1
|
Jin X, Li X, Teixeira da Silva JA, Liu X. Functions and mechanisms of non-histone protein acetylation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2087-2101. [PMID: 39136630 DOI: 10.1111/jipb.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.
Collapse
Affiliation(s)
- Xia Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | | | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
2
|
Hauserman MR, Sullivan LE, James KL, Ferraro MJ, Rice KC. Response of Staphylococcus aureus physiology and Agr quorum sensing to low-shear modeled microgravity. J Bacteriol 2024; 206:e0027224. [PMID: 39120147 PMCID: PMC11411946 DOI: 10.1128/jb.00272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Staphylococcus aureus is commonly isolated from astronauts returning from spaceflight. Previous analysis of omics data from S. aureus low Earth orbit cultures indicated significantly increased expression of the Agr quorum sensing system and its downstream targets in spaceflight samples compared to ground controls. In this current study, the rotary cell culture system (RCCS) was used to investigate the effect of low-shear modeled microgravity (LSMMG) on S. aureus physiology and Agr activity. When cultured in the same growth medium and temperature as the previous spaceflight experiment, S. aureus LSMMG cultures exhibited decreased agr expression and altered growth compared to normal gravity control cultures, which are typically oriented with oxygenation membrane on the bottom of the high aspect rotating vessel (HARV). When S. aureus was grown in an inverted gravity control orientation (oxygenation membrane on top of the HARV), reduced Agr activity was observed relative to both traditional control and LSMMG cultures, signifying that oxygen availability may affect the observed differences in Agr activity. Metabolite assays revealed increased lactate and decreased acetate excretion in both LSMMG and inverted control cultures. Secretomics analysis of LSMMG, control, and inverted control HARV culture supernatants corroborated these results, with inverted and LSMMG cultures exhibiting a decreased abundance of Agr-regulated virulence factors and an increased abundance of proteins expressed in low-oxygen conditions. Collectively, these studies suggest that the orientation of the HARV oxygenation membrane can affect S. aureus physiology and Agr quorum sensing in the RCCS, a variable that should be considered when interpreting data using this ground-based microgravity model.IMPORTANCES. aureus is commonly isolated from astronauts returning from spaceflight and from surfaces within human-inhabited closed environments such as spacecraft. Astronaut health and immune function are significantly altered in spaceflight. Therefore, elucidating the effects of microgravity on S. aureus physiology is critical for assessing its pathogenic potential during long-term human space habitation. These results also highlight the necessity of eliminating potential confounding factors when comparing simulated microgravity model data with actual spaceflight experiments.
Collapse
Affiliation(s)
- Matthew R Hauserman
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Leia E Sullivan
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kimberly L James
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Mariola J Ferraro
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Gong F, Yu W, Cao K, Xu H, Zhou X. RcTRP5 Transcription Factor Mediates the Molecular Mechanism of Lignin Biosynthesis Regulation in R. chrysanthum against UV-B Stress. Int J Mol Sci 2024; 25:9205. [PMID: 39273154 PMCID: PMC11395560 DOI: 10.3390/ijms25179205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
UV-B stress destroys the photosynthetic system of Rhododendron chrysanthum Pall. (R. chrysanthum), as manifested by the decrease of photosynthetic efficiency and membrane fluidity, and also promotes the accumulation of lignin. The MYB (v-myb avian myeloblastosis viral oncogene homolog) family of transcription factors can be involved in the response to UV-B stress through the regulation of lignin biosynthesis. This study indicated that both the donor and recipient sides of the R. chrysanthum were significantly damaged based on physiological index measurements made using OJIP curves under UV-B stress. The analysis of bioinformatics data revealed that the RcTRP5 transcription factor exhibits upregulation of acetylation at the K68 site, directly regulating the biosynthesis of lignin. Additionally, there was upregulation of the K43 site and downregulation of the K83 site of the CAD enzyme, as well as upregulation of the K391 site of the PAL enzyme. Based on these findings, we conjectured that the RcTRP5 transcription factor facilitates acetylation modification of both enzymes, thereby indirectly influencing the biosynthesis of lignin. This study demonstrated that lignin accumulation can alleviate the damage caused by UV-B stress to R. chrysanthum, which provides relevant ideas for improving lignin content in plants, and also provides a reference for the study of the metabolic regulation mechanism of other secondary substances.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (K.C.)
| |
Collapse
|
4
|
Zhang X, Lu M, An H. Lysine acetylproteome analysis reveals the lysine acetylation in developing fruit and a key acetylated protein involved in sucrose accumulation in Rosa roxburghii Tratt. J Proteomics 2024; 305:105248. [PMID: 38964538 DOI: 10.1016/j.jprot.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Lysine acetylation is a common post-translational modification of proteins in plants. Rosa roxburghii Tratt. is an economically important fruit tree known for its high nutritional value. However, the characteristics of acetylome-related proteins during fruit development in this crop remain unknown. This study aimed to explore the global acetylproteome of R. roxburghii fruit to identify key lysine-acetylated proteins associated with its quality traits. A total of 4280 acetylated proteins were identified, among them, 981 proteins exhibited differential acetylation (DA) while 19 proteins showed increased acetylation level consistently on individual sites. Functional classification revealed that these DA proteins were primarily associated with central metabolic pathways, carbohydrate metabolism, terpenoids and polyketides metabolism, lipid metabolism, and amino acid metabolism, highlighting the importance of lysine acetylation in fruit quality formation. Notably, the most significant up-regulated acetylation occurred in sucrose synthase (SuS1), a key enzyme in sucrose biosynthesis. Enzyme assays, RNA-seq and proteome analysis indicated that SuS activity, which was independent of its transcriptome and proteome level, may be enhanced by up-acetylation, ultimately increasing sucrose accumulation. Thus, these findings offer a better understanding of the global acetylproteome of R. roxburghii fruit, while also uncover a novel mechanism of acetylated SuS-mediated in sucrose metabolism in plant. SIGNIFICANCE: Rosa roxburghii Tratt. is an important horticultural crop whose commercial value is closely linked to its fruit quality. Acetylation modification is a post-translational mechanism observed in plants, which regulates the physiological functions and metabolic fluxes involved in various biological processes. The regulatory mechanism of lysine acetylation in the fruit quality formation in perennial woody plants has not been fully elucidated, while most of the research has primarily focused on annual crops. Therefore, this study, for the first time, uses Rosaceae fruits as the research material to elucidate the regulatory role of lysine-acetylated proteins in fruit development, identify key metabolic processes influencing fruit quality formation, and provide valuable insights for cultivation strategies.
Collapse
Affiliation(s)
- Xue Zhang
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Min Lu
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Huaming An
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Liu M, Gong F, Yu W, Cao K, Xu H, Zhou X. The Rhododendron Chrysanthum Pall.s' Acetylation Modification of Rubisco Enzymes Controls Carbon Cycling to Withstand UV-B Stress. Biomolecules 2024; 14:732. [PMID: 38927135 PMCID: PMC11201758 DOI: 10.3390/biom14060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Lysine acetylation of proteins plays a critical regulatory function in plants. A few advances have been made in the study of plant acetylproteome. However, until now, there have been few data on Rhododendron chrysanthum Pall. (R. chrysanthum). We analyzed the molecular mechanisms of photosynthesis and stress resistance in R. chrysanthum under UV-B stress. We measured chlorophyll fluorescence parameters of R. chrysanthum under UV-B stress and performed a multi-omics analysis. Based on the determination of chlorophyll fluorescence parameters, R. chrysanthum Y(NO) (Quantum yield of non-photochemical quenching) increased under UV-B stress, indicating that the plant was damaged and photosynthesis decreased. In the analysis of acetylated proteomics data, acetylated proteins were found to be involved in a variety of biological processes. Notably, acetylated proteins were significantly enriched in the pathways of photosynthesis and carbon fixation, suggesting that lysine acetylation modifications have an important role in these activities. Our findings suggest that R. chrysanthum has decreased photosynthesis and impaired photosystems under UV-B stress, but NPQ shows that plants are resistant to UV-B. Acetylation proteomics revealed that up- or down-regulation of acetylation modification levels alters protein expression. Acetylation modification of key enzymes of the Calvin cycle (Rubisco, GAPDH) regulates protein expression, making Rubisco and GAPDH proteins expressed as significantly different proteins, which in turn affects the carbon fixation capacity of R. chrysanthum. Thus, Rubisco and GAPDH are significantly differentially expressed after acetylation modification, which affects the carbon fixation capacity and thus makes the plant resistant to UV-B stress. Lysine acetylation modification affects biological processes by regulating the expression of key enzymes in photosynthesis and carbon fixation, making plants resistant to UV-B stress.
Collapse
Affiliation(s)
| | | | | | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
6
|
Hauserman MR, Ferraro MJ, Carroll RK, Rice KC. Altered quorum sensing and physiology of Staphylococcus aureus during spaceflight detected by multi-omics data analysis. NPJ Microgravity 2024; 10:2. [PMID: 38191486 PMCID: PMC10774393 DOI: 10.1038/s41526-023-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Staphylococcus aureus colonizes the nares of approximately 30% of humans, a risk factor for opportunistic infections. To gain insight into S. aureus virulence potential in the spaceflight environment, we analyzed RNA-Seq, cellular proteomics, and metabolomics data from the "Biological Research in Canisters-23" (BRIC-23) GeneLab spaceflight experiment, a mission designed to measure the response of S. aureus to growth in low earth orbit on the international space station. This experiment used Biological Research in Canisters-Petri Dish Fixation Units (BRIC-PDFUs) to grow asynchronous ground control and spaceflight cultures of S. aureus for 48 h. RNAIII, the effector of the Accessory Gene Regulator (Agr) quorum sensing system, was the most highly upregulated gene transcript in spaceflight relative to ground controls. The agr operon gene transcripts were also highly upregulated during spaceflight, followed by genes encoding phenol-soluble modulins and secreted proteases, which are positively regulated by Agr. Upregulated spaceflight genes/proteins also had functions related to urease activity, type VII-like Ess secretion, and copper transport. We also performed secretome analysis of BRIC-23 culture supernatants, which revealed that spaceflight samples had increased abundance of secreted virulence factors, including Agr-regulated proteases (SspA, SspB), staphylococcal nuclease (Nuc), and EsxA (secreted by the Ess system). These data also indicated that S. aureus metabolism is altered in spaceflight conditions relative to the ground controls. Collectively, these data suggest that S. aureus experiences increased quorum sensing and altered expression of virulence factors in response to the spaceflight environment that may impact its pathogenic potential.
Collapse
Affiliation(s)
- Matthew R Hauserman
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA
| | - Mariola J Ferraro
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Zhu J, Guo W, Lan Y. Global Analysis of Lysine Lactylation of Germinated Seeds in Wheat. Int J Mol Sci 2023; 24:16195. [PMID: 38003390 PMCID: PMC10671351 DOI: 10.3390/ijms242216195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein lactylation is a newly discovered posttranslational modification (PTM) and is involved in multiple biological processes, both in mammalian cells and rice grains. However, the function of lysine lactylation remains unexplored in wheat. In this study, we performed the first comparative proteomes and lysine lactylomes during seed germination of wheat. In total, 8000 proteins and 927 lactylated sites in 394 proteins were identified at 0 and 12 h after imbibition (HAI). Functional enrichment analysis showed that glycolysis- and TCA-cycle-related proteins were significantly enriched, and more differentially lactylated proteins were enriched in up-regulated lactylated proteins at 12 HAI vs. 0 HAI through the KEGG pathway and protein domain enrichment analysis compared to down-regulated lactylated proteins. Meanwhile, ten particularly preferred amino acids near lactylation sites were found in the embryos of germinated seeds: AA*KlaT, A***KlaD********A, KlaA**T****K, K******A*Kla, K*Kla********K, KlaA******A, Kla*A, KD****Kla, K********Kla and KlaG. These results supplied a comprehensive profile of lysine lactylation of wheat and indicated that protein lysine lactylation played important functions in several biological processes.
Collapse
Affiliation(s)
- Junke Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| | - Weiwei Guo
- College of Agronomy, Qingdao Agricultural University/Shandong Key Laboratory of Dryland Farming Technology/Shandong Engineering Research Center of Germplasm, Innovation and Utilization of Salt-Tolerant Crops, Qingdao 266109, China
| | - Yubin Lan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
- National Sub-Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Shandong University of Technology, Zibo 255000, China
- Academy of Ecological Unmanned Farm, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
8
|
Liu M, Lin X, Cao K, Yang L, Xu H, Zhou X. Multi-Omic Analysis Reveals the Molecular Mechanism of UV-B Stress Resistance in Acetylated RcMYB44 in Rhododendron chrysanthum. Genes (Basel) 2023; 14:2022. [PMID: 38002965 PMCID: PMC10671296 DOI: 10.3390/genes14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ultraviolet-B (UV-B) radiation is a significant environmental factor influencing the growth and development of plants. MYBs play an essential role in the processes of plant responses to abiotic stresses. In the last few years, the development of transcriptome and acetylated proteome technologies have resulted in further and more reliable data for understanding the UV-B response mechanism in plants. In this research, the transcriptome and acetylated proteome were used to analyze Rhododendron chrysanthum Pall. (R. chrysanthum) leaves under UV-B stress. In total, 2348 differentially expressed genes (DEGs) and 685 differentially expressed acetylated proteins (DAPs) were found. The transcriptome analysis revealed 232 MYB TFs; we analyzed the transcriptome together with the acetylated proteome, and screened 4 MYB TFs. Among them, only RcMYB44 had a complete MYB structural domain. To investigate the role of RcMYB44 under UV-B stress, a homology tree was constructed between RcMYB44 and Arabidopsis MYBs, and it was determined that RcMYB44 shares the same function with ATMYB44. We further constructed the hormone signaling pathway involved in RcMYB44, revealing the molecular mechanism of resistance to UV-B stress in R. chrysanthum. Finally, by comparing the transcriptome and the proteome, it was found that the expression levels of proteins and genes were inconsistent, which is related to post-translational modifications of proteins. In conclusion, RcMYB44 of R. chrysanthum is involved in mediating the growth hormone, salicylic acid, jasmonic acid, and abscisic acid signaling pathways to resist UV-B stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (H.X.)
| |
Collapse
|
9
|
Zhang X, Lai C, Xu L, Guan Q, Zhang S, Chen Y, Zhang Z, Chen Y, Lai Z, Lin Y. Integrated proteome and acetylome analyses provide novel insights into early somatic embryogenesis of Dimocarpus longan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:903-916. [PMID: 36878164 DOI: 10.1016/j.plaphy.2023.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Longan (Dimocarpus longan) is a precious subtropical fruit with high nutritional value. The somatic embryogenesis (SE) affects the quality and yield of fruit. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. Thus, understanding the molecular basis of embryogenesis in longan will help to develop strategies for mass production of quality planting material. Lysine acetylation (Kac) plays an important role in diverse cellular processes, but limited knowledge is available regarding acetylation modifications in plant early SE. In this study, the proteome and acetylome of longan embryogenic callus (ECs) and globular embryos (GEs) were investigated. In total, 7232 proteins and 14,597 Kac sites were identified, and this resulted in the discovery of 1178 differentially expressed proteins and 669 differentially expressed acetylated proteins. KEGG and GO analysis showed that glucose metabolism, carbon metabolism, fatty acid degradation, and oxidative phosphorylation pathways were influenced by Kac modification. Furthermore, sodium butyrate (Sb, a deacetylase inhibitor) led to reduced the proliferation and delayed the differentiation of ECs by regulating the homeostasis of reactive oxygen species (ROS) andindole-3-acetic acid (IAA). Our study provides a comprehensive proteomic and acetylomic analysis to aid in understanding the molecular mechanisms involved in early SE, representing a potential tool for genetic improvement of longan.
Collapse
Affiliation(s)
- Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luzhen Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Cheng Y, Ning K, Chen Y, Hou C, Yu H, Yu H, Chen S, Guo X, Dong L. Identification of histone acetyltransferase genes responsible for cannabinoid synthesis in hemp. Chin Med 2023; 18:16. [PMID: 36782242 PMCID: PMC9926835 DOI: 10.1186/s13020-023-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Histone acetyltransferases (HATs) play an important role in plant growth and development, stress response, and regulation of secondary metabolite biosynthesis. Hemp (Cannabis sativa L.) is famous for its high industrial, nutritional, and medicinal value. It contains non-psychoactive cannabinoid cannabidiol (CBD) and cannabinol (CBG), which play important roles as anti-inflammatory and anti-anxiety. At present, the involvement of HATs in the regulation of cannabinoid CBD and CBG synthesis has not been clarified. METHODS The members of HAT genes family in hemp were systematically analyzed by bioinformatics analysis. In addition, the expression level of HATs and the level of histone acetylation modification were analyzed based on transcriptome data and protein modification data. Real-time quantitative PCR was used to verify the changes in gene expression levels after inhibitor treatment. The changes of CBD and CBG contents after inhibitor treatment were verified by HPLC-MS analysis. RESULTS Here, 11 HAT genes were identified in the hemp genome. Phylogenetic analysis showed that hemp HAT family genes can be divided into six groups. Cannabinoid synthesis genes exhibited spatiotemporal specificity, and histones were acetylated in different inflorescence developmental stages. The expression of cannabinoid synthesis genes was inhibited and the content of CBD and CBG declined by 10% to 55% in the samples treated by HAT inhibitor (PU139). Results indicated that CsHAT genes may regulate cannabinoid synthesis through altering histone acetylation. CONCLUSIONS Our study provides genetic information of HATs responsible for cannabinoid synthesis, and offers a new approach for increasing the content of cannabinoid in hemp.
Collapse
Affiliation(s)
- Yufei Cheng
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China ,grid.443651.10000 0000 9456 5774College of Agronomy, Ludong University, Yantai, 264000 China
| | - Kang Ning
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yongzhong Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Cong Hou
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Haibin Yu
- Yunnan Hemp Industrial Investment CO.LTD, Kunming, 650217 China
| | - Huatao Yu
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Xiaotong Guo
- College of Agronomy, Ludong University, Yantai, 264000, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
11
|
Li BB, Zhang W, Wei S, Lv YY, Shang JX, Hu YS. Comprehensive proteome and lysine acetylome analysis after artificial aging reveals the key acetylated proteins involved in wheat seed oxidative stress response and energy production. J Food Biochem 2022; 46:e14495. [PMID: 36322387 DOI: 10.1111/jfbc.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Lysine acetylation is a common post-translational modification of proteins within all organisms. However, quantitative acetylome characterization in wheat seed during aging in storage has not been reported. This study reports the first large-scale acetylome analysis of wheat seeds after artificial aging treatment, using the quantitative proteomic approach. In total, 11,002 acetylation sites, corresponding to 4262 acetylated proteins were identified, of which 1207 acetylated sites, representing 783 acetylated proteins, were significantly more or less acetylated after artificial aging. Functional analysis demonstrated that the majority of the acetylated proteins are closely involved with cellular and metabolic functions. In particular, key enzymes in the oxidative stress response and energy metabolism were significantly differentially acetylated and appear to be heavily involved in wheat seed aging. The acetylome analysis was verified by quantitative real-time PCR and enzyme activity determination. Lysine-acetylation results in a weaker oxidative stress response and lower energy production efficiency, resulting in the apoptosis of wheat seed cells, insufficient energy supply at the germination stage, and consequently, marked loss of seed vigor. PRACTICAL APPLICATIONS: It is known that the loss of protein function is an important reason for the decrease of seed vigor. Therefore, the change of protein function in the process of wheat seed aging was studied by proteome and lysine acetylome analysis technology. The results showed that the oxidation-reduction imbalance and the decrease of energy production efficiency of seeds were the important reasons for the decrease of their vigor. This will provide a new idea for green and safe storage of grain.
Collapse
Affiliation(s)
- Bang-Bang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Wei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yang-Yong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ji-Xu Shang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
12
|
Liang L, Xie A, Yang H, Li N, Ma P, Wei S, Zhang S, Lv Y, Hu Y. Quantitative Acetylome Analysis of Soft Wheat Seeds during Artificial Ageing. Foods 2022; 11:foods11223611. [PMID: 36429203 PMCID: PMC9689531 DOI: 10.3390/foods11223611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Lysine acetylation (Kac) is a protein post-translational modification (PTM) widely found in plants that plays vital roles in metabolic pathways. Although seed germination and development are regulated by Kac, its potential function in seed ageing remains to be investigated. Our preliminary study demonstrated that Kac levels were altered during wheat seed artificial ageing. However, its specific role in this process still needs to be elucidated. Here, we performed quantitative acetylation proteomics analysis of soft wheat seeds with different germination rates during artificial ageing. A total of 175 acetylation proteins and 255 acetylation modification sites were remarkably changed. The differentially acetylated proteins were enriched in metabolism; response to harsh intracellular environment, such as ROS; protein storage and processing. Notably, expression, point mutation to mimic Kac by K to Q mutation at K80 and K138, protein purification and enzyme activity detection revealed that the Kac of ROS-scavenging glutathione transferase attenuated its activity, indicating that the defense ability of wheat seeds to stress gradually diminished, and the ageing process was inevitable. Collectively, our data provide a basis for further understanding the roles of Kac in seed ageing and might aid in the development of new techniques to prolong seed viability and food quality.
Collapse
Affiliation(s)
- Liuke Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Aowen Xie
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haojie Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Na Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ping’an Ma
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence:
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
13
|
Zhang B, Chen Z, Sun Q, Liu J. Proteome-wide analyses reveal diverse functions of protein acetylation and succinylation modifications in fast growing stolons of bermudagrass (Cynodon dactylon L.). BMC PLANT BIOLOGY 2022; 22:503. [PMID: 36289454 PMCID: PMC9608919 DOI: 10.1186/s12870-022-03885-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bermudagrass (Cynodon dactylon L.) is an important warm-season turfgrass species with well-developed stolons, which lay the foundation for the fast propagation of bermudagrass plants through asexual clonal growth. However, the growth and development of bermudagrass stolons are still poorly understood at the molecular level. RESULTS In this study, we comprehensively analyzed the acetylation and succinylation modifications of proteins in fast-growing stolons of the bermudagrass cultivar Yangjiang. A total of 4657 lysine acetylation sites on 1914 proteins and 226 lysine succinylation sites on 128 proteins were successfully identified using liquid chromatography coupled to tandem mass spectrometry, respectively. Furthermore, 78 proteins and 81 lysine sites were found to be both acetylated and succinylated. Functional enrichment analysis revealed that acetylated proteins regulate diverse reactions of carbohydrate metabolism and protein turnover, whereas succinylated proteins mainly regulate the citrate cycle. These results partly explained the different growth disturbances of bermudagrass stolons under treatment with sodium butyrate and sodium malonate, which interfere with protein acetylation and succinylation, respectively. Moreover, 140 acetylated proteins and 42 succinylated proteins were further characterized having similarly modified orthologs in other grass species. Site-specific mutations combined with enzymatic activity assays indicated that the conserved acetylation of catalase and succinylation of malate dehydrogenase both inhibited their activities, further implying important regulatory roles of the two modifications. CONCLUSION In summary, our study implied that lysine acetylation and succinylation of proteins possibly play important regulatory roles in the fast growth of bermudagrass stolons. The results not only provide new insights into clonal growth of bermudagrass but also offer a rich resource for functional analyses of protein lysine acetylation and succinylation in plants.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Zhuoting Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qixue Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
14
|
Song L, Zhan H, Wang Y, Lin Z, Li B, Shen L, Jiao Y, Li Y, Wang F, Yang J. Cross-Talk of Protein Expression and Lysine Acetylation in Response to TMV Infection in Nicotiana benthamiana. ACS OMEGA 2022; 7:32496-32511. [PMID: 36120045 PMCID: PMC9475610 DOI: 10.1021/acsomega.2c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Lysine acetylation (Kac), a reversible PTM, plays an essential role in various biological processes, including those involving metabolic pathways, pathogen resistance, and transcription, in both prokaryotes and eukaryotes. TMV, the major factor that causes the poor quality of Solanaceae crops worldwide, directly alters many metabolic processes in tobacco. However, the extent and function of Kac during TMV infection have not been determined. The validation test to detect Kac level and viral expression after TMV infection and Nicotinamide (NAM) treatment clarified that acetylation was involved in TMV infection. Furthermore, we comprehensively analyzed the changes in the proteome and acetylome of TMV-infected tobacco (Nicotiana benthamiana) seedlings via LC-MS/MS in conjunction with highly sensitive immune-affinity purification. In total, 2082 lysine-acetylated sites on 1319 proteins differentially expressed in response to TMV infection were identified. Extensive bioinformatic studies disclosed changes in acetylation of proteins engaged in cellular metabolism and biological processes. The vital influence of Kac in fatty acid degradation and alpha-linolenic acid metabolism was also revealed in TMV-infected seedlings. This study first revealed Kac information in N. benthamiana under TMV infection and expanded upon the existing landscape of acetylation in pathogen infection.
Collapse
Affiliation(s)
- Liyun Song
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Huaixu Zhan
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate
School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujie Wang
- Luoyang
Branch of Henan Tobacco Company, Luoyang 471000, China
| | - Zhonglong Lin
- Yunnan
Tobacco Company of the China National Tobacco Corporation, Kunming 650011, China
| | - Bin Li
- Sichuan
Tobacco Company, Chengdu 610017, China
| | - Lili Shen
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yubing Jiao
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Li
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fenglong Wang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jinguang Yang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
15
|
Yang W, Li X, Jiang G, Long Y, Li H, Yu S, Zhao H, Liu J. Crotonylation versus acetylation in petunia corollas with reduced acetyl-CoA due to PaACL silencing. PHYSIOLOGIA PLANTARUM 2022; 174:e13794. [PMID: 36193016 DOI: 10.1111/ppl.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Protein acetylation and crotonylation are important posttranslational modifications of lysine. In animal cells, the correlation of acetylation and crotonylation has been well characterized and the lysines of some proteins are acetylated or crotonylated depending on the relative concentrations of acetyl-CoA and crotonyl-CoA. However, in plants, the correlation of acetylation and crotonylation and the effects of the relative intracellular concentrations of crotonyl-CoA and acetyl-CoA on protein crotonylation and acetylation are not well known. In our previous study, PaACL silencing changed the content of acetyl-CoA in petunia (Petunia hybrida) corollas, and the effect of PaACL silencing on the global acetylation proteome in petunia was analyzed. In the present study, we found that PaACL silencing did not significantly alter the content of crotonyl-CoA. We performed a global crotonylation proteome analysis of the corollas of PaACL-silenced and control petunia plants; we found that protein crotonylation was closely related to protein acetylation and that proteins with more crotonylation sites often had more acetylation sites. Crotonylated proteins and acetylated proteins were enriched in many common Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. However, PaACL silencing resulted in different KEGG pathway enrichments of proteins with different levels of crotonylation sites and acetylation sites. PaACLB1-B2 silencing did not led to changes in the opposite direction in crotonylation and acetylation levels at the same lysine site in cytoplasmic proteins, which indicated that cytoplasmic lysine acetylation and crotonylation might not depend on the relative concentrations of acetyl-CoA and crotonyl-CoA. Moreover, the global crotonylome and acetylome were weakly positively correlated in the corollas of PaACL-silenced and control plants.
Collapse
Affiliation(s)
- Weiyuan Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xin Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Guiyun Jiang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yu Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hui Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shujun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Huina Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Wang L, Li X, Wang M, Ma X, Song F, Hu J, Liang W, Liang W. Carbon Metabolism and the ROS Scavenging System Participate in Nostoc flagelliforme's Adaptive Response to Dehydration Conditions through Protein Acetylation. J Proteome Res 2022; 21:482-493. [PMID: 35020403 DOI: 10.1021/acs.jproteome.1c00823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Acetylation represents an extensively occurring protein post-translational modification (PTM) that plays a key role in many cellular physiological and biochemical processes. However, studies on PTMs such as acetylation of lysine (LysAc) in cyanobacteria are still rare. In this study, a quantitative LysAc approach (acetylome) on the strains of Nostoc flagelliforme subjected to different dehydration treatments was conducted. We observed that starch contents were significantly accumulated due to dehydration treatments, and we identified 2474 acetylpeptides and 1060 acetylproteins based on acetylome analysis. Furthermore, an integrative analysis was performed on acetylome and nontargeted metabolism, and the results showed that many KEGG terms were overlapped for both omics analyses, including starch and sucrose metabolism, transporter activity, and carbon metabolism. In addition, time series clustering was analyzed, and some proteins related to carbon metabolism and the ROS scavenging system were significantly enriched in the list of differentially abundant acetylproteins (DAAPs). These protein expression levels were further tested by qPCR. A working model was finally proposed to show the biological roles of protein acetylation from carbon metabolism and the ROS scavenging system in response to dehydration in N. flagelliforme. We highlighted that LysAc was essential for the regulation of key metabolic enzymes in the dehydration stress response.
Collapse
Affiliation(s)
- Lingxia Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, P. R. China
| | - Xiaoxu Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Meng Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Xiaorong Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Fan Song
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Jinhong Hu
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Wangli Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, P. R. China
| |
Collapse
|
17
|
Xia L, Kong X, Song H, Han Q, Zhang S. Advances in proteome-wide analysis of plant lysine acetylation. PLANT COMMUNICATIONS 2022; 3:100266. [PMID: 35059632 PMCID: PMC8760137 DOI: 10.1016/j.xplc.2021.100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
19
|
Rodriguez MC, Mehta D, Tan M, Uhrig RG. Quantitative Proteome and PTMome Analysis of Arabidopsis thaliana Root Responses to Persistent Osmotic and Salinity Stress. PLANT & CELL PHYSIOLOGY 2021; 62:1012-1029. [PMID: 34059891 DOI: 10.1093/pcp/pcab076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Abiotic stresses such as drought result in large annual economic losses around the world. As sessile organisms, plants cannot escape the environmental stresses they encounter but instead must adapt to survive. Studies investigating plant responses to osmotic and/or salt stress have largely focused on short-term systemic responses, leaving our understanding of intermediate to longer-term adaptation (24 h to d) lacking. In addition to protein abundance and phosphorylation changes, evidence suggests reversible lysine acetylation may also be important for abiotic stress responses. Therefore, to characterize the protein-level effects of osmotic and salt stress, we undertook a label-free proteomic analysis of Arabidopsis thaliana roots exposed to 300 mM mannitol and 150 mM NaCl for 24 h. We assessed protein phosphorylation, lysine acetylation and changes in protein abundance, detecting significant changes in 245, 35 and 107 total proteins, respectively. Comparison with available transcriptome data indicates that transcriptome- and proteome-level changes occur in parallel, while post-translational modifications (PTMs) do not. Further, we find significant changes in PTMs, and protein abundance involve different proteins from the same networks, indicating a multifaceted regulatory approach to prolonged osmotic and salt stress. In particular, we find extensive protein-level changes involving sulfur metabolism under both osmotic and salt conditions as well as changes in protein kinases and transcription factors that may represent new targets for drought stress signaling. Collectively, we find that protein-level changes continue to occur in plant roots 24 h from the onset of osmotic and salt stress and that these changes differ across multiple proteome levels.
Collapse
Affiliation(s)
- Maria C Rodriguez
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- These authors contributed equally to the work
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
- These authors contributed equally to the work
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Richard G Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
20
|
Li G, Zheng B, Zhao W, Ren T, Zhang X, Ning T, Liu P. Global analysis of lysine acetylation in soybean leaves. Sci Rep 2021; 11:17858. [PMID: 34504199 PMCID: PMC8429545 DOI: 10.1038/s41598-021-97338-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Protein lysine acetylation (Kac) is an important post-translational modification in both animal and plant cells. Global Kac identification has been performed at the proteomic level in various species. However, the study of Kac in oil and resource plant species is relatively limited. Soybean is a globally important oil crop and resouce plant. In the present study, lysine acetylome analysis was performed in soybean leaves with proteomics techniques. Various bioinformatics analyses were performed to illustrate the structure and function of these Kac sites and proteins. Totally, 3148 acetylation sites in 1538 proteins were detected. Motif analysis of these Kac modified peptides extracted 17 conserved motifs. These Kac modified protein showed a wide subcellular location and functional distribution. Chloroplast is the primary subcellular location and cellular component where Kac proteins were localized. Function and pathways analyses indicated a plenty of biological processes and metabolism pathways potentially be influenced by Kac modification. Ribosome activity and protein biosynthesis, carbohydrate and energy metabolism, photosynthesis and fatty acid metabolism may be regulated by Kac modification in soybean leaves. Our study suggests Kac plays an important role in soybean physiology and biology, which is an available resource and reference of Kac function and structure characterization in oil crop and resource plant, as well as in plant kingdom.
Collapse
Affiliation(s)
- Geng Li
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Bin Zheng
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Wei Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Tinghu Ren
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xinghui Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Tangyuan Ning
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Peng Liu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
21
|
Liu Z, Song J, Miao W, Yang B, Zhang Z, Chen W, Tan F, Suo H, Dai X, Zou X, Ou L. Comprehensive Proteome and Lysine Acetylome Analysis Reveals the Widespread Involvement of Acetylation in Cold Resistance of Pepper ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:730489. [PMID: 34512705 PMCID: PMC8429487 DOI: 10.3389/fpls.2021.730489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Pepper is a typical warmth-loving vegetable that lacks a cold acclimation mechanism and is sensitive to cold stress. Lysine acetylation plays an important role in diverse cellular processes, but limited knowledge is available regarding acetylation modifications in the resistance of pepper plants to cold stress. In this study, the proteome and acetylome of two pepper varieties with different levels of cold resistance were investigated by subjecting them to cold treatments of varying durations followed by recovery periods. In total, 6,213 proteins and 4,574 lysine acetylation sites were identified, and this resulted in the discovery of 3,008 differentially expressed proteins and 768 differentially expressed acetylated proteins. A total of 1,988 proteins were identified in both the proteome and acetylome, and the functional differences in these co-identified proteins were elucidated through GO enrichment. KEGG analysis showed that 397 identified acetylated proteins were involved in 93 different metabolic pathways. The dynamic changes in the acetylated proteins in photosynthesis and the "carbon fixation in the photosynthetic organisms" pathway in pepper under low-temperature stress were further analyzed. It was found that acetylation of the PsbO and PsbR proteins in photosystem II and the PsaN protein in photosystem I could regulate the response of pepper leaves to cold stress. The acetylation levels of key carbon assimilation enzymes, such as ribulose bisphosphate carboxylase, fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase, glyceraldehyde 3-phosphate dehydrogenase, phosphoribulokinase, and triosephosphate isomerase decreased, leading to decreases in carbon assimilation capacity and photosynthetic efficiency, reducing the cold tolerance of pepper leaves. This study is the first to identify the acetylome in pepper, and it greatly expands the catalog of lysine acetylation substrates and sites in Solanaceae crops, providing new insights for posttranslational modification studies.
Collapse
Affiliation(s)
- Zhoubin Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Jingshuang Song
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, China
| | - Bozhi Yang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Zhuqing Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Fangjun Tan
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Huan Suo
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xiongze Dai
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xuexiao Zou
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Lijun Ou
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
22
|
Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhao Y, Zhou DX. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 2021; 49:4613-4628. [PMID: 33836077 PMCID: PMC8096213 DOI: 10.1093/nar/gkab244] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.,Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
23
|
Yuan B, Liu T, Cheng Y, Gao S, Li L, Cai L, Yang J, Chen J, Zhong K. Comprehensive Proteomic Analysis of Lysine Acetylation in Nicotiana benthamiana After Sensing CWMV Infection. Front Microbiol 2021; 12:672559. [PMID: 34084157 PMCID: PMC8166574 DOI: 10.3389/fmicb.2021.672559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Protein lysine acetylation (Kac) is an important post-translational modification mechanism in eukaryotes that is involved in cellular regulation. To investigate the role of Kac in virus-infected plants, we characterized the lysine acetylome of Nicotiana benthamiana plants with or without a Chinese wheat mosaic virus (CWMV) infection. We identified 4,803 acetylated lysine sites on 1,964 proteins. A comparison of the acetylation levels of the CWMV-infected group with those of the uninfected group revealed that 747 sites were upregulated on 422 proteins, including chloroplast localization proteins and histone H3, and 150 sites were downregulated on 102 proteins. Nineteen conserved motifs were extracted and 51 percent of the acetylated proteins located on chloroplast. Nineteen Kac sites were located on histone proteins, including 10 Kac sites on histone 3. Bioinformatics analysis results indicated that lysine acetylation occurs on a large number of proteins involved in biological processes, especially photosynthesis. Furthermore, we found that the acetylation level of chloroplast proteins, histone 3 and some metabolic pathway-related proteins were significantly higher in CWMV-infected plants than in uninfected plants. In summary, our results reveal the regulatory roles of Kac in response to CWMV infection.
Collapse
Affiliation(s)
- Bowen Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tingting Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ye Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiqi Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China.,Yantai Academy of Agricultural Science, Yantai, China
| | - Linzhi Li
- Yantai Academy of Agricultural Science, Yantai, China
| | - Linna Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
24
|
Liao X, Li Y, Hu Z, Lin Y, Zheng B, Ding J. Poplar acetylome profiling reveals lysine acetylation dynamics in seasonal bud dormancy release. PLANT, CELL & ENVIRONMENT 2021; 44:1830-1845. [PMID: 33675080 DOI: 10.1111/pce.14040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 05/06/2023]
Abstract
For perennials in boreal and temperate ecosystems, bud dormancy is crucial for survival in harsh winter. Dormancy is released by prolonged exposure to low temperatures and is followed by reactive growth in the spring. Lysine acetylation (Kac) is one of the major post-translational modifications (PTMs) that are involved in plant response to environmental signals. However, little information is available on the effects of Kac modification on bud dormancy release. Here, we report the dynamics of lysine acetylome in hybrid poplar (Populus tremula × Populus alba) dormant buds. A total of 7,594 acetyl-sites from 3,281 acetyl-proteins were identified, representing a large dataset of lysine acetylome in plants. Of them, 229 proteins were differentially acetylated during bud dormancy release and were mainly involved in the primary metabolic pathways. Site-directed mutagenesis enzymatic assays showed that Kac strongly modified the activities of two key enzymes of primary metabolism, pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH). We thus propose that Kac of enzymes could be an important strategy for reconfiguration of metabolic processes during bud dormancy release. In all, our results reveal the importance of Kac in bud dormancy release and provide a new perspective to understand the molecular mechanisms of seasonal growth of trees.
Collapse
Affiliation(s)
- Xiaoli Liao
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yue Li
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhu Hu
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Ying Lin
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Bo Zheng
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jihua Ding
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Tappiban P, Ying Y, Xu F, Bao J. Proteomics and Post-Translational Modifications of Starch Biosynthesis-Related Proteins in Developing Seeds of Rice. Int J Mol Sci 2021; 22:5901. [PMID: 34072759 PMCID: PMC8199009 DOI: 10.3390/ijms22115901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Rice (Oryza sativa L.) is a foremost staple food for approximately half the world's population. The components of rice starch, amylose, and amylopectin are synthesized by a series of enzymes, which are responsible for rice starch properties and functionality, and then affect rice cooking and eating quality. Recently, proteomics technology has been applied to the establishment of the differentially expressed starch biosynthesis-related proteins and the identification of posttranslational modifications (PTMs) target starch biosynthesis proteins as well. It is necessary to summarize the recent studies in proteomics and PTMs in rice endosperm to deepen our understanding of starch biosynthesis protein expression and regulation, which will provide useful information to rice breeding programs and industrial starch applications. The review provides a comprehensive summary of proteins and PTMs involved in starch biosynthesis based on proteomic studies of rice developing seeds. Starch biosynthesis proteins in rice seeds were differentially expressed in the developing seeds at different developmental stages. All the proteins involving in starch biosynthesis were identified using proteomics methods. Most starch biosynthesis-related proteins are basically increased at 6-20 days after flowering (DAF) and decreased upon the high-temperature conditions. A total of 10, 14, 2, 17, and 7 starch biosynthesis related proteins were identified to be targeted by phosphorylation, lysine acetylation, succinylation, lysine 2-hydroxyisobutyrylation, and malonylation, respectively. The phosphoglucomutase is commonly targeted by five PTMs types. Research on the function of phosphorylation in multiple enzyme complex formation in endosperm starch biosynthesis is underway, while the functions of other PTMs in starch biosynthesis are necessary to be conducted in the near future.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Yining Ying
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Feifei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Jinsong Bao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| |
Collapse
|
26
|
Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 2021; 78:4467-4486. [PMID: 33638653 PMCID: PMC11072255 DOI: 10.1007/s00018-021-03794-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Crop productivity is directly dependent on the growth and development of plants and their adaptation during different environmental stresses. Histone acetylation is an epigenetic modification that regulates numerous genes essential for various biological processes, including development and stress responses. Here, we have mainly discussed the impact of histone acetylation dynamics on vegetative growth, flower development, fruit ripening, biotic and abiotic stress responses. Besides, we have also emphasized the information gaps which are obligatory to be examined for understanding the complete role of histone acetylation dynamics in plants. A comprehensive knowledge about the histone acetylation dynamics will ultimately help to improve stress resistance and reduce yield losses in different crops due to climate changes.
Collapse
Affiliation(s)
- Verandra Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
27
|
Li P, Chen C, Li P, Dong Y. A comprehensive examination of the lysine acetylation targets in paper mulberry based on proteomics analyses. PLoS One 2021; 16:e0240947. [PMID: 33705403 PMCID: PMC7951917 DOI: 10.1371/journal.pone.0240947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
Rocky desertification is a bottleneck that reduces ecological and environmental security in karst areas. Paper mulberry, a unique deciduous tree, shows good performance in rocky desertification areas. Its resistance mechanisms are therefore of high interest. In this study, a lysine acetylation proteomics analysis of paper mulberry seedling leaves was conducted in combination with the purification of acetylated protein by high-precision nano LC-MS/MS. We identified a total of 7130 acetylation sites in 3179 proteins. Analysis of the modified sites showed a predominance of nine motifs. Six positively charged residues: lysine (K), arginine (R), and histidine (H), serine (S), threonine (T), and tyrosine (Y) occurred most frequently at the +1 position, phenylalanine (F) was both detected both upstream and downstream of the acetylated lysines; and the sequence logos showed a strong preference for lysine and arginine around acetylated lysines. Functional annotation revealed that the identified enzymes were mainly involved in translation, transcription, ribosomal structure and biological processes, showing that lysine acetylation can regulate various aspects of primary carbon and nitrogen metabolism and secondary metabolism. Acetylated proteins were enriched in the chloroplast, cytoplasm, and nucleus, and many stress response-related proteins were also discovered to be acetylated, including PAL, HSP70, and ERF. HSP70, an important protein involved in plant abiotic and disease stress responses, was identified in paper mulberry, although it is rarely found in woody plants. This may be further examined in research in other plants and could explain the good adaptation of paper mulberry to the karst environment. However, these hypotheses require further verification. Our data can provide a new starting point for the further analysis of the acetylation function in paper mulberry and other plants.
Collapse
Affiliation(s)
- Ping Li
- College of Animal Science, Guizhou university, Guiyang, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou university, Guiyang, Guizhou, China
| | - Ping Li
- Institute of Grassland Research, Sichuan Academy of Grassland Science, Cheng Du, Si Chuan, China
| | - Yibo Dong
- College of Animal Science, Guizhou university, Guiyang, Guizhou, China
| |
Collapse
|
28
|
Gouda G, Gupta MK, Donde R, Sabarinathan S, Vadde R, Behera L, Mohapatra T. Computational Epigenetics in Rice Research. APPLICATIONS OF BIOINFORMATICS IN RICE RESEARCH 2021:113-140. [DOI: 10.1007/978-981-16-3997-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
29
|
Zhu L, Cheng H, Peng G, Wang S, Zhang Z, Ni E, Fu X, Zhuang C, Liu Z, Zhou H. Ubiquitinome Profiling Reveals the Landscape of Ubiquitination Regulation in Rice Young Panicles. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:305-320. [PMID: 33147495 PMCID: PMC7801245 DOI: 10.1016/j.gpb.2019.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/06/2018] [Accepted: 01/11/2019] [Indexed: 02/04/2023]
Abstract
Ubiquitination, an essential post-transcriptional modification (PTM), plays a vital role in nearly every biological process, including development and growth. Despite its functions in plant reproductive development, its targets in rice panicles remain unclear. In this study, we used proteome-wide profiling of lysine ubiquitination in rice (O. sativa ssp. indica) young panicles. We created the largest ubiquitinome dataset in rice to date, identifying 1638 lysine ubiquitination sites on 916 unique proteins. We detected three conserved ubiquitination motifs, noting that acidic glutamic acid (E) and aspartic acid (D) were most frequently present around ubiquitinated lysine. Enrichment analysis of Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these ubiquitinated proteins revealed that ubiquitination plays an important role in fundamental cellular processes in rice young panicles. Interestingly, enrichment analysis of protein domains indicated that ubiquitination was enriched on a variety of receptor-like kinases and cytoplasmic tyrosine and serine-threonine kinases. Furthermore, we analyzed the crosstalk between ubiquitination, acetylation, and succinylation, and constructed a potential protein interaction network within our rice ubiquitinome. Moreover, we identified ubiquitinated proteins related to pollen and grain development, indicating that ubiquitination may play a critical role in the physiological functions in young panicles. Taken together, we reported the most comprehensive lysine ubiquitinome in rice so far, and used it to reveal the functional role of lysine ubiquitination in rice young panicles.
Collapse
Affiliation(s)
- Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Han Cheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuansuo Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing 100101, China
| | - Zhiguo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Erdong Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing 100101, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zexian Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Guo W, Han L, Li X, Wang H, Mu P, Lin Q, Liu Q, Zhang Y. Proteome and lysine acetylome analysis reveals insights into the molecular mechanism of seed germination in wheat. Sci Rep 2020; 10:13454. [PMID: 32778714 PMCID: PMC7418024 DOI: 10.1038/s41598-020-70230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Seed germination is the first stage in wheat growth and development, directly affecting grain yield and quality. As an important post-translation modification, lysine acetylation participates in diverse biological functions. However, little is known regarding the quantitative acetylproteome characterization during wheat seed germination. In this study, we generated the first comparative proteomes and lysine acetylomes during wheat seed germination. In total, 5,639 proteins and 1,301 acetylated sites on 722 proteins were identified at 0, 12 and 24 h after imbibitions. Several particularly preferred amino acids were found near acetylation sites, including KacS, KacT, KacK, KacR, KacH, KacF, KacN, Kac*E, FKac and Kac*D, in the embryos during seed germination. Among them, KacH, KacF, FKac and KacK were conserved in wheat. Biosynthetic process, transcriptional regulation, ribosome and proteasome pathway related proteins were significantly enriched in both differentially expressed proteins and differentially acetylated proteins through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. We also revealed that histone acetylation was differentially involved in epigenetic regulation during seed germination. Meanwhile, abscisic acid and stress related proteins were found with acetylation changes. In addition, we focused on 8 enzymes involved in carbohydrate metabolism, and found they were differentially acetylated during seed germination. Finally, a putative metabolic pathway was proposed to dissect the roles of protein acetylation during wheat seed germination. These results not only demonstrate that lysine acetylation may play key roles in seed germination of wheat but also reveal insights into the molecular mechanism of seed germination in this crop.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Liping Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ping Mu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qi Lin
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qingchang Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.,Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
31
|
Singh PK, Gao W, Liao P, Li Y, Xu FC, Ma XN, Long L, Song CP. Comparative acetylome analysis of wild-type and fuzzless-lintless mutant ovules of upland cotton (Gossypium hirsutum Cv. Xu142) unveils differential protein acetylation may regulate fiber development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:56-70. [PMID: 32114400 DOI: 10.1016/j.plaphy.2020.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Protein acetylation (KAC) is a significant post-translational modification, which plays an essential role in the regulation of growth and development. Unfortunately, related studies are inadequately available in angiosperms, and to date, there is no report providing insight on the role of protein acetylation in cotton fiber development. Therefore, we first compared the lysine-acetylation proteome (acetylome) of upland cotton ovules in the early fiber development stages by using wild-type as well as its fuzzless-lintless mutant to identify the role of KAC in the fiber development. A total of 1696 proteins with 2754 acetylation sites identified with the different levels of acetylation belonging to separate subcellular compartments suggesting a large number of proteins differentially acetylated in two cotton cultivars. About 80% of the sites were predicted to localize in the cytoplasm, chloroplast, and mitochondria. Seventeen significantly enriched acetylation motifs were identified. Serine and threonine and cysteine located downstream and upstream to KAC sites. KEGG pathway enrichment analysis indicated oxidative phosphorylation, fatty acid, ribosome and protein, and folate biosynthesis pathways enriched significantly. To our knowledge, this is the first report of comparative acetylome analysis to compare the wild-type as well as its fuzzless-lintless mutant acetylome data to identify the differentially acetylated proteins, which may play a significant role in cotton fiber development.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, 7505101, Israel; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China; Department of Biotechnology, Pachhunga University College, Mizoram University, Aizawl, 796001, India.
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Peng Liao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Yang Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Xiao-Nan Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China.
| |
Collapse
|
32
|
Haq MI, Thakuri BKC, Hobbs T, Davenport ML, Kumar D. Tobacco SABP2-interacting protein SIP428 is a SIR2 type deacetylase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:72-80. [PMID: 32388422 DOI: 10.1016/j.plaphy.2020.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 05/25/2023]
Abstract
Salicylic acid is widely studied for its role in biotic stress signaling in plants. Several SA-binding proteins, including SABP2 (salicylic acid-binding protein 2) has been identified and characterized for their role in plant disease resistance. SABP2 is a 29 kDA tobacco protein that binds to salicylic acid with high affinity. It is a methylesterase enzyme that catalyzes the conversion of methyl salicylate into salicylic acid required for inducing a robust systemic acquired resistance (SAR) in plants. Methyl salicylic acid is one of the several mobile SAR signals identified in plants. SABP2-interacting protein 428 (SIP428) was identified in a yeast two-hybrid screen using tobacco SABP2 as a bait. In silico analysis shows that SIP428 possesses the SIR2 (silent information regulatory 2)-like conserved motifs. SIR2 enzymes are orthologs of sirtuin proteins that catalyze the NAD+-dependent deacetylation of Nε lysine-acetylated proteins. The recombinant SIP428 expressed in E. coli exhibits SIR2-like deacetylase activity. SIP428 shows homology to Arabidopsis AtSRT2 (67% identity), which is implicated in SA-mediated basal defenses. Immunoblot analysis using anti-acetylated lysine antibodies showed that the recombinant SIP428 is lysine acetylated. The expression of SIP428 transcripts was moderately downregulated upon infection by TMV. In the presence of SIP428, the esterase activity of SABP2 increased modestly. The interaction of SIP428 with SABP2, it's regulation upon pathogen infection, and similarity with AtSRT2 suggests that SIP428 is likely to play a role in stress signaling in plants.
Collapse
Affiliation(s)
- Md Imdadul Haq
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Bal Krishna Chand Thakuri
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Tazley Hobbs
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Mackenzie L Davenport
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Dhirendra Kumar
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
33
|
Comparative acetylome analysis reveals the potential roles of lysine acetylation for DON biosynthesis in Fusarium graminearum. BMC Genomics 2019; 20:841. [PMID: 31718553 PMCID: PMC6852988 DOI: 10.1186/s12864-019-6227-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Fusarium graminearum is a destructive fungal pathogen of wheat, barley and other small grain cereals. During plant infection, the pathogen produces trichothecene mycotoxin deoxynivalenol (DON), which is harmful to human and livestock. FgGCN5 encodes a GCN5 acetyltransferase. The gene deletion mutant Fggcn5 failed to produce DON. We assumed that lysine acetylation might play a key regulatory role in DON biosynthesis in the fungus. Results In this study, the acetylome comparison between Fggcn5 mutant and wild-type strain PH-1 was performed by using affinity enrichment and high resolution LC-MS/MS analysis. Totally, 1875 acetylated proteins were identified in Fggcn5 mutant and PH-1. Among them, 224 and 267 acetylated proteins were identified exclusively in Fggcn5 mutant and PH-1, respectively. Moreover, 95 differentially acetylated proteins were detected at a significantly different level in the gene deletion mutant:43 were up-regulated and 52 were down-regulated. GO enrichment and KEGG-pathways enrichment analyses revealed that acetylation plays a key role in metabolism process in F. graminearum. Conclusions Seeing that the gens playing critical roles in DON biosynthesis either in Fggcn5 mutant or PH-1. Therefore, we can draw the conclusion that the regulatory roles of lysine acetylation in DON biosynthesis in F. graminearum results from the positive and negative regulation of the related genes. The study would be a foundation to insight into the regulatory mechanism of lysine acetylation on DON biosynthesis.
Collapse
|
34
|
Chen P, Wei F, Li R, Li ZQ, Kashif MH, Zhou RY. Comparative acetylomic analysis reveals differentially acetylated proteins regulating anther and pollen development in kenaf cytoplasmic male sterility line. PHYSIOLOGIA PLANTARUM 2019; 166:960-978. [PMID: 30353937 DOI: 10.1111/ppl.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Cytoplasmic male sterility (CMS) is widely used in plant breeding and represents a perfect model to understand cyto-nuclear interactions and pollen development research. Lysine acetylation in proteins is a dynamic and reversible posttranslational modification (PTM) that plays an important roles in diverse cell processes and signaling. However, studies addressing acetylation PTM regarding to anther and pollen development in CMS background are largely lacking. To reveal the possible mechanism of kenaf (Hibiscus cannabinus L.) CMS and pollen development, we performed a label-free-based comparative acetylome analysis in kenaf anther of a CMS line and wild-type (Wt). Using whole transcriptome unigenes of kenaf as the reference genome, we identified a total of 1204 Kac (lysin acetylation) sites on 1110 peptides corresponding to 672 unique proteins. Futher analysis showed 56 out of 672 proteins were differentially acetylated between CMS and Wt line, with 13 and 43 of those characterized up- and downregulated, respectively. Thirty-eight and 82 proteins were detected distinctively acetylated in CMS and Wt lines, respectively. And evaluation of the acetylomic and proteomic results indicated that the most significantly acetylated proteins were not associated with abundant changes at the protein level. Bioinformatics analysis demonstrated that many of these proteins were involved in various biological processes which may play key roles in pollen development, inculding tricarboxylic acid (TCA) cycle and energy metabolism, protein folding, protein metabolism, cell signaling, gene expression regulation. Taken together, our results provide insight into the CMS molecular mechanism and pollen development in kenaf from a protein acetylation perspective.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Fan Wei
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- College of Life Science & Technology, Guangxi University, Nanning, China
| | - Zeng-Qiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad H Kashif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Rui-Yang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
35
|
Uhrig RG, Schläpfer P, Roschitzki B, Hirsch-Hoffmann M, Gruissem W. Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:176-194. [PMID: 30920011 DOI: 10.1111/tpj.14315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 05/22/2023]
Abstract
Protein phosphorylation and acetylation are the two most abundant post-translational modifications (PTMs) that regulate protein functions in eukaryotes. In plants, these PTMs have been investigated individually; however, their co-occurrence and dynamics on proteins is currently unknown. Using Arabidopsis thaliana, we quantified changes in protein phosphorylation, acetylation and protein abundance in leaf rosettes, roots, flowers, siliques and seedlings at the end of day (ED) and at the end of night (EN). This identified 2549 phosphorylated and 909 acetylated proteins, of which 1724 phosphorylated and 536 acetylated proteins were also quantified for changes in PTM abundance between ED and EN. Using a sequential dual-PTM workflow, we identified significant PTM changes and intersections in these organs and plant developmental stages. In particular, cellular process-, pathway- and protein-level analyses reveal that the phosphoproteome and acetylome predominantly intersect at the pathway- and cellular process-level at ED versus EN. We found 134 proteins involved in core plant cell processes, such as light harvesting and photosynthesis, translation, metabolism and cellular transport, that were both phosphorylated and acetylated. Our results establish connections between PTM motifs, PTM catalyzing enzymes and putative substrate networks. We also identified PTM motifs for further characterization of the regulatory mechanisms that control cellular processes during the diurnal cycle in different Arabidopsis organs and seedlings. The sequential dual-PTM analysis expands our understanding of diurnal plant cell regulation by PTMs and provides a useful resource for future analyses, while emphasizing the importance of analyzing multiple PTMs simultaneously to elucidate when, where and how they are involved in plant cell regulation.
Collapse
Affiliation(s)
- R Glen Uhrig
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pascal Schläpfer
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Matthias Hirsch-Hoffmann
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
36
|
Xue C, Liu S, Chen C, Zhu J, Yang X, Zhou Y, Guo R, Liu X, Gong Z. Global Proteome Analysis Links Lysine Acetylation to Diverse Functions in Oryza Sativa. Proteomics 2019; 18. [PMID: 29106068 DOI: 10.1002/pmic.201700036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 10/11/2017] [Indexed: 01/26/2023]
Abstract
Lysine acetylation (Kac) is an important protein post-translational modification in both eukaryotes and prokaryotes. Herein, we report the results of a global proteome analysis of Kac and its diverse functions in rice (Oryza sativa). We identified 1353 Kac sites in 866 proteins in rice seedlings. A total of 11 Kac motifs are conserved, and 45% of the identified proteins are localized to the chloroplast. Among all acetylated proteins, 38 Kac sites are combined in core histones. Bioinformatics analysis revealed that Kac occurs on a diverse range of proteins involved in a wide variety of biological processes, especially photosynthesis. Protein-protein interaction networks of the identified proteins provided further evidence that Kac contributes to a wide range of regulatory functions. Furthermore, we demonstrated that the acetylation level of histone H3 (lysine 27 and 36) is increased in response to cold stress. In summary, our approach comprehensively profiles the regulatory roles of Kac in the growth and development of rice.
Collapse
Affiliation(s)
- Chao Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Shuai Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Jun Zhu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Xibin Yang
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Rui Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
37
|
Tan S, Gao L, Li T, Chen L. Phylogenetic and expression analysis of histone acetyltransferases in Brachypodium distachyon. Genomics 2019; 111:1966-1976. [PMID: 30641128 DOI: 10.1016/j.ygeno.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Histone acetylation is an important post-translational modification in eukaryotes and is regulated by two antagonistic enzymes, namely histone acetyltransferase (HAT) and histone deacetylase (HDAC). However, little has been done on the HAT superfamily in Brachypodium distachyon (B. distachyon), a new model plant of Poaceae. In this study, eight HATs were identified from B. distachyon and classified into four major families. Subcellular localization analysis showed that a majority of BdHATs were predominantly localized in the nucleus. Syntenic and phylogenetic analysis indicated there may be two common ancestral CREB-binding protein (p300/CBP, HAC) genes prior to the separation of monocots and dicots. Expression analysis revealed that the potential roles of BdHATs in B. distachyon development and responses to four abiotic stresses. Protein-protein network analysis identified some potential interactive genes with BdHATs. Thus, our results will provide solid basis for further study the function of HAT genes in B. distachyon and other monocot plants.
Collapse
Affiliation(s)
- Shenglong Tan
- School of Information and Communication Engineering, Hubei University of Economics, Wuhan 430205, China
| | - Lifen Gao
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Tiantian Li
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China.
| | - Lihong Chen
- The Institute for Systems Biology, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
38
|
Li Z, Wang Y, Bello BK, Ajadi AA, Tong X, Chang Y, Zhang J. Construction of a Quantitative Acetylomic Tissue Atlas in Rice ( Oryza sativa L.). Molecules 2018; 23:molecules23112843. [PMID: 30388832 PMCID: PMC6278296 DOI: 10.3390/molecules23112843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
PKA (protein lysine acetylation) is a key post-translational modification involved in the regulation of various biological processes in rice. So far, rice acetylome data is very limited due to the highly-dynamic pattern of protein expression and PKA modification. In this study, we performed a comprehensive quantitative acetylome profile on four typical rice tissues, i.e., the callus, root, leaf, and panicle, by using a mass spectrometry (MS)-based, label-free approach. The identification of 1536 acetylsites on 1454 acetylpeptides from 890 acetylproteins represented one of the largest acetylome datasets on rice. A total of 1445 peptides on 887 proteins were differentially acetylated, and are extensively involved in protein translation, chloroplast development, and photosynthesis, flowering and pollen fertility, and root meristem activity, indicating the important roles of PKA in rice tissue development and functions. The current study provides an overall view of the acetylation events in rice tissues, as well as clues to reveal the function of PKA proteins in physiologically-relevant tissues.
Collapse
Affiliation(s)
- Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Babatunde Kazeem Bello
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Abolore Adijat Ajadi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Yuxiao Chang
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
39
|
Yang Y, Wang H, Ding J, Xu Y. iAcet-Sumo: Identification of lysine acetylation and sumoylation sites in proteins by multi-class transformation methods. Comput Biol Med 2018; 100:144-151. [DOI: 10.1016/j.compbiomed.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2018] [Accepted: 07/08/2018] [Indexed: 11/16/2022]
|
40
|
Zhu GR, Yan X, Zhu D, Deng X, Wu JS, Xia J, Yan YM. Lysine acetylproteome profiling under water deficit reveals key acetylated proteins involved in wheat grain development and starch biosynthesis. J Proteomics 2018; 185:8-24. [DOI: 10.1016/j.jprot.2018.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
|
41
|
Liu S, Xue C, Fang Y, Chen G, Peng X, Zhou Y, Chen C, Liu G, Gu M, Wang K, Zhang W, Wu Y, Gong Z. Global Involvement of Lysine Crotonylation in Protein Modification and Transcription Regulation in Rice. Mol Cell Proteomics 2018; 17:1922-1936. [PMID: 30021883 DOI: 10.1074/mcp.ra118.000640] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Lysine crotonylation (Kcr) is a newly discovered posttranslational modification (PTM) existing in mammals. A global crotonylome analysis was undertaken in rice (Oryza sativa L. japonica) using high accuracy nano-LC-MS/MS in combination with crotonylated peptide enrichment. A total of 1,265 lysine crotonylation sites were identified on 690 proteins in rice seedlings. Subcellular localization analysis revealed that 51% of the crotonylated proteins identified were localized in chloroplasts. The photosynthesis-associated proteins were also mostly enriched in total crotonylated proteins. In addition, a genomic localization analysis of histone Kcr by ChIP-seq was performed to assess the relevance between histone Kcr and the genome. Of the 10,923 identified peak regions, the majority (86.7%) of the enriched peaks were located in gene body, especially exons. Furthermore, the degree of histone Kcr modification was positively correlated with gene expression in genic regions. Compared with other published histone modification data, the Kcr was co-located with the active histone modifications. Interestingly, histone Kcr-facilitated expression of genes with existing active histone modifications. In addition, 77% of histone Kcr modifications overlapped with DNase hypersensitive sites (DHSs) in intergenic regions of the rice genome and might mark other cis-regulatory DNA elements that are different from IPA1, a transcription activator in rice seedlings. Overall, our results provide a comprehensive understanding of the biological functions of the crotonylome and new active histone modification in transcriptional regulation in plants.
Collapse
Affiliation(s)
- Shuai Liu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chao Xue
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yuan Fang
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Chen
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Xiaojun Peng
- ¶Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou 310018, China
| | - Yong Zhou
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Guanqing Liu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Kai Wang
- ‖Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenli Zhang
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiyun Gong
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
42
|
Li H, Harwood JD, Liu T, Chu D. Novel proteome and acetylome of Bemisia tabaci Q in response to Cardinium infection. BMC Genomics 2018; 19:523. [PMID: 29976144 PMCID: PMC6034306 DOI: 10.1186/s12864-018-4907-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Background It has become increasingly clear that symbionts have crucial evolutionary and ecological ramifications for their host arthropods. However, little is known whether these symbiont infections influence the proteome and lysine acetylome of their host arthropods. Here we performed experiments to investigate the proteomes and acetylomes of Cardinium-infected (C*+) and -uninfected (C−) Bemisia tabaci Q with identical backgrounds, through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Results Of the 3353 proteins whose levels were quantitated in proteome, a total of 146 proteins dividing into 77 up-regulated and 69 down-regulated proteins were discovered to be differentially expressed as having at least a 1.2-fold change when C*+ strain was compared with C− strain. Furthermore, a total of 528 lysine acetylation sites in 283 protein groups were identified, among which 356 sites in 202 proteins were quantified. The comparison of acetylomes revealed 30 sites in 26 lysine acetylation proteins (Kac) were quantified as up-regulated targets and 35 sites in 29 Kac proteins were quantified as down-regulated targets. Functional analysis showed that these differentially expressed proteins and Kac proteins were mainly involved in diverse physiological processes related to development, immune responses and energy metabolism, such as retinol metabolism, methane metabolism and fatty acid degradation. Notably, protein interaction network analyses demonstrated widespread interactions modulated by protein acetylation. Conclusion Here we show the proteome and acetylom of B. tabaci Q in response to the symbiont Cardinium infection. This is the first study to utilize the tool of acetylome analysis for revealing physiological responses of arthropods to its symbiont infection, which will provide an important resource for exploring the arthropod-symbiont interaction. Electronic supplementary material The online version of this article (10.1186/s12864-018-4907-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongran Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - James D Harwood
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Tongxian Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
43
|
Zhou H, Cheng X, Xu X, Jiang T, Zhou H, Sheng Q, Nie Z. Cloning, expression profiling, and acetylation identification of alpha-tubulin N-acetyltransferase 1 from Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21463. [PMID: 29569264 DOI: 10.1002/arch.21463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself.
Collapse
Affiliation(s)
- Huaixiang Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Xusheng Cheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Xiaoyuan Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Tianlong Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Haimeng Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Pan D, Wang L, Chen S, Lv X, Lu S, Cheng CL, Tan F, Chen W. Protein acetylation as a mechanism for Kandelia candel's adaption to daily flooding. TREE PHYSIOLOGY 2018; 38:895-910. [PMID: 29301031 DOI: 10.1093/treephys/tpx162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
To explore the adaptation mechanisms of Kandelia candel (L.) Druce in response to daily flooding, a large-scale quantitative lysine acetylome was carried out using immunoaffinity enrichment of Lys-acetylated peptides and liquid chromatography linked to tandem mass spectrometry. A total of 1041 lysine acetylation (LysAc) sites, 1021 Lys-acetylated peptides and 617 Lys-acetylated proteins were identified. Six conserved sequence motifs of the LysAc sites, including a new motif KxxxxK, were detected. Among these proteins, 260 were differentially acetylated in response to flooding, which were preferentially predicted to participate in carbon metabolism and photosynthesis pathways based on KEGG pathway category enrichment analysis. Consistently, the transcriptional level of acetyltransferase and the consumption of acetyl-CoA were up-regulated under flooding conditions. Most of physiological parameters and mRNA expression levels related to carbon metabolism and photosynthesis were found to be insignificantly affected by flooding. Taken together, reversible protein LysAc is likely to be a post-translational mechanism contributing to the mangrove K. candel's adaptation to daily flooding.
Collapse
Affiliation(s)
- Dezhuo Pan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lingxia Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- College of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaojie Lv
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Si Lu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chi-Lien Cheng
- Department of Biology, The University of Iowa, 210 Biology Building, Iowa City, IA 52242, USA
| | - Fanlin Tan
- Fujian Academy of Forestry, Fuzhou 350012, PR China
| | - Wei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| |
Collapse
|
45
|
Zhou H, Finkemeier I, Guan W, Tossounian MA, Wei B, Young D, Huang J, Messens J, Yang X, Zhu J, Wilson MH, Shen W, Xie Y, Foyer CH. Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves. PLANT, CELL & ENVIRONMENT 2018; 41:1139-1153. [PMID: 29126343 DOI: 10.1111/pce.13100] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/19/2017] [Indexed: 05/20/2023]
Abstract
Protein lysine acylations, such as succinylation and acetylation, are important post-translational modification (PTM) mechanisms, with key roles in cellular regulation. Antibody-based affinity enrichment, high-resolution liquid chromatography mass spectrometry analysis, and integrated bioinformatics analysis were used to characterize the lysine succinylome (Ksuc ) and acetylome (Kace ) of rice leaves. In total, 2,593 succinylated and 1,024 acetylated proteins were identified, of which 723 were simultaneously acetylated and succinylated. Proteins involved in photosynthetic carbon metabolism such as the large and small subunits of RuBisCO, ribosomal functions, and other key processes were subject to both PTMs. Preliminary insights into oxidant-induced changes to the rice acetylome and succinylome were gained from treatments with hydrogen peroxide. Exposure to oxidative stress did not regulate global changes in the rice acetylome or succinylome but rather led to modifications on a specific subset of the identified sites. De-succinylation of recombinant catalase (CATA) and glutathione S-transferase (OsGSTU6) altered the activities of these enzymes showing that this PTM may have a regulatory function. These findings not only greatly extend the list of acetylated and/or succinylated proteins but they also demonstrate the close cooperation between these PTMs in leaf proteins with key metabolic functions.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, Westfaelische Wilhelms University Muenster, Muenster, 48149, Germany
| | - Wenxue Guan
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Maria-Armineh Tossounian
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
| | - Bo Wei
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 927, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - David Young
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
| | - Jingjing Huang
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 927, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Brussels, B-1050, Belgium
- Brussels Center for Redox Biology, Brussels, B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, B-1050, Belgium
| | - Xibin Yang
- Jingjie PTM Biolab (Hangzhou) Co. Ltd., Hangzhou, 310018, China
| | - Jun Zhu
- Jingjie PTM Biolab (Hangzhou) Co. Ltd., Hangzhou, 310018, China
| | - Michael H Wilson
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
46
|
Liu S, Yu F, Yang Z, Wang T, Xiong H, Chang C, Yu W, Li N. Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis. Mol Cell Proteomics 2018; 17:1010-1027. [PMID: 29440448 DOI: 10.1074/mcp.ra117.000530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Protein acetylation, one of many types of post-translational modifications (PTMs), is involved in a variety of biological and cellular processes. In the present study, we applied both CsCl density gradient (CDG) centrifugation-based protein fractionation and a dimethyl-labeling-based 4C quantitative PTM proteomics workflow in the study of dynamic acetylproteomic changes in Arabidopsis. This workflow integrates the dimethyl chemical labeling with chromatography-based acetylpeptide separation and enrichment followed by mass spectrometry (MS) analysis, the extracted ion chromatogram (XIC) quantitation-based computational analysis of mass spectrometry data to measure dynamic changes of acetylpeptide level using an in-house software program, named Stable isotope-based Quantitation-Dimethyl labeling (SQUA-D), and finally the confirmation of ethylene hormone-regulated acetylation using immunoblot analysis. Eventually, using this proteomic approach, 7456 unambiguous acetylation sites were found from 2638 different acetylproteins, and 5250 acetylation sites, including 5233 sites on lysine side chain and 17 sites on protein N termini, were identified repetitively. Out of these repetitively discovered acetylation sites, 4228 sites on lysine side chain (i.e. 80.5%) are novel. These acetylproteins are exemplified by the histone superfamily, ribosomal and heat shock proteins, and proteins related to stress/stimulus responses and energy metabolism. The novel acetylproteins enriched by the CDG centrifugation fractionation contain many cellular trafficking proteins, membrane-bound receptors, and receptor-like kinases, which are mostly involved in brassinosteroid, light, gravity, and development signaling. In addition, we identified 12 highly conserved acetylation site motifs within histones, P-glycoproteins, actin depolymerizing factors, ATPases, transcription factors, and receptor-like kinases. Using SQUA-D software, we have quantified 33 ethylene hormone-enhanced and 31 hormone-suppressed acetylpeptide groups or called unique PTM peptide arrays (UPAs) that share the identical unique PTM site pattern (UPSP). This CDG centrifugation protein fractionation in combination with dimethyl labeling-based quantitative PTM proteomics, and SQUA-D may be applied in the quantitation of any PTM proteins in any model eukaryotes and agricultural crops as well as tissue samples of animals and human beings.
Collapse
Affiliation(s)
- Shichang Liu
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| | - Tingliang Wang
- **Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hairong Xiong
- ‡‡College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Caren Chang
- §§Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742-5815
| | - Weichuan Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
47
|
Comprehensive Profiling of Lysine Acetylome in Baculovirus Infected Silkworm (Bombyx mori) Cells. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/01/2017] [Indexed: 12/12/2022]
|
48
|
Li X, Ye J, Ma H, Lu P. Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:142-154. [PMID: 29124795 DOI: 10.1111/tpj.13766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 05/18/2023]
Abstract
Protein lysine acetylation (KAC) is a dynamic and reversible post-translational modification that has important biological roles in many organisms. Although KAC has been shown to affect reproductive development and meiosis in yeast and animals, similar studies are largely lacking in flowering plants, especially proteome-scale investigations for particular reproductive stages. Here, we report results from a proteomic investigation to detect the KAC status of the developing rice anthers near the time of meiosis (RAM), providing strong biochemical evidence for roles of many KAC-affected proteins during anther development and meiosis in rice. We identified a total of 1354 KAC sites in 676 proteins. Among these, 421 acetylated proteins with 629 KAC sites are novel, greatly enriching our knowledge on KAC in flowering plants. Gene Ontology enrichment analysis showed chromatin silencing, protein folding, fatty acid biosynthetic process and response to stress to be over-represented. In addition, certain potentially specific KAC motifs in RAM were detected. Importantly, 357 rice meiocyte proteins were acetylated; and four proteins genetically identified to be important for rice tapetum and pollen development were acetylated on 14 KAC sites in total. Furthermore, 47 putative secretory proteins were detected to exhibit acetylated status in RAM. Moreover, by comparing our lysine acetylome with the RAM phosphoproteome we obtained previously, we proposed a correlation between KAC and phosphorylation as a potential modulatory mechanism in rice RAM. This study provides the first global survey of KAC in plant reproductive development, making a promising starting point for further functional analysis of KAC during rice anther development and meiosis.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
49
|
Abstract
Lysine acetylation is a key posttranslational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established, and it is known that pathogen effector proteins encoding acetyltransferases can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can modulate protein acetylation during an immune response. Here, we investigate how the effector molecule HC-toxin (HCT), a histone deacetylase inhibitor produced by the fungal pathogen Cochliobolus carbonum race 1, promotes virulence in maize through altering protein acetylation. Using mass spectrometry, we globally quantified the abundance of 3,636 proteins and the levels of acetylation at 2,791 sites in maize plants treated with HCT as well as HCT-deficient or HCT-producing strains of C. carbonum Analyses of these data demonstrate that acetylation is a widespread posttranslational modification impacting proteins encoded by many intensively studied maize genes. Furthermore, the application of exogenous HCT enabled us to show that the activity of plant-encoded enzymes (histone deacetylases) can be modulated to alter acetylation of nonhistone proteins during an immune response. Collectively, these results provide a resource for further mechanistic studies examining the regulation of protein function by reversible acetylation and offer insight into the complex immune response triggered by virulent C. carbonum.
Collapse
|
50
|
Meng X, Xing S, Perez LM, Peng X, Zhao Q, Redoña ED, Wang C, Peng Z. Proteome-wide Analysis of Lysine 2-hydroxyisobutyrylation in Developing Rice (Oryza sativa) Seeds. Sci Rep 2017; 7:17486. [PMID: 29235492 PMCID: PMC5727541 DOI: 10.1038/s41598-017-17756-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/28/2017] [Indexed: 11/26/2022] Open
Abstract
Lysine 2-hydroxyisobutyrylation is a recently identified protein post-translational modification that is known to affect the association between histone and DNA. However, non-histone protein lysine 2-hydroxyisobutyrylation remains largely unexplored. Utilizing antibody-based affinity enrichment and nano-HPLC/MS/MS analyses of 2-hydroxyisobutyrylation peptides, we efficaciously identified 9,916 2-hydroxyisobutyryl lysine sites on 2,512 proteins in developing rice seeds, representing the first lysine 2-hydroxyisobutyrylome dataset in plants. Functional annotation analyses indicated that a wide variety of vital biological processes were preferably targeted by lysine 2-hydroxyisobutyrylation, including glycolysis/gluconeogenesis, TCA cycle, starch biosynthesis, lipid metabolism, protein biosynthesis and processing. Our finding showed that 2-hydroxyisobutyrylated histone sites were conserved across plants, human, and mouse. A number of 2-hydroxyisobutyryl sites were shared with other lysine acylations in both histone and non-histone proteins. Comprehensive analysis of the lysine 2-hydroxyisobutyrylation sites illustrated that the modification sites were highly sequence specific with distinct motifs, and they had less surface accessibility than other lysine residues in the protein. Overall, our study provides the first systematic analysis of lysine 2-hydroxyisobutyrylation proteome in plants, and it serves as an important resource for future investigations of the regulatory mechanisms and functions of lysine 2-hydroxyisobutyrylation.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Shihai Xing
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230000, China
| | - Loida M Perez
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, 310018, China
| | - Qingyong Zhao
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Edilberto D Redoña
- Delta Research and Extension Center, Stoneville, P.O. Box 197, Mississippi, 38776, USA
| | - Cailin Wang
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, 39762, USA.
| |
Collapse
|