1
|
Popa M, Fosse V, Kleinmanns K, Bjørge L, McCormack E. Xenograft Models of Ovarian Cancer for Therapy Evaluation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2424:275-293. [PMID: 34918301 DOI: 10.1007/978-1-0716-1956-8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The evaluation of novel treatment regimes in ovarian cancer, ranging from cytotoxic agents and targeted therapy to surgery, demands clinically relevant mouse models to mimic human disease. These more advanced preclinical models provide a tool to obtain robust data on the mechanism of action, cytotoxicity and therapeutic efficacy of newly emerging antitumor therapies.In this chapter, we describe how to generate ovarian cancer xenograft models through injection of human tumor cell lines in immunocompromised mice. Detailed methodological descriptions are provided for both the commonly applied subcutaneous model and the more technically challenging orthotopic tumor model that involves inoculation of cancer cells in the ovarian bursa. We demonstrate how to monitor tumor growth and metastases in orthotopic ovarian models through noninvasive optical imaging and the procedures for treatment strategy, including administration of test compounds and debulking surgery. We comment on the strengths, limitations, and procedural challenges associated with each of the models.
Collapse
Affiliation(s)
- Mihaela Popa
- CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Vibeke Fosse
- CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Katrin Kleinmanns
- CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Line Bjørge
- CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
| | - Emmet McCormack
- CCBIO, Centre for Pharmacy, Vivarium, and Department of Clinical Science,, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Berg HF, Hjelmeland ME, Lien H, Espedal H, Fonnes T, Srivastava A, Stokowy T, Strand E, Bozickovic O, Stefansson IM, Bjørge L, Trovik J, Haldorsen IS, Hoivik EA, Krakstad C. Patient-derived organoids reflect the genetic profile of endometrial tumors and predict patient prognosis. COMMUNICATIONS MEDICINE 2021; 1:20. [PMID: 35602206 PMCID: PMC9053236 DOI: 10.1038/s43856-021-00019-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background A major hurdle in translational endometrial cancer (EC) research is the lack of robust preclinical models that capture both inter- and intra-tumor heterogeneity. This has hampered the development of new treatment strategies for people with EC. Methods EC organoids were derived from resected patient tumor tissue and expanded in a chemically defined medium. Established EC organoids were orthotopically implanted into female NSG mice. Patient tissue and corresponding models were characterized by morphological evaluation, biomarker and gene expression and by whole exome sequencing. A gene signature was defined and its prognostic value was assessed in multiple EC cohorts using Mantel-Cox (log-rank) test. Response to carboplatin and/or paclitaxel was measured in vitro and evaluated in vivo. Statistical difference between groups was calculated using paired t-test. Results We report EC organoids established from EC patient tissue, and orthotopic organoid-based patient-derived xenograft models (O-PDXs). The EC organoids and O-PDX models mimic the tissue architecture, protein biomarker expression and genetic profile of the original tissue. Organoids show heterogenous sensitivity to conventional chemotherapy, and drug response is reproduced in vivo. The relevance of these models is further supported by the identification of an organoid-derived prognostic gene signature. This signature is validated as prognostic both in our local patient cohorts and in the TCGA endometrial cancer cohort. Conclusions We establish robust model systems that capture both the diversity of endometrial tumors and intra-tumor heterogeneity. These models are highly relevant preclinical tools for the elucidation of the molecular pathogenesis of EC and identification of potential treatment strategies. To study the biology of cancer and test new potential treatments, it is important to use models that mimic patients’ tumors. Such models have largely been lacking in endometrial cancer. We therefore aimed to developing miniature tumors, called “organoids”, directly from patient tumor tissue. Our organoids maintained the characteristics and genetic features of the tumors from which they were derived, would grow into endometrial tumors in mice, and exhibited patient-specific responses to chemotherapy drugs. In summary, we have developed models that will help us better understand the biology of endometrial tumors and can be used to potentially identify new effective drugs for endometrial cancer patients. Berg et al. establish a panel of patient-derived endometrial cancer organoids and xenograft models. They show that their models recapitulate the genetic profile of the donor tumor and can be used for drug testing and development of a prognostic gene signature.
Collapse
|
3
|
Straughn AR, Kelm NQ, Kakar SS. Withaferin A and Ovarian Cancer Antagonistically Regulate Skeletal Muscle Mass. Front Cell Dev Biol 2021; 9:636498. [PMID: 33718372 PMCID: PMC7947350 DOI: 10.3389/fcell.2021.636498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a complex wasting syndrome that overwhelmingly affects the majority of late-stage cancer patients. Additionally, there are currently no efficacious therapeutic agents to treat the muscle atrophy induced by the cancer. While several preclinical studies have investigated the molecular signals orchestrating cachexia, very little information exists pertaining to ovarian cancer and the associated cachexia. Work from our lab has recently demonstrated that the steroidal lactone Withaferin A (WFA) is capable of attenuating the atrophying effects of ovarian cancer in a preclinical mouse model. However, it remained to be determined whether WFA's effect was in response to its anti-tumorigenic properties, or if it was capable of targeting skeletal muscle directly. The purpose of this study was to uncover whether WFA was capable of regulating muscle mass under tumor-free and tumor-bearing conditions. Treatment with WFA led to an improvement in functional muscle strength and mass under tumor-bearing and naïve conditions. WFA and ovarian cancer were observed to act antagonistically upon critical skeletal muscle regulatory systems, notably myogenic progenitors and proteolytic degradation pathways. Our results demonstrated for the first time that, while WFA has anti-tumorigenic properties, it also exerts hypertrophying effects on skeletal muscle mass, suggesting that it could be an anti-cachectic agent in the settings of ovarian cancer.
Collapse
Affiliation(s)
- Alex R. Straughn
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Natia Q. Kelm
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Sham S. Kakar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
4
|
Morse CB, Voillet V, Bates BM, Chiu EY, Garcia NM, Gottardo R, Greenberg PD, Anderson KG. Development of a clinically relevant ovarian cancer model incorporating surgical cytoreduction to evaluate treatment of micro-metastatic disease. Gynecol Oncol 2020; 160:427-437. [PMID: 33229044 DOI: 10.1016/j.ygyno.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Mouse models of ovarian cancer commonly transfer large numbers of tumor cells into the peritoneal cavity to establish experimental metastatic disease, which may not adequately model early metastatic spread from a primary tumor site. We hypothesized we could develop an ovarian cancer model that predictably represents micro-metastatic disease. METHODS Murine ID8VEGF ovarian cancer cells were transduced to express enhanced luciferase (eLuc) to enable intravital detection of microscopic disease burden and injected beneath the ovarian bursa of C57Bl/6 mice. At 6 or 10 weeks after orthotopic injection, when mice had detectable metastases, hysterectomy and bilateral salpingo-oophorectomy was performed to remove all macroscopic disease, and survival monitored. Immunohistochemistry and gene expression profiling were performed on primary and metastatic tumors. RESULTS eLuc-transduced ID8VEGF cells were brighter than cells transduced with standard luciferase, enabling in vivo visualization of microscopic intra-abdominal metastases developing after orthotopic injection. Primary surgical cytoreduction removed the primary tumor mass but left minimal residual disease in all mice. Metastatic sites that developed following orthotopic injection were similar to metastatic human ovarian cancer sites. Gene expression and immune infiltration were similar between primary and metastatic mouse tumors. Surgical cytoreduction prolonged survival compared to no surgery, with earlier cytoreduction more beneficial than delayed, despite micro-metastatic disease in both settings. CONCLUSIONS Mice with primary ovarian tumors established through orthotopic injection develop progressively fatal metastatic ovarian cancer, and benefit from surgical cytoreduction to remove bulky disease. This model enables the analysis of therapeutic regimens designed to target and potentially eradicate established minimal residual disease.
Collapse
Affiliation(s)
- Christopher B Morse
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, United States of America; Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America; Division of Gynecologic Oncology, Allegheny Health Network, West Penn Hospital, Mellon Pavilion, Suite 310, 4815 Liberty Avenue, Pittsburgh, PA 15224, United States of America.
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Breanna M Bates
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Edison Y Chiu
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Nicolas M Garcia
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America
| | - Philip D Greenberg
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America; Divison of Medical Oncology, Department of Medicine, Department of Immunology, University of Washington, Seattle, WA 98195, United States of America.
| | - Kristin G Anderson
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States of America.
| |
Collapse
|
5
|
Kleinmanns K, Fosse V, Davidson B, de Jalón EG, Tenstad O, Bjørge L, McCormack E. CD24-targeted intraoperative fluorescence image-guided surgery leads to improved cytoreduction of ovarian cancer in a preclinical orthotopic surgical model. EBioMedicine 2020; 56:102783. [PMID: 32454402 PMCID: PMC7248677 DOI: 10.1016/j.ebiom.2020.102783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The completeness of resection is a key prognostic indicator in patients with ovarian cancer, and the application of tumour-targeted fluorescence image-guided surgery (FIGS) has led to improved detection of peritoneal metastases during cytoreductive surgery. CD24 is highly expressed in ovarian cancer and has been shown to be a suitable biomarker for tumour-targeted imaging. METHODS CD24 expression was investigated in cell lines and heterogenous patient-derived xenograft (PDX) tumour samples of high-grade serous ovarian carcinoma (HGSOC). After conjugation of the monoclonal antibody CD24 to the NIR dye Alexa Fluor 750 and the evaluation of the optimal pharmacological parameters (OV-90, n = 21), orthotopic HGSOC metastatic xenografts (OV-90, n = 16) underwent cytoreductive surgery with real-time feedback. The impact of intraoperative CD24-targeted fluorescence guidance was compared to white light and palpation alone, and the recurrence of disease was monitored post-operatively (OV-90, n = 12). CD24-AF750 was further evaluated in four clinically annotated orthotopic PDX models of metastatic HGSOC, to validate the translational potential for intraoperative guidance. FINDINGS CD24-targeted intraoperative NIR FIGS significantly (47•3%) improved tumour detection and resection, and reduced the post-operative tumour burden compared to standard white-light surgery in orthotopic HGSOC xenografts. CD24-AF750 allowed identification of minuscule tumour lesions which were undetectable with the naked eye in four HGSOC PDX. INTERPRETATION CD24-targeted FIGS has translational potential as an aid to improve debulking surgery of ovarian cancer. FUNDING This study was supported by the H2020 program MSCA-ITN [675743], Helse Vest RHF, and Helse Bergen HF [911809, 911852, 912171, 240222, 911974, HV1269], as well as by The Norwegian Cancer Society [182735], and The Research Council of Norway through its Centres of excellence funding scheme [223250, 262652].
Collapse
Affiliation(s)
- Katrin Kleinmanns
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Vibeke Fosse
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway; Department of Radiology, Erasmus Medical Centre, 3000 CA Rotterdam, the Netherlands
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Elvira García de Jalón
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway; Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Line Bjørge
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway; Department of Obstetrics and Gyneacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Emmet McCormack
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway.
| |
Collapse
|
6
|
CD24-targeted fluorescence imaging in patient-derived xenograft models of high-grade serous ovarian carcinoma. EBioMedicine 2020; 56:102782. [PMID: 32454401 PMCID: PMC7248428 DOI: 10.1016/j.ebiom.2020.102782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The survival rate of patients with advanced high-grade serous ovarian carcinoma (HGSOC) remains disappointing. Clinically translatable orthotopic cell line xenograft models and patient-derived xenografts (PDXs) may aid the implementation of more personalised treatment approaches. Although orthotopic PDX reflecting heterogeneous molecular subtypes are considered the most relevant preclinical models, their use in therapeutic development is limited by lack of appropriate imaging modalities. METHODS We developed novel orthotopic xenograft and PDX models for HGSOC, and applied a near-infrared fluorescently labelled monoclonal antibody targeting the cell surface antigen CD24 for non-invasive molecular imaging of epithelial ovarian cancer. CD24-Alexa Fluor 680 fluorescence imaging was compared to bioluminescence imaging in three orthotopic cell line xenograft models of ovarian cancer (OV-90luc+, Skov-3luc+ and Caov-3luc+, n = 3 per model). The application of fluorescence imaging to assess treatment efficacy was performed in carboplatin-paclitaxel treated orthotopic OV-90 xenografts (n = 10), before the probe was evaluated to detect disease progression in heterogenous PDX models (n = 7). FINDINGS Application of the near-infrared probe, CD24-AF680, enabled both spatio-temporal visualisation of tumour development, and longitudinal therapy monitoring of orthotopic xenografts. Notably, CD24-AF680 facilitated imaging of multiple PDX models representing different histological subtypes of the disease. INTERPRETATION The combined implementation of CD24-AF680 and orthotopic PDX models creates a state-of-the-art preclinical platform which will impact the identification and validation of new targeted therapies, fluorescence image-guided surgery, and ultimately the outcome for HGSOC patients. FUNDING This study was supported by the H2020 program MSCA-ITN [675743], Helse Vest RHF, and Helse Bergen HF [911809, 911852, 912171, 240222, HV1269], as well as by The Norwegian Cancer Society [182735], and The Research Council of Norway through its Centers of excellence funding scheme [223250, 262652].
Collapse
|
7
|
Bjånes T, Kotopoulis S, Murvold ET, Kamčeva T, Gjertsen BT, Gilja OH, Schjøtt J, Riedel B, McCormack E. Ultrasound- and Microbubble-Assisted Gemcitabine Delivery to Pancreatic Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12020141. [PMID: 32046005 PMCID: PMC7076495 DOI: 10.3390/pharmaceutics12020141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death worldwide. Poor drug delivery to tumours is thought to limit chemotherapeutic treatment efficacy. Sonoporation combines ultrasound (US) and microbubbles to increase the permeability of cell membranes. We assessed gemcitabine uptake combined with sonoporation in vitro in three PDAC cell lines (BxPC-3, MIA PaCa-2 and PANC-1). Cells were cultured in hypoxic bioreactors, while gemcitabine incubation ± sonoporation was conducted in cells with operational or inhibited nucleoside membrane transporters. Intracellular active metabolite (dFdCTP), extracellular gemcitabine, and inactive metabolite (dFdU) concentrations were measured with liquid chromatography tandem mass spectrometry. Sonoporation with increasing US intensities resulted in decreasing extracellular gemcitabine concentrations in all three cell lines with inhibited membrane transporters. In cells with inhibited membrane transporters, without sonoporation, dFdCTP concentrations were reduced down to 10% of baseline. Sonoporation partially restored gemcitabine uptake in these cells, as indicated by a moderate increase in dFdCTP concentrations (up to 37% of baseline) in MIA PaCa-2 and PANC-1. In BxPC-3, gemcitabine was effectively inactivated to dFdU, which might represent a protective mechanism against dFdCTP accumulation in these cells. Intracellular dFdCTP concentrations did not change significantly following sonoporation in any of the cell lines with operational membrane transporters, indicating that the gemcitabine activation pathway may have been saturated with the drug. Sonoporation allowed a moderate increase in gemcitabine transmembrane uptake in all three cell lines, but pre-existing nucleoside transporters were the major determinants of gemcitabine uptake and retention.
Collapse
Affiliation(s)
- Tormod Bjånes
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Correspondence: (T.B.); (E.M.)
| | - Spiros Kotopoulis
- Phoenix Solutions AS, Ullernchausseen 64, 0379 Oslo, Norway;
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | | | - Tina Kamčeva
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
| | - Bjørn Tore Gjertsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen 5021, Norway
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | - Jan Schjøtt
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Bettina Riedel
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Emmet McCormack
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Correspondence: (T.B.); (E.M.)
| |
Collapse
|
8
|
Near-Infrared Fluorescent Imaging for Monitoring of Treatment Response in Endometrial Carcinoma Patient-Derived Xenograft Models. Cancers (Basel) 2020; 12:cancers12020370. [PMID: 32041116 PMCID: PMC7072497 DOI: 10.3390/cancers12020370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/16/2023] Open
Abstract
Imaging of clinically relevant preclinical animal models is critical to the development of personalized therapeutic strategies for endometrial carcinoma. Although orthotopic patient-derived xenografts (PDXs) reflecting heterogeneous molecular subtypes are considered the most relevant preclinical models, their use in therapeutic development is limited by the lack of appropriate imaging modalities. Here, we describe molecular imaging of a near-infrared fluorescently labeled monoclonal antibody targeting epithelial cell adhesion molecule (EpCAM) as an in vivo imaging modality for visualization of orthotopic endometrial carcinoma PDX. Application of this near-infrared probe (EpCAM-AF680) enabled both spatio-temporal visualization of development and longitudinal therapy monitoring of orthotopic PDX. Notably, EpCAM-AF680 facilitated imaging of multiple PDX models representing different subtypes of the disease. Thus, the combined implementation of EpCAM-AF680 and orthotopic PDX models creates a state-of-the-art preclinical platform for identification and validation of new targeted therapies and corresponding response predicting markers for endometrial carcinoma.
Collapse
|
9
|
Malekshah OM, Sarkar S, Nomani A, Patel N, Javidian P, Goedken M, Polunas M, Louro P, Hatefi A. Bioengineered adipose-derived stem cells for targeted enzyme-prodrug therapy of ovarian cancer intraperitoneal metastasis. J Control Release 2019; 311-312:273-287. [PMID: 31499084 PMCID: PMC6884134 DOI: 10.1016/j.jconrel.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/05/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
The objective of this study was to develop a stem cell-based system for targeted suicide gene therapy of recurrent, metastatic, and unresectable ovarian cancer. Malignant cells were obtained from the ascites of a patient with advanced recurrent epithelial ovarian cancer (named OVASC-1). Cancer cells were characterized to determine the percentages of drug-resistant ALDH+ cells, MDR-1/ABCG2 overexpressing cells, and cancer stem-like cells. The sensitivity and resistance of the OVASC-1 cells and spheroids to the metabolites of three different enzyme/prodrug systems were assessed, and the most effective one was selected. Adipose-derived stem cells (ASCs) were genetically engineered to express recombinant secretory human carboxylesterase-2 and nanoluciferase genes for simultaneous disease therapy and quantitative imaging. Bioluminescent imaging, magnetic resonance imaging and immuno/histochemistry results show that the engineered ASCs actively targeted and localized at both tumor stroma and necrotic regions. This created the unique opportunity to deliver drugs to not only tumor supporting cells in the stroma, but also to cancer stem-like cells in necrotic/hypoxic regions. The statistical analysis of intraperitoneal OVASC-1 tumor burden and survival rates in mice shows that the administration of the bioengineered ASCs in combination with irinotecan prodrug in the designed sequence and timeline eradicated all intraperitoneal tumors and provided survival benefits. In contrast, treatment of the drug-resistant OVASC-1 tumors with cisplatin/paclitaxel (standard-of-care) did not have any statistically significant benefit. The histopathology and hematology results do not show any toxicity to major peritoneal organs. Our toxicity data in combination with efficacy outcomes delineate a nonsurgical and targeted stem cell-based approach to overcoming drug resistance in recurrent metastatic ovarian cancer.
Collapse
Affiliation(s)
- Obeid M Malekshah
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Siddik Sarkar
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Niket Patel
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Parisa Javidian
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Michael Goedken
- Rutgers Research Pathology Services, Rutgers University, Piscataway, 08854, NJ, USA
| | - Marianne Polunas
- Rutgers Research Pathology Services, Rutgers University, Piscataway, 08854, NJ, USA
| | - Pedro Louro
- Rutgers Research Pathology Services, Rutgers University, Piscataway, 08854, NJ, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA; Cancer Pharmacology Program, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
10
|
Joalland N, Lafrance L, Oullier T, Marionneau-Lambot S, Loussouarn D, Jarry U, Scotet E. Combined chemotherapy and allogeneic human Vγ9Vδ2 T lymphocyte-immunotherapies efficiently control the development of human epithelial ovarian cancer cells in vivo. Oncoimmunology 2019; 8:e1649971. [PMID: 31646097 PMCID: PMC6791416 DOI: 10.1080/2162402x.2019.1649971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) represents 5% of human gynecologic cancers in the world, is heterogeneous and highly invasive with a dismal prognosis (5 year-survival rate <35%). Diagnosis of EOC is frequently made at advanced stages and, despite aggressive treatments combining surgery and chemotherapy, fatal relapse rapidly occurs and is accompanied by a peritoneal carcinosis. In this context, novel therapeutical advances are urgently required. Adoptive transfer(s) of immune effector cells, including allogeneic human Vγ9Vδ2 T lymphocytes, represent attractive targets for efficiently and safely tracking tissue-invading tumor cells and controlling tumor dissemination in the organism. Our study describes the establishment of robust and physiological orthotopic model of human EOC in mouse, that includes surgical resection (ovariectomy) and chemotherapy, which are ineluctably accompanied by a fatal peritoneal carcinosis recurrence. Through a complementary set of in vitro and in vivo experiments, we provide here a preclinical proof of interest of the antitumor efficiency of adoptive transfers of allogeneic human Vγ9Vδ2 T lymphocytes against EOC, in association with surgical debulking and standard chemotherapies (i.e., taxanes and platinum salts). Moreover, our results indicate that chemo- and immunotherapies can be combined to improve the antitumor efficiency of immunotherapeutic lines. Altogether, these results further pave the way for next-generation antitumor immunotherapies, based on local administrations of human allogeneic human Vγ9Vδ2 T lymphocytes, in association with standard treatments.
Collapse
Affiliation(s)
- Noémie Joalland
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Laura Lafrance
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | | | | | - Delphine Loussouarn
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Centre Hospitalier-Universitaire (CHU) de Nantes, Nantes, France
| | - Ulrich Jarry
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
11
|
Ward Rashidi MR, Mehta P, Bregenzer M, Raghavan S, Fleck EM, Horst EN, Harissa Z, Ravikumar V, Brady S, Bild A, Rao A, Buckanovich RJ, Mehta G. Engineered 3D Model of Cancer Stem Cell Enrichment and Chemoresistance. Neoplasia 2019; 21:822-836. [PMID: 31299607 PMCID: PMC6624324 DOI: 10.1016/j.neo.2019.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Intraperitoneal dissemination of ovarian cancers is preceded by the development of chemoresistant tumors with malignant ascites. Despite the high levels of chemoresistance and relapse observed in ovarian cancers, there are no in vitro models to understand the development of chemoresistance in situ. Method: We describe a highly integrated approach to establish an in vitro model of chemoresistance and stemness in ovarian cancer, using the 3D hanging drop spheroid platform. The model was established by serially passaging non-adherent spheroids. At each passage, the effectiveness of the model was evaluated via measures of proliferation, response to treatment with cisplatin and a novel ALDH1A inhibitor. Concomitantly, the expression and tumor initiating capacity of cancer stem-like cells (CSCs) was analyzed. RNA-seq was used to establish gene signatures associated with the evolution of tumorigenicity, and chemoresistance. Lastly, a mathematical model was developed to predict the emergence of CSCs during serial passaging of ovarian cancer spheroids. Results: Our serial passage model demonstrated increased cellular proliferation, enriched CSCs, and emergence of a platinum resistant phenotype. In vivo tumor xenograft assays indicated that later passage spheroids were significantly more tumorigenic with higher CSCs, compared to early passage spheroids. RNA-seq revealed several gene signatures supporting the emergence of CSCs, chemoresistance, and malignant phenotypes, with links to poor clinical prognosis. Our mathematical model predicted the emergence of CSC populations within serially passaged spheroids, concurring with experimentally observed data. Conclusion: Our integrated approach illustrates the utility of the serial passage spheroid model for examining the emergence and development of chemoresistance in ovarian cancer in a controllable and reproducible format.
Collapse
Affiliation(s)
- Maria R Ward Rashidi
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Elyse M Fleck
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zainab Harissa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Visweswaran Ravikumar
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel Brady
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Andrea Bild
- Division of Molecular Pharmacology, Department of Medical Oncology and Therapeutics, City of Hope Cancer Institute, Duarte, CA, USA
| | - Arvind Rao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ronald J Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA..
| |
Collapse
|
12
|
Ceppi L, Bardhan NM, Na Y, Siegel A, Rajan N, Fruscio R, Del Carmen MG, Belcher AM, Birrer MJ. Real-Time Single-Walled Carbon Nanotube-Based Fluorescence Imaging Improves Survival after Debulking Surgery in an Ovarian Cancer Model. ACS NANO 2019; 13:5356-5365. [PMID: 31009198 DOI: 10.1021/acsnano.8b09829] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Improved cytoreductive surgery for advanced stage ovarian cancer (OC) represents a critical challenge in the treatment of the disease. Optimal debulking reaching no evidence of macroscopic disease is the primary surgical end point with a demonstrated survival advantage. Targeted molecule-based fluorescence imaging offers complete tumor resection down to the microscopic scale. We used a custom-built reflectance/fluorescence imaging system with an orthotopic OC mouse model to both quantify tumor detectability and evaluate the effect of fluorescence image-guided surgery on post-operative survival. The contrast agent is an intraperitoneal injectable nanomolecular probe, composed of single-walled carbon nanotubes, coupled to an M13 bacteriophage carrying a modified peptide binding to the SPARC protein, an extracellular protein overexpressed in OC. The imaging system is capable of detecting a second near-infrared window fluorescence (1000-1700 nm) and can display real-time video imagery to guide intraoperative tumor debulking. We observed high microscopic tumor detection with a pixel-limited resolution of 200 μm. Moreover, in a survival-surgery orthotopic OC mouse model, we demonstrated an increased survival benefit for animals treated with fluorescence image-guided surgical resection compared to standard surgery.
Collapse
Affiliation(s)
- Lorenzo Ceppi
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02114 , United States
- Department of Medicine and Surgery , University of Milan-Bicocca , 20126 Milan , Italy
| | - Neelkanth M Bardhan
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- The David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
- Department of Biological Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - YoungJeong Na
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Andrew Siegel
- Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Nandini Rajan
- Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Robert Fruscio
- Department of Medicine and Surgery , University of Milan-Bicocca , 20126 Milan , Italy
| | - Marcela G Del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Angela M Belcher
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- The David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
- Department of Biological Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Michael J Birrer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02114 , United States
- O'Neal Comprehensive Cancer Center, Division of Hematology-Oncology , University of Alabama at Birmingham , Birmingham , Alabama 35294 , United States
| |
Collapse
|
13
|
Sarkar S, Malekshah OM, Nomani A, Patel N, Hatefi A. A novel chemotherapeutic protocol for peritoneal metastasis and inhibition of relapse in drug resistant ovarian cancer. Cancer Med 2018; 7:3630-3641. [PMID: 29926538 PMCID: PMC6089146 DOI: 10.1002/cam4.1631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022] Open
Abstract
The majority of ovarian cancer patients are diagnosed in late stages of the disease, in which the tumor cells have leaked into the peritoneum and are present as tumorspheres. These tumorspheres are rich in cancer stem‐like cells (CSCs), which are resistant to therapy and are a major source of relapse. The purpose of this research was to identify a safe therapeutic approach that could eradicate the peritoneal CSC‐rich tumorspheres and inhibit relapse. Highly metastatic ascitic cells (OVASC‐1) that are resistant to standard‐of‐care chemotherapy due to upregulation of MDR1 gene were obtained from a patient with ovarian carcinoma and recurrent disease. CSC‐rich tumorspheres were generated, characterized, and treated with different chemotherapeutics. The most effective drug combination that could eradicate tumorspheres at nanomolar levels despite upregulation of MDR1 gene was identified. Luciferase‐expressing OVASC‐1 cells were implanted in the peritoneum of nude mice and treated with the identified drug combination. The progression of disease, response to therapy and recurrence were studied by quantitative imaging. Toxicity to abdominal tissues was studied by histopathology. Mice implanted with intraperitoneal (IP) OVASC‐1 xenografts showed limited response to combination therapy with cisplatin/paclitaxel at the maximum tolerated dose. Despite overexpression of MDR1 on OVASC‐1 cells, mice treated with our combination IP low‐dose MMAE and SN‐38 chemotherapy showed complete response without relapse. No signs of toxicity to abdominal tissues were observed. While MMAE and SN‐38 are not administered as free drugs due to their high potency and potential for systemic toxicity, our low‐dose localized therapy approach effectively restricted the cytotoxic effects to the tumor cells in the peritoneum. Consequently, maximum efficacy with minimal adverse effects was achieved. These remarkable results with IP low‐dose combination chemotherapy encourage investigation into its potential clinical application as either first‐line therapy or in cases of acquired resistance to cisplatin and paclitaxel.
Collapse
Affiliation(s)
- Siddik Sarkar
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Obeid M Malekshah
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Niket Patel
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Tanenbaum LM, Mantzavinou A, Subramanyam KS, del Carmen MG, Cima MJ. Ovarian cancer spheroid shrinkage following continuous exposure to cisplatin is a function of spheroid diameter. Gynecol Oncol 2017; 146:161-169. [DOI: 10.1016/j.ygyno.2017.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
15
|
Helland Ø, Popa M, Bischof K, Gjertsen BT, McCormack E, Bjørge L. The HDACi Panobinostat Shows Growth Inhibition Both In Vitro and in a Bioluminescent Orthotopic Surgical Xenograft Model of Ovarian Cancer. PLoS One 2016; 11:e0158208. [PMID: 27352023 PMCID: PMC4924861 DOI: 10.1371/journal.pone.0158208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Background In most epithelial ovarian carcinomas (EOC), epigenetic changes are evident, and overexpression of histone deacetylases (HDACs) represents an important manifestation. In this study, we wanted to evaluate the effects of the novel HDAC inhibitor (HDACi) panobinostat, both alone and in combination with carboplatin, on ovarian cancer cell lines and in a murine bioluminescent orthotopic surgical xenograft model for EOC. Methods The effects of panobinostat, both alone and in combination with carboplatin, on proliferation and apoptosis in ovarian cancer cell lines, were evaluated using colony and WST-1 assays, Hoechst staining and flow cytometry analysis. In addition, mechanisms were characterised by western blotting and phosphoflow analysis. Immuno-deficient mice were engrafted orthotopically with SKOV-3luc+ cells and serial bioluminescence imaging monitored the effects of treatment with panobinostat and/or carboplatin and/or surgery. Survival parameters were also measured. Results Panobinostat treatment reduced cell growth and diminished cell viability, as shown by the induced cell cycle arrest and apoptosis in vitro. We observed increased levels of cleaved PARP and caspase-3, downregulation of cdc2 protein kinase, acetylation of H2B and higher pH2AX expression. The combined administration of carboplatin and panobinostat synergistically increased the anti-tumour effects compared to panobinostat or carboplatin treatment alone. In our novel ovarian cancer model, the mice showed significantly higher rates of survival when treated with panobinostat, carboplatin or a combination of both, compared to the controls. Panobinostat was as efficient as carboplatin regarding prolongation of survival. No significant additional effect on survival was observed when surgery was combined with carboplatin/panobinostat treatment. Conclusions Panobinostat demonstrates effective in vitro growth inhibition in ovarian cancer cells. The efficacy of panobinostat and carboplatin was equal in the orthotopic EOC model used. We conclude that panobinostat is a promising therapeutic alternative that needs to be further assessed for the treatment of EOC.
Collapse
Affiliation(s)
- Øystein Helland
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Jonas Liesvei 72, 5058 Bergen, Norway
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
- * E-mail:
| | - Mihaela Popa
- KinN Therapeutics, Laboratoriebygget, Haukeland University Hospital, 5021 Bergen, Norway
| | - Katharina Bischof
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Jonas Liesvei 72, 5058 Bergen, Norway
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
| | - Bjørn Tore Gjertsen
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
- Department of Internal Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, 5020 Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
- Department of Internal Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Line Bjørge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Jonas Liesvei 72, 5058 Bergen, Norway
- Department of Clinical Science, University of Bergen, PB 7804, 5020 Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
16
|
De Souza R, Spence T, Huang H, Allen C. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents. J Control Release 2015; 219:313-330. [PMID: 26409122 DOI: 10.1016/j.jconrel.2015.09.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
The majority of animal models of cancer have performed poorly in terms of predicting clinical performance of new therapeutics, which are most often first evaluated in patients with advanced, metastatic disease. The development and use of metastatic models of cancer may enhance clinical translatability of preclinical studies focused on the development of nanotechnology-based drug delivery systems and macromolecular therapeutics, potentially accelerating their clinical implementation. It is recognized that the development and use of such models are not without challenge. Preclinical imaging tools offer a solution by allowing temporal and spatial characterization of metastatic lesions. This paper provides a review of imaging methods applicable for evaluation of novel therapeutics in clinically relevant models of advanced cancer. An overview of currently utilized models of oncology in small animals is followed by image-based development and characterization of visceral metastatic cancer models. Examples of imaging tools employed for metastatic lesion detection, evaluation of anti-tumor and anti-metastatic potential and biodistribution of novel therapies, as well as the co-development and/or use of imageable surrogates of response, are also discussed. While the focus is on development of macromolecular and nanotechnology-based therapeutics, examples with small molecules are included in some cases to illustrate concepts and approaches that can be applied in the assessment of nanotechnologies or macromolecules.
Collapse
Affiliation(s)
- Raquel De Souza
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Tara Spence
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Huang Huang
- DLVR Therapeutics, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
17
|
Haldorsen IS, Popa M, Fonnes T, Brekke N, Kopperud R, Visser NC, Rygh CB, Pavlin T, Salvesen HB, McCormack E, Krakstad C. Multimodal Imaging of Orthotopic Mouse Model of Endometrial Carcinoma. PLoS One 2015; 10:e0135220. [PMID: 26252891 PMCID: PMC4529312 DOI: 10.1371/journal.pone.0135220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Orthotopic endometrial cancer models provide a unique tool for studies of tumour growth and metastatic spread. Novel preclinical imaging methods also have the potential to quantify functional tumour characteristics in vivo, with potential relevance for monitoring response to therapy. METHODS After orthotopic injection with luc-expressing endometrial cancer cells, eleven mice developed disease detected by weekly bioluminescence imaging (BLI). In parallel the same mice underwent positron emission tomography-computed tomography (PET-CT) and magnetic resonance imaging (MRI) employing 18F-fluorodeoxyglocose (18F-FDG) or 18F- fluorothymidine (18F-FLT) and contrast reagent, respectively. The mice were sacrificed when moribund, and post-mortem examination included macroscopic and microscopic examination for validation of growth of primary uterine tumours and metastases. PET-CT was also performed on a patient derived model (PDX) generated from a patient with grade 3 endometrioid endometrial cancer. RESULTS Increased BLI signal during tumour growth was accompanied by increasing metabolic tumour volume (MTV) and increasing MTV x mean standard uptake value of the tumour (SUVmean) in 18F-FDG and 18F-FLT PET-CT, and MRI conspicuously depicted the uterine tumour. At necropsy 82% (9/11) of the mice developed metastases detected by the applied imaging methods. 18F-FDG PET proved to be a good imaging method for detection of patient derived tumour tissue. CONCLUSIONS We demonstrate that all imaging modalities enable monitoring of tumour growth and metastatic spread in an orthotopic mouse model of endometrial carcinoma. Both PET tracers, 18F-FDG and 18F-FLT, appear to be equally feasible for detecting tumour development and represent, together with MRI, promising imaging tools for monitoring of patient-derived xenograft (PDX) cancer models.
Collapse
Affiliation(s)
- Ingfrid S. Haldorsen
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Mihaela Popa
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tina Fonnes
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Njål Brekke
- PET-centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Reidun Kopperud
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicole C. Visser
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cecilie B. Rygh
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Tina Pavlin
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Helga B. Salvesen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
18
|
de la Fuente A, Alonso-Alconada L, Costa C, Cueva J, Garcia-Caballero T, Lopez-Lopez R, Abal M. M-Trap: Exosome-Based Capture of Tumor Cells as a New Technology in Peritoneal Metastasis. J Natl Cancer Inst 2015; 107:djv184. [PMID: 26150590 DOI: 10.1093/jnci/djv184] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 06/11/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Remodeling targeted tissues for reception of tumor cells metastasizing from primary lesions is a consequence of communication between the tumor and the environment that governs metastasis. This study describes a novel approach that aims to disrupt the process of metastasis by interfering with this intense dialogue. METHODS Proteomics and adhesion assays identified exosomes purified from the ascitic fluid of ovarian cancer patients (n = 9) as intermediaries of tumor cell attachment. A novel tumor cell capture device was fabricated by embedding exosomes onto a 3D scaffold (metastatic trap [M-Trap]). Murine models of ovarian metastasis (n = 3 to 34 mice per group) were used to demonstrate the efficacy of M-Trap to capture metastatic cells disseminating in the peritoneal cavity. Kaplan-Meier survival curves were used to estimate cumulative survival probabilities. All statistical tests were two-sided. RESULTS The exosome-based M-Trap device promoted tumor cell adhesion with a nonpharmacological mode of action. M-Trap served as a preferential site for metastasis formation and completely remodeled the pattern of peritoneal metastasis in clinically relevant models of ovarian cancer. Most importantly, M-Trap demonstrated a statistically significant benefit in survival outcomes, with mean survival increasing from 117.5 to 198.8 days in the presence of M-Trap; removal of the device upon tumor cell capture further improved survival to a mean of 309.4 days (P < .001). CONCLUSIONS A potent artificial premetastatic niche based on exosomes is an effective approach to impair the crosstalk between metastatic cells and their environment. In the clinical setting, the capacity to modulate the pattern of dissemination represents an opportunity to control the process of metastasis. In summary, M-Trap transforms a systemic, fatal disease into a focalized disease where proven therapeutic approaches such as surgery can extend survival.
Collapse
Affiliation(s)
- Alexandre de la Fuente
- Translational Medical Oncology, Health Research Institute of Santiago, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (AdlF, LAA, CC, JC, RLL, MA); Department of Morphological Sciences, Faculty of Medicine-USC, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (TGC)
| | - Lorena Alonso-Alconada
- Translational Medical Oncology, Health Research Institute of Santiago, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (AdlF, LAA, CC, JC, RLL, MA); Department of Morphological Sciences, Faculty of Medicine-USC, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (TGC)
| | - Clotilde Costa
- Translational Medical Oncology, Health Research Institute of Santiago, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (AdlF, LAA, CC, JC, RLL, MA); Department of Morphological Sciences, Faculty of Medicine-USC, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (TGC)
| | - Juan Cueva
- Translational Medical Oncology, Health Research Institute of Santiago, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (AdlF, LAA, CC, JC, RLL, MA); Department of Morphological Sciences, Faculty of Medicine-USC, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (TGC)
| | - Tomas Garcia-Caballero
- Translational Medical Oncology, Health Research Institute of Santiago, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (AdlF, LAA, CC, JC, RLL, MA); Department of Morphological Sciences, Faculty of Medicine-USC, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (TGC)
| | - Rafael Lopez-Lopez
- Translational Medical Oncology, Health Research Institute of Santiago, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (AdlF, LAA, CC, JC, RLL, MA); Department of Morphological Sciences, Faculty of Medicine-USC, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (TGC)
| | - Miguel Abal
- Translational Medical Oncology, Health Research Institute of Santiago, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (AdlF, LAA, CC, JC, RLL, MA); Department of Morphological Sciences, Faculty of Medicine-USC, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain (TGC).
| |
Collapse
|
19
|
Neuman BP, Eifler JB, Castanares M, Chowdhury WH, Chen Y, Mease RC, Ma R, Mukherjee A, Lupold SE, Pomper MG, Rodriguez R. Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer. Clin Cancer Res 2014; 21:771-80. [PMID: 25501577 DOI: 10.1158/1078-0432.ccr-14-0891] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The prostate-specific membrane antigen (PSMA) is a surface glycoprotein overexpressed on malignant prostate cells, as well as in the neovasculature of many tumors. Recent efforts to target PSMA for imaging prostate cancer rely on suitably functionalized low-molecular-weight agents. YC-27 is a low-molecular-weight, urea-based agent that enables near-infrared (NIR) imaging of PSMA in vivo. EXPERIMENTAL DESIGN We have developed and validated a laparoscopic imaging system (including an optimized light source, LumiNIR) that is capable of imaging small tumor burdens with minimal background fluorescence in real-time laparoscopic extirpative surgery of small prostate tumor xenografts in murine and porcine models. RESULTS In a mouse model, we demonstrate the feasibility of using real-time NIR laparoscopic imaging to detect and surgically remove PSMA-positive xenografts. We then validate the use of our laparoscopic real-time NIR imaging system in a large animal model. Our novel light source, which is optimized for YC-27, is capable of detecting as little as 12.4 pg/mL of the compound (2.48-pg YC-27 in 200-μL agarose). Finally, in a mouse xenograft model, we demonstrate that the use of real-time NIR imaging can reduce positive surgical margins (PSM). CONCLUSIONS These data indicate that a NIR-emitting fluorophore targeted to PSMA may allow improved surgical treatment of human prostate cancer, reduce the rate of PSMs, and alleviate the need for adjuvant radiotherapy postoperatively.
Collapse
Affiliation(s)
- Brian P Neuman
- James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John B Eifler
- James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mark Castanares
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Wasim H Chowdhury
- James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ying Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Rong Ma
- James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Amarnath Mukherjee
- James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shawn E Lupold
- James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Ronald Rodriguez
- James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|