1
|
Dainese-Marque O, Garcia V, Andrieu-Abadie N, Riond J. Contribution of Keratinocytes in Skin Cancer Initiation and Progression. Int J Mol Sci 2024; 25:8813. [PMID: 39201498 PMCID: PMC11354502 DOI: 10.3390/ijms25168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Keratinocytes are major cellular components of the skin and are strongly involved in its homeostasis. Oncogenic events, starting mainly from excessive sun exposure, lead to the dysregulation of their proliferation and differentiation programs and promote the initiation and progression of non-melanoma skin cancers (NMSCs). Primary melanomas, which originate from melanocytes, initiate and develop in close interaction with keratinocytes, whose role in melanoma initiation, progression, and immune escape is currently being explored. Recent studies highlighted, in particular, unexpected modes of communication between melanocytic cells and keratinocytes, which may be of interest as sources of new biomarkers in melanomagenesis or potential therapeutic targets. This review aims at reporting the various contributions of keratinocytes in skin basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and melanoma, with a greater focus on the latter in order to highlight some recent breakthrough findings. The readers are referred to recent reviews when contextual information is needed.
Collapse
Affiliation(s)
| | | | - Nathalie Andrieu-Abadie
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| | - Joëlle Riond
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| |
Collapse
|
2
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Zou JX, Chua W, Ser Z, Wang SM, Chiang GSH, Sanmugam K, Tan BY, Sobota RM, Li H. Detection of Bacterial Neutral Ceramidase in Diabetic Foot Ulcers with an Optimized Substrate and Chemoenzymatic Probes. Angew Chem Int Ed Engl 2023; 62:e202307553. [PMID: 37340712 DOI: 10.1002/anie.202307553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Ceramidases (CDases) are important in controlling skin barrier integrity by regulating ceramide composition and affording downstream signal molecules. While the functions of epidermal CDases are known, roles of neutral CDases secreted by skin-residing microbes are undefined. Here, we developed a one-step fluorogenic substrate, S-B, for specific detection of bacterial CDase activity and inhibitor screening. We identified a non-hydrolyzable substrate mimic, C6, as the best hit. Based on C6, we designed a photoaffinity probe, JX-1, which efficiently detects bacterial CDases. Using JX-1, we identified endogenous low-abundance PaCDase in a P. aeruginosa monoculture and in a mixed skin bacteria culture. Harnessing both S-B and JX-1, we found that CDase activity positively correlates with the relative abundance of P. aeruginosa and is negatively associated with wound area reduction in clinical diabetic foot ulcer patient samples. Overall, our study demonstrates that bacterial CDases are important regulators of skin ceramides and potentially play a role in wound healing.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wisely Chua
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Shi Mei Wang
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | | | | | | | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Hao Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
5
|
Zhao Y, Zhang Y, Li J, Zhang N, Jin Q, Qi Y, Song P. Pathogenic sphingosine 1-phosphate pathway in psoriasis: a critical review of its pathogenic significance and potential as a therapeutic target. Lipids Health Dis 2023; 22:52. [PMID: 37072847 PMCID: PMC10111724 DOI: 10.1186/s12944-023-01813-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid mediator that exerts a variety of biological functions, including immune, cardiovascular, and neurological regulation as well as tumor promotion, through high-affinity G protein-coupled receptors (S1P1-5). It has been reported that circulating S1P levels remain higher in patients with psoriasis than in healthy individuals and that circulating S1P levels do not decrease after anti-TNF-α treatment in those patients. The S1P-S1PR signaling system plays an important role in inhibiting keratinocyte proliferation, regulating lymphocyte migration, and promoting angiogenesis, thus contributing to the regulation of psoriasis pathogenesis. Here, we review the mechanisms by which S1P-S1PR signaling affects the development of psoriasis and the available clinical/preclinical evidence for targeting S1P-S1PR in psoriasis. S1P-S1PR signaling mechanisms may partially explain the link between psoriasis and its comorbidities. Although the detailed mechanisms remain to be elucidated, S1P may be a new target for future psoriasis remission.
Collapse
Affiliation(s)
- Yuechun Zhao
- Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Traditional Chinese Medicine, Chaoyang, China
| | - Yuheng Zhang
- Beijing University of Traditional Chinese Medicine, Chaoyang, China
| | - Jiaqi Li
- Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Ningxin Zhang
- Beijing University of Traditional Chinese Medicine, Chaoyang, China
| | - Qiubai Jin
- Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxia Qi
- Beijing University of Traditional Chinese Medicine, Chaoyang, China
| | - Ping Song
- Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Masuda-Kuroki K, Di Nardo A. Sphingosine 1-Phosphate Signaling at the Skin Barrier Interface. BIOLOGY 2022; 11:biology11060809. [PMID: 35741330 PMCID: PMC9219813 DOI: 10.3390/biology11060809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a product of membrane sphingolipid metabolism. S1P is secreted and acts via G-protein-coupled receptors, S1PR1-5, and is involved in diverse cellular functions, including cell proliferation, immune suppression, and cardiovascular functions. Recent studies have shown that the effects of S1P signaling are extended further by coupling the different S1P receptors and their respective downstream signaling pathways. Our group has recently reported that S1P inhibits cell proliferation and induces differentiation in human keratinocytes. There is a growing understanding of the connection between S1P signaling, skin barrier function, and skin diseases. For example, the activation of S1PR1 and S1PR2 during bacterial invasion regulates the synthesis of inflammatory cytokines in human keratinocytes. Moreover, S1P-S1PR2 signaling is involved in the production of inflammatory cytokines and can be triggered by epidermal mechanical stress and bacterial invasion. This review highlights how S1P affects human keratinocyte proliferation, differentiation, immunoreaction, and mast cell immune response, in addition to its effects on the skin barrier interface. Finally, studies targeting S1P-S1PR signaling involved in inflammatory skin diseases are also presented.
Collapse
|
7
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
8
|
Abstract
Ceramides are a class of sphingolipid that is the backbone structure for all sphingolipids, such as glycosphingolipids and phosphosphingolipids. While being a minor constituent of cellular membranes, ceramides are the major lipid component (along with cholesterol, free fatty acid, and other minor components) of the intercellular spaces of stratum corneum that forms the epidermal permeability barrier. These stratum corneum ceramides consist of unique heterogenous molecular species that have only been identified in terrestrial mammals. Alterations of ceramide molecular profiles are characterized in skin diseases associated with compromised permeability barrier functions, such as atopic dermatitis, psoriasis and xerosis. In addition, hereditary abnormalities of some ichthyoses are associated with an epidermal unique ceramide species, omega-O-acylceramide. Ceramides also serve as lipid modulators to regulate cellular functions, including cell cycle arrest, differentiation, and apoptosis, and it has been demonstrated that changes in ceramide metabolism also cause certain diseases. In addition, ceramide metabolites, sphingoid bases, sphingoid base-1-phosphate and ceramide-1-phosphate are also lipid mediators that regulate cellular functions. In this review article, we describe diverse physiological and pathological roles of ceramides and their metabolites in epidermal permeability barrier function, epidermal cell proliferation and differentiation, immunity, and cutaneous diseases. Finally, we summarize the utilization of ceramides as therapy to treat cutaneous disease.
Collapse
|
9
|
Jiang H, Gu J, Zhao H, Joshi S, Perlmutter JS, Gropler RJ, Klein RS, Benzinger TLS, Tu Z. PET Study of Sphingosine-1-phosphate Receptor 1 Expression in Response to S. aureus Infection. Mol Imaging 2021; 2021:9982020. [PMID: 34934406 PMCID: PMC8654346 DOI: 10.1155/2021/9982020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) plays a crucial role in infectious diseases. Targeting S1PR1 provides protection against pathogens, such as influenza viruses. This study is aimed at investigating S1PR1 in response to bacterial infection by assessing S1PR1 expression in S. aureus-infected mice. A rodent local muscle bacterial infection model was developed by injecting S. aureus to the lower hind limb of Balb/c mice. The changes of S1PR1 expression in response to bacterial infection and blocking treatment were assessed using ex vivo biodistribution and in vivo positron emission tomography (PET) after intravenous injection of an S1PR1-specific radiotracer [18F]TZ4877. The specificity of [18F]TZ4877 was assessed using S1PR1-specific antagonist, NIBR-0213, and S1PR1-specific DsiRNA pretreated the animals. Immunohistochemical studies were performed to confirm the increase of S1PR1 expression in response to infection. Ex vivo biodistribution data showed that the uptake of [18F]TZ4877 was increased 30.6%, 54.3%, 74.3%, and 115.3% in the liver, kidney, pancreas, and thymus of the infected mice, respectively, compared to that in normal control mice, indicating that S1PR1 is involved in the early immune response to bacterial infection. NIBR-0213 or S1PR1-specific DsiRNA pretreatment reduced the tissue uptake of [18F]TZ4877, suggesting that uptake of [18F]TZ4877 is specific. Our PET/CT study data also confirmed that infected mice have increased [18F]TZ4877 uptake in several organs comparing to that in normal control mice. Particularly, compared to control mice, a 39% increase of [18F]TZ4877 uptake was observed in the infected muscle of S. aureus mice, indicating that S1PR1 expression was directly involved in the inflammatory response to infection. Overall, our study suggested that S1PR1 plays an important role in the early immune response to bacterial infection. The uptake of [18F]TZ4877 is tightly correlated with the S1R1 expression in response to S. aureus infection. PET with S1PR1-specific radiotracer [18F]TZ4877 could provide a noninvasive tool for detecting the early S1PR1 immune response to infectious diseases.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sumit Joshi
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Neuroscience, Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robyn S. Klein
- Department of Neuroscience, Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
10
|
MiR-32-3p Regulates Myocardial Injury Induced by Microembolism and Microvascular Obstruction by Targeting RNF13 to Regulate the Stability of Atherosclerotic Plaques. J Cardiovasc Transl Res 2021; 15:143-166. [PMID: 34185281 DOI: 10.1007/s12265-021-10150-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to explore the molecular mechanism of myocardial protection. The effects of miR-32-3p and ring finger protein 13 (RNF13) on endoplasmic reticulum (ER) stress-induced apoptosis of A-10 cells and human umbilical vein endothelial cells (HUVEC) were detected using flow cytometry. The effects of miR-32-3p and phenylbutyric acid (PBA) on plaque instability and myocardial tissue injury in rats were investigated after establishment of arterial plaque model and embolization model and treatment with miR-32-3p-antagomir and PBA. RNF13, which was differentially expressed in myocardial infarction, was the direct target gene of miR-32-3p. MiR-32-3p inhibited RNF13 expression and targeted RNF13 to inhibit ER stress-induced cell apoptosis. Furthermore, inhibiting miR-32-3p expression induced arterial plaque instability by reducing survival, increasing pathological lesions in arterial tissue, up-regulating ER stress-related proteins, and regulating the expressions of apoptosis-related proteins in the model rats. However, PBA reversed the effects of miR-32-3p-antagomir on the model rats. MiR-32-3p regulates myocardial injury induced by micro-embolism and micro-vascular obstruction by targeting RNF13 to regulate the stability of atherosclerotic plaques.
Collapse
|
11
|
Cutting Edge of the Pathogenesis of Atopic Dermatitis: Sphingomyelin Deacylase, the Enzyme Involved in Its Ceramide Deficiency, Plays a Pivotal Role. Int J Mol Sci 2021; 22:ijms22041613. [PMID: 33562655 PMCID: PMC7916095 DOI: 10.3390/ijms22041613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Atopic dermatitis (AD) is characterized clinically by severe dry skin and functionally by both a cutaneous barrier disruption and an impaired water-holding capacity in the stratum corneum (SC) even in the nonlesional skin. The combination of the disrupted barrier and water-holding functions in nonlesional skin is closely linked to the disease severity of AD, which suggests that the barrier abnormality as well as the water deficiency are elicited as a result of the induced dermatitis and subsequently trigger the recurrence of dermatitis. These functional abnormalities of the SC are mainly attributable to significantly decreased levels of total ceramides and the altered ceramide profile in the SC. Clinical studies using a synthetic pseudo-ceramide (pCer) that can function as a natural ceramide have indicated the superior clinical efficacy of pCer and, more importantly, have shown that the ceramide deficiency rather than changes in the ceramide profile in the SC of AD patients plays a central role in the pathogenesis of AD. Clinical studies of infants with AD have shown that the barrier disruption due to the ceramide deficiency is not inherent and is essentially dependent on postinflammatory events in those infants. Consistently, the recovery of trans-epidermal water loss after tape-stripping occurs at a significantly slower rate only at 1 day post-tape-stripping in AD skin compared with healthy control (HC) skin. This resembles the recovery pattern observed in Niemann-Pick disease, which is caused by an acid sphingomyelinase (aSMase) deficiency. Further, comparison of ceramide levels in the SC between before and after tape-stripping revealed that whereas ceramide levels in HC skin are significantly upregulated at 4 days post-tape-stripping, their ceramide levels remain substantially unchanged at 4 days post-tape-stripping. Taken together, the sum of these findings strongly suggests that an impaired homeostasis of a ceramide-generating process may be associated with these abnormalities. We have discovered a novel enzyme, sphingomyelin (SM) deacylase, which cleaves the N-acyl linkage of SM and glucosylceramide (GCer). The activity of SM deacylase is significantly increased in AD lesional epidermis as well as in the involved and uninvolved SC of AD skin, but not in the skin of patients with contact dermatitis or chronic eczema, compared with HC skin. SM deacylase competes with aSMase and β-glucocerebrosidase (BGCase) to hydrolyze their common substrates, SM and GCer, to yield their lysoforms sphingosylphosphorylcholine (SPC) and glucosylsphingosine (GSP), respectively, instead of ceramide. Consistently, those reaction products (SPC and GSP) accumulate to a greater extent in the involved and uninvolved SC of AD skin compared with chronic eczema or contact dermatitis skin as well as HC skin. Successive chromatographies were used to purify SM deacylase to homogeneity with a single band of ≈43 kDa and with an enrichment of >14,000-fold. Analysis of a protein spot with SM deacylase activity separated by 2D-SDS-PAGE using MALDI-TOF MS/MS allowed its amino acid sequence to be determined and to identify it as the β-subunit of acid ceramidase (aCDase), an enzyme consisting of α- and β-subunits linked by amino-bonds and a single S-S bond. Western blotting of samples treated with 2-mercaptoethanol revealed that whereas recombinant human aCDase was recognized by antibodies to the α-subunit at ≈56 and ≈13 kDa and the β-subunit at ≈43 kDa, the purified SM deacylase was detectable only by the antibody to the β-subunit at ≈43 kDa. Breaking the S-S bond of recombinant human aCDase with dithiothreitol elicited the activity of SM deacylase with an apparent size of ≈40 kDa upon gel chromatography in contrast to aCDase activity with an apparent size of ≈50 kDa in untreated recombinant human aCDase. These results provide new insights into the essential role of SM deacylase as the β-subunit aCDase that causes the ceramide deficiency in AD skin.
Collapse
|
12
|
Al Sharif S, Pinto DO, Mensah GA, Dehbandi F, Khatkar P, Kim Y, Branscome H, Kashanchi F. Extracellular Vesicles in HTLV-1 Communication: The Story of an Invisible Messenger. Viruses 2020; 12:E1422. [PMID: 33322043 PMCID: PMC7763366 DOI: 10.3390/v12121422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) infects 5-10 million people worldwide and is the causative agent of adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) as well as other inflammatory diseases. A major concern is that the most majority of individuals with HTLV-1 are asymptomatic carriers and that there is limited global attention by health care officials, setting up potential conditions for increased viral spread. HTLV-1 transmission occurs primarily through sexual intercourse, blood transfusion, intravenous drug usage, and breast feeding. Currently, there is no cure for HTLV-1 infection and only limited treatment options exist, such as class I interferons (IFN) and Zidovudine (AZT), with poor prognosis. Recently, small membrane-bound structures, known as extracellular vesicles (EVs), have received increased attention due to their potential to carry viral cargo (RNA and proteins) in multiple pathogenic infections (i.e., human immunodeficiency virus type I (HIV-1), Zika virus, and HTLV-1). In the case of HTLV-1, EVs isolated from the peripheral blood and cerebral spinal fluid (CSF) of HAM/TSP patients contained the viral transactivator protein Tax. Additionally, EVs derived from HTLV-1-infected cells (HTLV-1 EVs) promote functional effects such as cell aggregation which enhance viral spread. In this review, we present current knowledge surrounding EVs and their potential role as immune-modulating agents in cancer and other infectious diseases such as HTLV-1 and HIV-1. We discuss various features of EVs that make them prime targets for possible vehicles of future diagnostics and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (S.A.S.); (D.O.P.); (G.A.M.); (F.D.); (P.K.); (Y.K.); (H.B.)
| |
Collapse
|
13
|
Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal 2020; 78:109849. [PMID: 33249088 DOI: 10.1016/j.cellsig.2020.109849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important immune modulator responsible for physiological cellular responses like lymphocyte development and function, positioning and emigration of T and B cells and cytokine secretion. Recent reports indicate that S1P does not only regulate immunity, but can also protect the function of organs by inducing disease tolerance. S1P also influences the replication of certain pathogens, and sphingolipids are also involved in pathogen recognition and killing. Certain carrier molecules for S1P like serum albumin and high density lipoproteins contribute to the regulation of S1P effects. They are able to associate with S1P and modulate its signaling properties. Similar to S1P, both carrier molecules are also decreased in sepsis patients and likely contribute to sepsis pathology and severity. In this review, we will introduce the concept of disease tolerance and the involvement of S1P. We will also discuss the contribution of S1P and its precursor sphingosine to host defense mechanisms against pathogens. Finally, we will summarize current data demonstrating the influence of carrier molecules for differential S1P signaling. The presented data may lead to new strategies for the prevention and containment of sepsis.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
14
|
Teranishi Y, Kuwahara H, Ueda M, Takemura T, Kusumoto M, Nakamura K, Sakai J, Kimura T, Furutani Y, Kawashima M, Imokawa G, Nogami-Itoh M. Sphingomyelin Deacylase, the Enzyme Involved in the Pathogenesis of Atopic Dermatitis, Is Identical to the β-Subunit of Acid Ceramidase. Int J Mol Sci 2020; 21:ijms21228789. [PMID: 33233706 PMCID: PMC7699893 DOI: 10.3390/ijms21228789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
A ceramide deficiency in the stratum corneum (SC) is an essential etiologic factor for the dry and barrier-disrupted skin of patients with atopic dermatitis (AD). Previously, we reported that sphingomyelin (SM) deacylase, which hydrolyzes SM and glucosylceramide at the acyl site to yield their lysoforms sphingosylphosphorylcholine (SPC) and glucosylsphingosine, respectively, instead of ceramide and/or acylceramide, is over-expressed in AD skin and results in a ceramide deficiency. Although the enzymatic properties of SM deacylase have been clarified, the enzyme itself remains unidentified. In this study, we purified and characterized SM deacylase from rat skin. The activities of SM deacylase and acid ceramidase (aCDase) were measured using SM and ceramide as substrates by tandem mass spectrometry by monitoring the production of SPC and sphingosine, respectively. Levels of SM deacylase activity from various rat organs were higher in the order of skin > lung > heart. By successive chromatography using Phenyl-5PW, Rotofor, SP-Sepharose, Superdex 200 and Shodex RP18-415, SM deacylase was purified to homogeneity with a single band of an apparent molecular mass of 43 kDa with an enrichment of > 14,000-fold. Analysis by MALDI-TOF MS/MS using a protein spot with SM deacylase activity separated by 2D-SDS-PAGE allowed its amino acid sequence to be determined and identified as the β-subunit of aCDase, which consists of α- and β-subunits linked by amino bonds and a single S-S bond. Western blotting of samples treated with 2-mercaptoethanol revealed that, whereas recombinant human aCDase was recognized by antibodies to the α-subunit at ~56 kDa and ~13 kDa and the β-subunit at ~43 kDa, the purified SM deacylase was detectable only by the antibody to the β-subunit at ~43 kDa. Breaking the S-S bond of recombinant human aCDase with dithiothreitol elicited the activity of SM deacylase with ~40 kDa upon gel chromatography. These results provide new insights into the essential role of SM deacylase expressed as an aCDase-degrading β-subunit that evokes the ceramide deficiency in AD skin.
Collapse
Affiliation(s)
- Yasuhiro Teranishi
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka City, Osaka 554-0022, Japan; (Y.T.); (H.K.); (M.U.); (T.T.); (M.K.); (K.N.); (J.S.); (T.K.); (Y.F.)
| | - Hiroshi Kuwahara
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka City, Osaka 554-0022, Japan; (Y.T.); (H.K.); (M.U.); (T.T.); (M.K.); (K.N.); (J.S.); (T.K.); (Y.F.)
| | - Masaru Ueda
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka City, Osaka 554-0022, Japan; (Y.T.); (H.K.); (M.U.); (T.T.); (M.K.); (K.N.); (J.S.); (T.K.); (Y.F.)
| | - Tadashi Takemura
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka City, Osaka 554-0022, Japan; (Y.T.); (H.K.); (M.U.); (T.T.); (M.K.); (K.N.); (J.S.); (T.K.); (Y.F.)
| | - Masanori Kusumoto
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka City, Osaka 554-0022, Japan; (Y.T.); (H.K.); (M.U.); (T.T.); (M.K.); (K.N.); (J.S.); (T.K.); (Y.F.)
| | - Keiji Nakamura
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka City, Osaka 554-0022, Japan; (Y.T.); (H.K.); (M.U.); (T.T.); (M.K.); (K.N.); (J.S.); (T.K.); (Y.F.)
| | - Jun Sakai
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka City, Osaka 554-0022, Japan; (Y.T.); (H.K.); (M.U.); (T.T.); (M.K.); (K.N.); (J.S.); (T.K.); (Y.F.)
| | - Toru Kimura
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka City, Osaka 554-0022, Japan; (Y.T.); (H.K.); (M.U.); (T.T.); (M.K.); (K.N.); (J.S.); (T.K.); (Y.F.)
| | - Yasuji Furutani
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka City, Osaka 554-0022, Japan; (Y.T.); (H.K.); (M.U.); (T.T.); (M.K.); (K.N.); (J.S.); (T.K.); (Y.F.)
| | - Makoto Kawashima
- Department of Dermatology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | - Genji Imokawa
- Center for Bioscience Research & Education, Utsunomiya University, 350 Mine Utsunomiya, Tochigi 321-8505, Japan
- Correspondence: (G.I.); (M.N.-I.); Tel.: +81-28-649-5282 (G.I.); +81-72-639-7010 (M.N.-I.); Fax: +81-72-641-9881 (M.N.-I.)
| | - Mari Nogami-Itoh
- National Institutes of Biomedical Innovation, Health and Nutrition, AI Center for Health and Biomedical Research 7-6-8 Asagi Saito Ibaraki-city, Osaka 567-0085, Japan
- Correspondence: (G.I.); (M.N.-I.); Tel.: +81-28-649-5282 (G.I.); +81-72-639-7010 (M.N.-I.); Fax: +81-72-641-9881 (M.N.-I.)
| |
Collapse
|
15
|
Igawa S, Choi JE, Wang Z, Chang YL, Wu CC, Werbel T, Ishida-Yamamoto A, Nardo AD. Human Keratinocytes Use Sphingosine 1-Phosphate and its Receptors to Communicate Staphylococcus aureus Invasion and Activate Host Defense. J Invest Dermatol 2019; 139:1743-1752.e5. [PMID: 30807768 PMCID: PMC7682680 DOI: 10.1016/j.jid.2019.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator generated when a cell membrane or its components are damaged by various factors. S1P regulates diverse cell activities via S1P receptors (S1PRs). Keratinocytes express S1PR1-5. Although it is known that S1PRs control keratinocyte differentiation, apoptosis, and wound healing, S1PR functions in keratinocyte infections have not been fully elucidated. We propose that the S1P-S1PR axis in keratinocytes works as a biosensor for bacterial invasion. Indeed, in human impetigo infection, we found high epidermal expression of S1PR1 and S1PR2 in the skin. Furthermore, in normal human epidermal keratinocytes in vitro, treatment with Staphylococcus aureus bacterial supernatant not only induced S1P production but also increased the transcription of S1PR2, confirming our in vivo observation, as well as increased the levels of TNFA, IL36G, IL6, and IL8 mRNAs. However, direct treatment of normal human epidermal keratinocytes with S1P increased the expressions of IL36G, TNFA, and IL8, but not IL6. In both S1P- and S. aureus bacterial supernatant-treated normal human epidermal keratinocytes, S1PR1 knockdown reduced IL36G, TNFA, and IL8 transcription, and the S1PR2 antagonist JTE013 blocked the secretion of these cytokines. Overall, we have proven that during infections, keratinocytes communicate damage by using S1P release and tight control of S1PR1 and 2.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Jae Eun Choi
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Yu-Ling Chang
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Chia Chi Wu
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Tyler Werbel
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA
| | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California, San Diego, La Jolla, USA,Corresponding author: Anna Di Nardo, Department of Dermatology, School of Medicine, University of California, San Diego, 9500 Gilman Drive #0869, La Jolla, CA 92093, Tel: 858-822-6712, Fax: 858-822-6985, , ORCiD: https://orcid.org/0000-0002-5575-9968
| |
Collapse
|
16
|
Wedman PA, Aladhami A, Chumanevich AP, Fuseler JW, Oskeritzian CA. Mast cells and sphingosine-1-phosphate underlie prelesional remodeling in a mouse model of eczema. Allergy 2018; 73:405-415. [PMID: 28905998 PMCID: PMC10127444 DOI: 10.1111/all.13310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic skin inflammation that affects children and adults worldwide, but its pathogenesis remains ill-understood. METHODS We show that a single application of OVA to mouse skin initiates remodeling and cellular infiltration of the hypodermis measured by a newly developed computer-aided method. RESULTS Importantly, we demonstrate that skin mast cell (MC) activation and local sphingosine-1-phosphate (S1P) are significantly augmented after OVA treatment in mice. Deficiency in sphingosine kinase (SphK)1, the S1P-producing enzyme, or in MC, remarkably mitigates all signs of OVA-mediated remodeling and MC activation. Furthermore, skin S1P levels remain unchanged in MC-deficient mice exposed to OVA. LPS-free OVA does not recapitulate any of the precursor signs of AD, supporting a triggering contribution of LPS in AD that, per se, suffice to activate local MC and elevate skin S1P. CONCLUSION We describe MC and S1P as novel pathogenic effectors that initiate remodeling in AD prior to any skin lesions and reveal the significance of LPS in OVA used in most studies, thus mimicking natural antigen (Ag) exposure.
Collapse
Affiliation(s)
- P. A. Wedman
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
| | - A. Aladhami
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
- University of Baghdad; Baghdad Iraq
| | - A. P. Chumanevich
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
| | - J. W. Fuseler
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
| | - C. A. Oskeritzian
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
| |
Collapse
|
17
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
18
|
Okino N, Ito M. Molecular mechanism for sphingosine-induced Pseudomonas ceramidase expression through the transcriptional regulator SphR. Sci Rep 2016; 6:38797. [PMID: 27941831 PMCID: PMC5150637 DOI: 10.1038/srep38797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa, an opportunistic, but serious multidrug-resistant pathogen, secretes a ceramidase capable of cleaving the N-acyl linkage of ceramide to generate fatty acids and sphingosine. We previously reported that the secretion of P. aeruginosa ceramidase was induced by host-derived sphingolipids, through which phospholipase C-induced hemolysis was significantly enhanced. We herein investigated the gene(s) regulating sphingolipid-induced ceramidase expression and identified SphR, which encodes a putative AraC family transcriptional regulator. Disruption of the sphR gene in P. aeruginosa markedly decreased the sphingomyelin-induced secretion of ceramidase, reduced hemolytic activity, and resulted in the loss of sphingomyelin-induced ceramidase expression. A microarray analysis confirmed that sphingomyelin significantly induced ceramidase expression in P. aeruginosa. Furthermore, an electrophoretic mobility shift assay revealed that SphR specifically bound free sphingoid bases such as sphingosine, dihydrosphingosine, and phytosphingosine, but not sphingomyelin or ceramide. A β-galactosidase-assisted promoter assay showed that sphingosine activated ceramidase expression through SphR at a concentration of 100 nM. Collectively, these results demonstrated that sphingosine induces the secretion of ceramidase by promoting the mRNA expression of ceramidase through SphR, thereby enhancing hemolytic phospholipase C-induced cytotoxicity. These results facilitate understanding of the physiological role of bacterial ceramidase in host cells.
Collapse
Affiliation(s)
- Nozomu Okino
- The Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- The Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
19
|
Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. Mediators Inflamm 2015; 2015:120748. [PMID: 26609196 PMCID: PMC4644562 DOI: 10.1155/2015/120748] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/19/2023] Open
Abstract
Glycosphingolipids (GSLs) are composed of hydrophobic ceramide and hydrophilic sugar chains. GSLs cluster to form membrane microdomains (lipid rafts) on plasma membranes, along with several kinds of transducer molecules, including Src family kinases and small G proteins. However, GSL-mediated biological functions remain unclear. Lactosylceramide (LacCer, CDw17) is highly expressed on the plasma membranes of human phagocytes and mediates several immunological and inflammatory reactions, including phagocytosis, chemotaxis, and superoxide generation. LacCer forms membrane microdomains with the Src family tyrosine kinase Lyn and the Gαi subunit of heterotrimeric G proteins. The very long fatty acids C24:0 and C24:1 are the main ceramide components of LacCer in neutrophil plasma membranes and are directly connected with the fatty acids of Lyn and Gαi. These observations suggest that the very long fatty acid chains of ceramide are critical for GSL-mediated outside-in signaling. Sphingosine is another component of ceramide, with the hydrolysis of ceramide by ceramidase producing sphingosine and fatty acids. Sphingosine is phosphorylated by sphingosine kinase to sphingosine-1-phosphate, which is involved in a wide range of cellular functions, including growth, differentiation, survival, chemotaxis, angiogenesis, and embryogenesis, in various types of cells. This review describes the role of ceramide moiety of GSLs and its metabolites in immunological and inflammatory reactions in human.
Collapse
|
20
|
Arish M, Husein A, Kashif M, Saleem M, Akhter Y, Rub A. Sphingosine-1-phosphate signaling: unraveling its role as a drug target against infectious diseases. Drug Discov Today 2015; 21:133-142. [PMID: 26456576 DOI: 10.1016/j.drudis.2015.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022]
Abstract
Sphingosine-1-phosphate (S1P) signaling is reported in variety of cell types, including immune, endothelial and cancerous cells. It is emerging as a crucial regulator of cellular processes, such as apoptosis, cell proliferation, migration, differentiation and so on. This signaling pathway is initiated by the intracellular production and secretion of S1P through a cascade of enzymatic reactions. Binding of S1P to different S1P receptors (S1PRs) activates different downstream signaling pathways that regulate the cellular functions differentially depending upon the cell type. An accumulating body of evidence suggests that S1P metabolism and signaling is often impaired during infectious diseases; thus, its manipulation might be helpful in the treatment of such diseases. In this review, we summarize recent advances in our understanding of the S1P signaling pathway and its candidature as a novel drug target against infectious diseases.
Collapse
Affiliation(s)
- Mohd Arish
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Atahar Husein
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammad Kashif
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammed Saleem
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Shahpur, Kangra, HP 176216, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
21
|
Orchestration of membrane receptor signaling by membrane lipids. Biochimie 2015; 113:111-24. [DOI: 10.1016/j.biochi.2015.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/05/2015] [Indexed: 12/20/2022]
|
22
|
Popa I, Portoukalian J, Haftek M. Specificity in the alteration of lesional and non-lesional skin lipids in atopic dogs. World J Dermatol 2015; 4:1-7. [DOI: 10.5314/wjd.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/29/2014] [Accepted: 12/17/2014] [Indexed: 02/07/2023] Open
Abstract
The present paper is in the same time an overview of the literature concerning the alterations of lipids in the stratum corneum (SC) of atopic dogs and a review of data based on our publications. Knowing the importance of the SC barrier function for against pathogens in atopic dermatitis, we show for the first time a detailed biochemical analysis of lipids corresponding to the same amount of proteins in the successive layers of canine SC taken using tape stripping and their specificity as compared to humans. Also we show new results concerning the changes in the composition for protein-bound ceramides, and for the other lipids in involved and non-involved skin areas in atopic dogs. We show how a topical or oral treatment can restore the SC lipid composition and reconstruct the barrier integrity by up-regulating the biosynthesis of protein-bound ceramides.
Collapse
|