinary tract pathogens.
Collapse
|
5
|
Cyclin-dependent kinase activity is required for type I interferon production. Proc Natl Acad Sci U S A 2018; 115:E2950-E2959. [PMID: 29507205 DOI: 10.1073/pnas.1720431115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recognition of nucleic acids results in the production of type I IFNs, which activate the JAK/STAT pathway and promote the expression of IFN-stimulated genes. In a search for modulators of this pathway, we discovered an unexpected requirement for cyclin-dependent kinases (CDK) in the production of type I IFN following nucleic acid sensing and virus infection. Inhibition of CDK activity or knockdown of CDK levels leads to a striking block in STAT activation and IFN-stimulated gene expression. CDKs are not required for the initial nucleic acid sensing leading to IFN-β mRNA induction, nor for the response to exogenous IFN-α/β, but are critical for IFN-β release into culture supernatants, suggesting a posttranscriptional role for CDKs in type I IFN production. In the absence of CDK activity, we demonstrate a translational block specific for IFN-β, in which IFN-β mRNA is removed from the actively translating polysomes, while the distribution of other cellular mRNAs or global translation rates are unaffected. Our findings reveal a critical role for CDKs in the translation of IFN-β.
Collapse
|
6
|
Li N, Li Y, Zheng C, Huang J, Zhang S. Genome-wide comparative analysis of the codon usage patterns in plants. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0417-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Hofman J, Kučera R, Neumanova Z, Klimes J, Ceckova M, Staud F. Placental passage of olomoucine II, but not purvalanol A, is affected by p-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2) and multidrug resistance-associated proteins (ABCCs). Xenobiotica 2015; 46:416-23. [PMID: 26364927 DOI: 10.3109/00498254.2015.1086039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Purine cyclin-dependent kinase inhibitors have recently been recognised as promising candidates for the treatment of various cancers. While pharmacodynamic properties of these compounds are relatively well understood, their pharmacokinetics including possible interactions with placental transport systems have not been characterised to date. 2. In this study, we investigated transplacental passage of olomoucine II and purvalanol A in rat focusing on possible role of p-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2) and/or multidrug resistance-associated proteins (ABCCs). Employing the in situ method of dually perfused rat term placenta, we demonstrate transplacental passage of both olomoucine II and purvalanol A against the concentration gradient in foetus-to-mother direction. Using several ATP-binding cassette (ABC) drug transporter inhibitors, we confirm the participation of ABCB1, ABCG2 and ABCCs transporters in the placental passage of olomoucine II, but not purvalanol A. 3. Transplacental passage of olomoucine II and purvalanol A from mother to foetus is significantly reduced by active transporters, restricting thereby foetal exposure and providing protection against harmful effects of these xenobiotics. Importantly, we demonstrate that in spite of their considerable structural similarity, the two molecules utilise distinct placental transport systems. These facts should be kept in mind when introducing these prospective anticancer candidates and/or their analogues into the clinical area.
Collapse
Affiliation(s)
| | - Radim Kučera
- b Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove , Charles University in Prague , Hradec Kralove , Czech Republic
| | | | - Jiri Klimes
- b Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove , Charles University in Prague , Hradec Kralove , Czech Republic
| | | | | |
Collapse
|
8
|
Dong Y, Kuang Q, Dai X, Li R, Wu Y, Leng W, Li Y, Li M. Improving the Understanding of Pathogenesis of Human Papillomavirus 16 via Mapping Protein-Protein Interaction Network. BIOMED RESEARCH INTERNATIONAL 2015; 2015:890381. [PMID: 25961044 PMCID: PMC4414230 DOI: 10.1155/2015/890381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 01/09/2023]
Abstract
The human papillomavirus 16 (HPV16) has high risk to lead various cancers and afflictions, especially, the cervical cancer. Therefore, investigating the pathogenesis of HPV16 is very important for public health. Protein-protein interaction (PPI) network between HPV16 and human was used as a measure to improve our understanding of its pathogenesis. By adopting sequence and topological features, a support vector machine (SVM) model was built to predict new interactions between HPV16 and human proteins. All interactions were comprehensively investigated and analyzed. The analysis indicated that HPV16 enlarged its scope of influence by interacting with human proteins as much as possible. These interactions alter a broad array of cell cycle progression. Furthermore, not only was HPV16 highly prone to interact with hub proteins and bottleneck proteins, but also it could effectively affect a breadth of signaling pathways. In addition, we found that the HPV16 evolved into high carcinogenicity on the condition that its own reproduction had been ensured. Meanwhile, this work will contribute to providing potential new targets for antiviral therapeutics and help experimental research in the future.
Collapse
Affiliation(s)
- Yongcheng Dong
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qifan Kuang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xu Dai
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Rong Li
- College of Computer Science, Sichuan University, Chengdu 610064, China
| | - Yiming Wu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weijia Leng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yizhou Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Ho HP, Rathod P, Louis M, Tada CK, Rahaman S, Mark KJ, Leng J, Dana D, Kumar S, Lichterfeld M, Chang EJ. Studies on quantitative phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry without label, chromatography or calibration curves. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2681-9. [PMID: 25380489 PMCID: PMC4225566 DOI: 10.1002/rcm.7063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 05/12/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry combined with isotope labeling methods are effective for protein and peptide quantification, but limited in their multiplexing capacity, cost-effectiveness and dynamic range. This study investigates MALDI-MS-based quantification of peptide phosphorylation without labeling, and aims to overcome the shot-to-shot variability of MALDI using a mathematical transformation and extended data acquisition times. METHODS A linear relationship between the reciprocal of phosphopeptide mole fraction and the reciprocal of phosphorylated-to-unphosphorylated signal ratio is derived, and evaluated experimentally using three separate phosphopeptide systems containing phosphorylated serine, threonine and tyrosine residues: mixtures of phosphopeptide and its des-phospho-analog with known stoichiometry measured by vacuum MALDI-linear ion trap mass spectrometry and fit to the linear model. The model is validated for quantifying in vitro phosphorylation assays with inhibition studies on Cdk2/cyclinA. RESULTS Dynamic range of picomoles to femtomoles, good accuracy (deviations of 1.5-3.0% from expected values) and reproducibility (relative standard deviation (RSD) = 4.3-6.3%) are achieved. Inhibition of cyclin-dependent kinase phosphorylation by the classical inhibitors olomoucine and r-roscovitine was evaluated and IC50 values found to be in agreement with reported literature values. These results, achieved with single-point calibration, without isotope or chromatography, compare favorably to those arrived at using isotope dilution (p > 0.5 for accuracy). CONCLUSIONS The mathematical relationship derived here can be applied to a method that we term Double Reciprocal Isotope-free Phosphopeptide Quantification (DRIP-Q), as a strategy for quantification of in vitro phosphorylation assays, the first MALDI-based, isotope- and calibration curve-free method of its type. These results also pave the way for further systematic studies investigating the effect of peptide composition and experimental conditions on quantitative, label-free MALDI.
Collapse
Affiliation(s)
- Hsin-Pin Ho
- Department of Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
- Department of Chemistry, York College, The City University of New York, Jamaica, NY, USA
| | - Pratikkumar Rathod
- Department of Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
- Department of Chemistry, York College, The City University of New York, Jamaica, NY, USA
| | - Marissa Louis
- Department of Chemistry, York College, The City University of New York, Jamaica, NY, USA
| | - Christine K. Tada
- Department of Chemistry, York College, The City University of New York, Jamaica, NY, USA
| | - Sherida Rahaman
- Department of Chemistry, York College, The City University of New York, Jamaica, NY, USA
| | - Kevin J. Mark
- Department of Chemistry, York College, The City University of New York, Jamaica, NY, USA
- Department of Natural Sciences, LaGuardia Community College, The City University of New York, Long Island City, NY, USA
| | - Jin Leng
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA and Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA
| | - Dibyendu Dana
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Queens, NY USA
| | - Sanjai Kumar
- Department of Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Queens, NY USA
- Department of Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA and Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA
| | - Emmanuel J. Chang
- Department of Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
- Department of Chemistry, York College, The City University of New York, Jamaica, NY, USA
- Department of Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA
- Address reprint requests to Emmanuel Chang; York College, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11451, 718-262-3778 (phone), 718-262-2652 (fax),
| |
Collapse
|