1
|
Chaudhary V, Bhattacharjee D, Devi NK, Saraswathy KN. Global DNA Methylation Levels Viz-a-Viz Genetic and Biochemical Variations in One Carbon Metabolic Pathway: An Exploratory Study from North India. Biochem Genet 2024; 62:4738-4754. [PMID: 38356009 DOI: 10.1007/s10528-023-10659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Despite the importance of one carbon metabolic pathway (OCMP) in modulating the DNA methylation process, only a few population-based studies have explored their relationship among healthy individuals. This study aimed to understand the variations in global DNA methylation levels with respect to selected genetic (CBS 844ins68, MTRR A66G, MTR A2756G, and MTHFR C677T polymorphisms) and biochemical (folate, vitamin B12, and homocysteine) markers associated with OCMP among healthy North Indian adults. The study has been conducted among 1095 individuals of either sex (69.5% females), aged 30-75 years. A sample of 5 mL of blood was collected from each participant. Homocysteine, folate, and vitamin B12 levels were determined using the chemiluminescence technique. Restriction digestion was performed for genotyping MTRR A66G, MTR A2756G, and MTHFR C677T polymorphisms and allele-specific PCR amplification for CBS 844ins68 polymorphism. Global DNA methylation levels were analyzed using ELISA-based colorimetric technique. Of the selected genetic and biochemical markers, the mutant MTRR A66G allele was positively associated with global DNA methylation levels. Further, advanced age was inversely associated with methylation levels. MTRR 66GG genotype group was hypermethylated than other genotypes in folate replete and vitamin B12 deficient group (a condition prevalent among vegetarians), suggesting that the G allele may be more efficient than the wild-type allele in such conditions. Global DNA methylation levels appeared to be more influenced by genetic than biochemical factors. MTRR 66G allele may have a selective advantage in vitamin B12 deficient conditions. Further research should be undertaken to understand how genetics affects epigenetic processes.
Collapse
Affiliation(s)
- Vineet Chaudhary
- Department of Anthropology, University of Delhi, Delhi, 110007, India
| | | | | | | |
Collapse
|
2
|
Karas Kuželički N, Doljak B. Congenital Heart Disease and Genetic Changes in Folate/Methionine Cycles. Genes (Basel) 2024; 15:872. [PMID: 39062651 PMCID: PMC11276067 DOI: 10.3390/genes15070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Congenital heart disease is one of the most common congenital malformations and thus represents a considerable public health burden. Hence, the identification of individuals and families with an increased genetic predisposition to congenital heart disease (CHD) and its possible prevention is important. Even though CHD is associated with the lack of folate during early pregnancy, the genetic background of folate and methionine metabolism perturbations and their influence on CHD risk is not clear. While some genes, such as those coding for cytosolic enzymes of folate/methionine cycles, have been extensively studied, genetic studies of folate transporters (de)glutamation enzymes and mitochondrial enzymes of the folate cycle are lacking. Among genes coding for cytoplasmic enzymes of the folate cycle, MTHFR, MTHFD1, MTR, and MTRR have the strongest association with CHD, while among genes for enzymes of the methionine cycle BHMT and BHMT2 are the most prominent. Among mitochondrial folate cycle enzymes, MTHFD2 plays the most important role in CHD formation, while FPGS was identified as important in the group of (de)glutamation enzymes. Among transporters, the strongest association with CHD was demonstrated for SLC19A1.
Collapse
Affiliation(s)
- Nataša Karas Kuželički
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Bojan Doljak
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
DNMT3B rs2424913 as a Risk Factor for Congenital Heart Defects in Down Syndrome. Genes (Basel) 2023; 14:genes14030576. [PMID: 36980848 PMCID: PMC10048502 DOI: 10.3390/genes14030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Impairments of the genes that encode enzymes that are involved in one-carbon metabolism because of the presence of gene polymorphisms can affect the methylation pattern. The altered methylation profiles of the genes involved in cardiogenesis may result in congenital heart defects (CHDs). The aim of this study was to investigate the association between the MTHFR rs1801133, MTHFR rs1801131, MTRR rs1801394, DNMT1 rs2228611, DNMT3A rs1550117, DNMT3B rs1569686, and DNMT3B rs2424913 gene polymorphisms and congenital heart defects in Down syndrome (DS) individuals. The study was conducted on 350 participants, including 134 DS individuals with CHDs (DSCHD+), 124 DS individuals without CHDs (DSCHD−), and 92 individuals with non-syndromic CHD. The genotyping was performed using the PCR–RFLP method. A statistically significant higher frequency of the DNMT3B rs2424913 TT in the DSCHD+ individuals was observed. The DNMT3B rs2424913 TT genotype, as well as the T allele, had significantly higher frequencies in the individuals with DS and atrial septal defects (ASDs) in comparison with the individuals with DS and other CHDs. Furthermore, our results indicate a statistically significant effect of the DNMT3B rs1569686 TT genotype in individuals with non-syndromic CHDs. The results of the study suggest that the DNMT3B rs2424913 TT genotypes may be a possible predisposing factor for CHDs in DS individuals, and especially those with ASDs.
Collapse
|
4
|
Liu W, Wang J, Chen LJ. Association between MTR A2756G polymorphism and susceptibility to congenital heart disease: A meta-analysis. PLoS One 2022; 17:e0270828. [PMID: 35802641 PMCID: PMC9269412 DOI: 10.1371/journal.pone.0270828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
The association between methionine synthase (MTR) A2756G (rs1805087) polymorphism and the susceptibility to congenital heart disease (CHD) has not been fully determined. A meta-analysis of case-control studies was performed to systematically evaluate the above association. Studies were identified by searching the PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and WanFang databases from inception to June 20, 2021. Two authors independently performed literature search, data extraction, and quality assessment. Predefined subgroup analyses were carried out to evaluate the impact of the population ethnicity, source of healthy controls (community or hospital-based), and methods used for genotyping on the outcomes. A random-effects model was used to combine the results, and 12 studies were included. Results showed that MTR A2756G polymorphism was not associated with CHD susceptibility under the allele model (odds ratio [OR]: 0.96, 95% confidence interval [CI]: 0.86 to 1.07, P = 0.43, I2 = 4%), heterozygote model (OR: 0.95, 95% CI: 0.84 to 1.07, P = 0.41, I2 = 0%), homozygote model (OR: 1.00, 95% CI: 0.64 to 1.55, P = 0.99, I2 = 17%), dominant genetic model (OR: 0.95, 95% CI: 0.84 to 1.07, P = 0.41, I2 = 0%), or recessive genetic model (OR: 0.94, 95% CI: 0.62 to 1.43, P = 0.32, I2 = 13%). Consistent results were found in subgroup analyses between Asian and Caucasian populations in studies with community and hospital-derived controls as well as in studies with PCR-RFLP and direct sequencing (all P values for subgroup differences > 0.05). In conclusion, current evidence does not support an association between MTR A2756G polymorphism and CHD susceptibility.
Collapse
Affiliation(s)
- Wanru Liu
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Wang
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin, China
| | - Lin-jiao Chen
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
5
|
A Common Polymorphism in the MTHFD1 Gene Is a Modulator of Risk of Congenital Heart Disease. J Cardiovasc Dev Dis 2022; 9:jcdd9060166. [PMID: 35735795 PMCID: PMC9224796 DOI: 10.3390/jcdd9060166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Several environmental and genetic factors may influence the risk of congenital heart defects (CHDs), which can have a substantial impact on pediatric morbidity and mortality. We investigated the association of polymorphisms in the genes of the folate and methionine pathways with CHDs using different strategies: a case–control, mother–child pair design, and a family-based association study. The polymorphism rs2236225 in the MTHFD1 was confirmed as an important modulator of CHD risk in both, whereas polymorphisms in MTRR, FPGS, and SLC19A1 were identified as risk factors in only one of the models. A strong synergistic effect on the development of CHDs was detected for MTHFD1 polymorphism and a lack of maternal folate supplementation during early pregnancy. A common polymorphism in the MTHFD1 is a genetic risk factor for the development of CHD, especially in the absence of folate supplementation in early pregnancy.
Collapse
|
6
|
Raina JK, Panjaliya RK, Dogra V, Sharma S, Anupriya, Kumar P. "Association of MTHFR and MS/MTR gene polymorphisms with congenital heart defects in North Indian population (Jammu and Kashmir): a case-control study encompassing meta-analysis and trial sequential analysis". BMC Pediatr 2022; 22:223. [PMID: 35468734 PMCID: PMC9036697 DOI: 10.1186/s12887-022-03227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/11/2022] [Indexed: 12/01/2022] Open
Abstract
Background The risk of Congenital Heart Defects (CHD) is greatly influenced by variants within the genes involved in folate-homocysteine metabolism. Polymorphism in MTHFR (C677T and G1793A) and MS/MTR (A2756G) genes increases the risk of developing CHD risk, but results are controversial. Therefore, we conducted a case–control association pilot study followed by an up-dated meta-analysis with trial sequential analysis (TSA) to obtain more precise estimate of the associations of these two gene variants with the CHD risk. Methods For case–control study, we enrolled 50 CHD patients and 100 unrelated healthy controls. Genotyping was done by PCR–RFLP method and meta-analysis was performed by MetaGenyo online Statistical Analysis System software. For meta-analysis total number of individuals was as follows: for MTHFR C677T 3450 CHD patients and 4447 controls whereas for MS A2756G 697 CHD patients and 777 controls. Results Results of the original pilot study suggested lack of association for MTHFR C677T and MS A2756G polymorphism with risk of CHD whereas MTHFR G1793A was significantly associated with the disease. On performing meta-analysis, a significant association was observed with MTHFR C677T polymorphism but not with MS A2756G. Trial sequential Analysis also confirmed the sufficient sample size requirement for findings of meta-analysis. Conclusions The results of the meta-analysis suggested a significant role of MTHFR in increased risk of CHD.
Collapse
Affiliation(s)
- Jyotdeep Kour Raina
- Institute of Human Genetics, University of Jammu Jammu and Kashmir, 180006, Jammu, India
| | | | - Vikas Dogra
- Department of Zoology Govt. Degree College, Samba, J&K, Jammu, India
| | - Sushil Sharma
- Department of Neonatology, University Hospital Southampton, Hampshire, UK
| | - Anupriya
- Institute of Human Genetics, University of Jammu Jammu and Kashmir, 180006, Jammu, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu Jammu and Kashmir, 180006, Jammu, India. .,Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, Jammu, India.
| |
Collapse
|
7
|
Lee KS, Choi YJ, Cho J, Lee H, Lee H, Park SJ, Park JS, Hong YC. Environmental and Genetic Risk Factors of Congenital Anomalies: an Umbrella Review of Systematic Reviews and Meta-Analyses. J Korean Med Sci 2021; 36:e183. [PMID: 34282604 PMCID: PMC8289720 DOI: 10.3346/jkms.2021.36.e183] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The prevalence of congenital anomalies in newborns in South Korea was 272.9 per 100,000 in 2005, and 314.7 per 100,000 in 2006. In other studies, the prevalence of congenital anomalies in South Korea was equivalent to 286.9 per 10,000 livebirths in 2006, while it was estimated 446.3 per 10,000 births during the period from 2008 to 2014. Several systematic reviews and meta-analyses analyzing the factors contributing to congenital anomalies have been reported, but comprehensive umbrella reviews are lacking. METHODS We searched PubMed, Google Scholar, Cochrane, and EMBASE databases up to July 1, 2019, for systematic reviews and meta-analyses that investigated the effects of environmental and genetic factors on any type of congenital anomalies. We categorized 8 subgroups of congenital anomalies classified according to the 10th revision of the International Statistical Classification of Diseases (ICD-10). Two researchers independently searched the literature, retrieved the data, and evaluated the quality of each study. RESULTS We reviewed 66 systematic reviews and meta-analyses that investigated the association between non-genetic or genetic risk factors and congenital anomalies. Overall, 269 associations and 128 associations were considered for environmental and genetic risk factors, respectively. Congenital anomalies based on congenital heart diseases, cleft lip and palate, and others were associated with environmental risk factors based on maternal exposure to environmental exposures (air pollution, toxic chemicals), parental smoking, maternal history (infectious diseases during pregnancy, pregestational and gestational diabetes mellitus, and gestational diabetes mellitus), maternal obesity, maternal drug intake, pregnancy through artificial reproductive technologies, and socioeconomic factors. The association of maternal alcohol or coffee consumption with congenital anomalies was not significant, and maternal folic acid supplementation had a preventive effect on congenital heart defects. Genes or genetic loci associated with congenital anomalies included MTHFR, MTRR and MTR, GATA4, NKX2-5, SRD5A2, CFTR, and 1p22 and 20q12 anomalies. CONCLUSION This study provides a wide perspective on the distribution of environmental and genetic risk factors of congenital anomalies, thus suggesting future studies and providing health policy implications.
Collapse
Affiliation(s)
- Kyung Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jinwoo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hyunji Lee
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Heejin Lee
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo, Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
8
|
Genetic polymorphisms in MTR are associated with non-syndromic congenital heart disease from a family-based case-control study in the Chinese population. Sci Rep 2019; 9:5065. [PMID: 30911047 PMCID: PMC6433945 DOI: 10.1038/s41598-019-41641-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 11/24/2022] Open
Abstract
Genetic polymorphisms of folate pathway genes have been reported to be associated with congenital heart diseases (CHDs); however, the results remain conflicting. We conducted a family-based case-control study, which included160 CHD case-parent triads and 208 control-parent triads to explore the association of 18 genetic variants of seven folate metabolism-related genes with the risk of CHDs. The MTR C allele of rs1770449 (OR = 1.961, 95%CI: 1.379–2.788) and the MTR A allele of rs1050993 (OR = 1.994, 95%CI: 1.401–2.839) in infants were associated with an increased risk of CHDs. Over-transmission of SNPs rs1770449 and rs1050993 and haplotype CAA (rs1770449-rs1805087-rs1050993) in MTR were detected in total CHDs. The above mentioned associations of MTR with CHDs were also observed in septal defects and conotruncal heart defects subgroups. Without maternal periconceptional folate intake, the risk of CHDs among women carrying the rs1770449 “CT or CC” genotype or the rs1050993 “AG or AA” genotype in MTR was 3.262(95%CI: 1.656–6.429) or 3.263(95%CI: 1.656–6.429) times greater than the aOR in women carrying wild genotype, respectively. Our study suggests that MTR polymorphisms (rs1770449 and rs1050993) may be associated with the risk of CHDs and modify the relation between maternal folate intake and CHDs.
Collapse
|
9
|
Genetic variation in folate metabolism is associated with the risk of conotruncal heart defects in a Chinese population. BMC Pediatr 2018; 18:287. [PMID: 30165839 PMCID: PMC6117882 DOI: 10.1186/s12887-018-1266-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023] Open
Abstract
Background Conotruncal heart defects (CTDs) are a subgroup of congenital heart defects that are considered to be the most common type of birth defect worldwide. Genetic disturbances in folate metabolism may increase the risk of CTDs. Methods We evaluated five single-nucleotide polymorphisms (SNPs) in genes related to folic acid metabolism: methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), solute carrier family 19, member 1 (SLC19A1 G80A), methionine synthase (MTR A2576G), and methionine synthase reductase (MTRR A66G), as risk factors for CTDs including various types of malformation, in a total of 193 mothers with CTD-affected offspring and 234 healthy controls in a Chinese population. Results Logistic regression analyses revealed that subjects carrying the TT genotype of MTHFR C677T, the C allele of MTHFR A1298C, and the AA genotype of SLC19A1 G80A had significant 2.47-fold (TT vs. CC, OR [95% CI] = 2.47 [1.42–4.32], p = 0.009), 2.05–2.20-fold (AC vs. AA, 2.05 [1.28–3.21], p = 0.0023; CC vs AA, 2.20 [1.38–3.58], p = 0.0011), and 1.68-fold (AA vs. GG, 1.68 [1.02–2.70], p = 0.0371) increased risk of CTDs, respectively. Subjects carrying both variant genotypes of MTHFR A1298C and SLC19A1 G80A had a higher (3.23 [1.71–6.02], p = 0.0002) increased risk for CTDs. Moreover, the MTHFR C677T, MTHFR A1298C, and MTRR A66G polymorphisms were found to be significantly associated with the risk of certain subtypes of CTD. Conclusions Our data suggest that maternal folate-related SNPs might be associated with the risk of CTDs in offspring.
Collapse
|
10
|
Lei W, Xia Y, Wu Y, Fu G, Ren A. Associations Between MTR A2756G, MTRR A66G, and TCN2 C776G Polymorphisms and Risk of Nonsyndromic Cleft Lip With or Without Cleft Palate: A Meta-Analysis. Genet Test Mol Biomarkers 2018; 22:465-473. [PMID: 30004262 DOI: 10.1089/gtmb.2018.0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE We conducted a meta-analysis to investigate the associations of methionine synthase (MTR) A2756G, methionine synthase reductase (MTRR) A66G, and transcobalamin 2 (TCN2) C776G gene polymorphisms with nonsyndromic cleft lip with or without cleft palate (NSCL/P). MATERIALS AND METHODS The PubMed, Web of Science, Embase, and Wiley Online Library databases and the China Biomedical Literature Service System (SinoMed) were searched for relevant articles to explore the associations between the MTR A2756G, MTRR A66G, and TCN2 C776G polymorphisms and the risk of NSCL/P. We performed overall comparisons and stratified analyses according to the ethnicity, type of NSCL/P, and Hardy-Weinberg equilibrium (HWE) of the control group. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were applied to estimate the associations of these gene polymorphisms with NSCL/P risk using fixed-effects or random-effects models incorporating five genetic models. RESULTS Ultimately, 12 articles were included in this study. The pooled results did not reveal a significant association of the MTR A2756G polymorphism with NSCL/P risk (G vs. A: OR = 0.95, 95% CI = 0.82-1.11, p = 0.55). Similar results were observed for the MTRR A66G polymorphism (G vs. A: OR = 0.99, 95% CI = 0.82-1.18, p = 0.72) and the TCN2 C776G polymorphism (G vs. C: OR = 0.95, 95% CI = 0.86-1.06, p = 0.37). CONCLUSION In summary, the MTR A2756G, MTRR A66G, and TCN2 C776G polymorphisms might not be associated with NSCL/P risk.
Collapse
Affiliation(s)
- Wei Lei
- 1 Department of Orthodontics, Stomatological Hospital of Chongqing Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences , Chongqing, China .,3 Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing , China
| | - Yinlan Xia
- 1 Department of Orthodontics, Stomatological Hospital of Chongqing Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences , Chongqing, China .,3 Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing , China
| | - Yang Wu
- 1 Department of Orthodontics, Stomatological Hospital of Chongqing Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences , Chongqing, China .,3 Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing , China
| | - Gang Fu
- 1 Department of Orthodontics, Stomatological Hospital of Chongqing Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences , Chongqing, China .,3 Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing , China
| | - Aishu Ren
- 1 Department of Orthodontics, Stomatological Hospital of Chongqing Medical University , Chongqing, China .,2 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences , Chongqing, China .,3 Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing , China
| |
Collapse
|
11
|
Saha T, Chatterjee M, Verma D, Ray A, Sinha S, Rajamma U, Mukhopadhyay K. Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:1-10. [PMID: 29407547 DOI: 10.1016/j.pnpbp.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
An etiologically complex disorder, Attention Deficit Hyperactivity Disorder (ADHD), is often associated with various levels of cognitive deficit. Folate/vitamin B9 is crucial for numerous biochemical pathways including neural stem cell proliferation and differentiation, regulation of gene expression, neurotransmitter synthesis, myelin synthesis and repair, etc. and a scarcity has often been linked to cognitive deficit. Our pilot study in the field revealed significant association of few genetic variants with ADHD. Mild hyperhomocysteinemia and vitamin B12 deficiency was also noticed in the probands. In the present study additional genetic variants, folate and vitamin B6, which may affect folate-homocysteine metabolic pathway, were investigated in 866 individuals including nuclear families with ADHD probands (N=221) and ethnically matched controls (N=286) to find out whether ADHD associated traits are affected by these factors. Population based analysis revealed significant over representation of MTRR rs1801394 "G" allele and "GG" genotype in all as well as male probands. Stratified analysis showed significantly higher frequency of RFC1 rs1051266 and BHMT rs3733890 "AG" genotypes in full term and prematurely delivered ADHD probands respectively. Probands with rs1801394 "GG" genotype and BHMT rs3733890 "G" allele showed association with hyperhomocysteinemia. MTHFR rs1801131, MTR rs1805087 and BHMT rs3733890 also showed association with ADHD index. While rs1051266, rs1801131, and rs1805087 showed association with behavioral problems, rs3733890 was associated with ODD score. Conduct problem exhibited association with RFC1 rs1051266, MTHFR rs1801133 and MTRR rs1801394. Gene-gene interaction analysis revealed positive synergistic interactions between rs1051266, rs1801131 and rs1801394 in the probands as compared to the controls. It can be inferred from the data obtained that folate system genetic variants and mild hyperhomocysteimenia may affect ADHD associated traits by attenuating folate metabolism.
Collapse
Affiliation(s)
- Tanusree Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Deepak Verma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Anirban Ray
- Institute of Psychiatry-Center of Excellence, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal 700020, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India.
| |
Collapse
|
12
|
Zhang Y, Ai F, Zheng J, Peng B. Associations of GATA4 genetic mutations with the risk of congenital heart disease: A meta-analysis. Medicine (Baltimore) 2017; 96:e6857. [PMID: 28471988 PMCID: PMC5419936 DOI: 10.1097/md.0000000000006857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND GATA4 gene is a cardiac transcriptional factor playing important role in cardiac formation and development. Three GATA4 gene mutations, 99 G>T, 487 C>T, and 354 A>C, have been reported in congenital heart disease (CHD). Therefore, a meta-analysis was performed to explore the associations between 99 G>T, 487 C>T, or 354 A>C mutations and the risk of CHD. METHODS We searched the relevant studies in electronic databases, including ISI Science Citation Index, Embase, PubMed, CNKI, and Wan fang, from January 2006 to March 2016. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to estimate the associations between 99 G>T, 487 C>T, or 354 A>C mutations and the risk of CHD. RESULTS A total of 11 studies including 2878 CHD cases and 3339 controls were evaluated. There was no significant association between GATA4 99 G>T (OR = 1.22, 95% CI = 0.74-2.01, P = .43) or 487 C>T (OR = 1.16, 95% CI = 0.48-2.78, P = .74) mutations and the risk of CHD, whereas GATA4 354 A>C (OR = 1.49, 95% CI = 1.15-1.93, P = .003) mutation was significantly associated with CHD risk. Subgroup analysis was further performed for GATA4 99 G>T, 487 C>T, and 354 A>C mutations based on sample size and ethnicity, and no significant association between GATA4 99 G>T or 487 C>T mutations and the risk of CHD was found in all subgroups, whereas GATA4 354 A>C mutation was significantly associated with CHD risk in large-sample-size and Asian subgroups. However, subgroup analysis by types of CHD indicated that there was no significant association between GATA4 354 A>C mutation and the risk of ventricular septal defects. CONCLUSIONS Our findings suggested that GATA4 99 G>T and 487 C>T mutations may not be related to the incidence of CHD. However, GATA4 354 A>C mutation was significantly associated with CHD risk.
Collapse
|
13
|
Wang X, Fu J, Li Q, Zeng D. Geographical and Ethnic Distributions of the MTHFR C677T, A1298C and MTRR A66G Gene Polymorphisms in Chinese Populations: A Meta-Analysis. PLoS One 2016; 11:e0152414. [PMID: 27089387 PMCID: PMC4835080 DOI: 10.1371/journal.pone.0152414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The geographical and ethnic distributions of the polymorphic methylenetetrahydrofolate reductase (MTHFR) mutations (C677T and A1298C) and methionine synthase reductase (MTRR) mutation (A66G) remain heterogeneous in China. The goal of this study was to estimate the pooled frequencies of the alleles and associated genotypes of these gene polymorphisms among healthy populations in Mainland China. OBJECTIVE AND METHODS We systematically reviewed published epidemiological studies on the distributions of 3 genetic variants in Chinese healthy populations living in Mainland China through a meta-analysis. The relevant electronic databases were searched. All of the raw data of the eligible citations were extracted. The frequency estimates were stratified by geography, ethnicity and sex. RESULTS Sixty-six studies were identified with a total of 92277 study participants. The meta-analysis revealed that the frequencies of the MTHFR C677T, A1298C, and MTRR A66G gene polymorphisms varied significantly between different ethnic groups and along geographical gradients. The frequencies of the 677T allele and 677TT genotype increased along the southern-central-northern direction across Mainland China (all Pvalues≤0.001). The frequencies of the 1298C, 1298CC, 66G and 66GG genotypes decreased along the south-central-north direction across the country (all Pvalues≤0.001). CONCLUSIONS Our meta-analysis strongly indicates significant geographical and ethnic variations in the frequencies of the C677T, A1298C, and A66G gene polymorphisms in the folate metabolism pathway among Chinese populations.
Collapse
Affiliation(s)
- Xingmin Wang
- Department of Gynecology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Jinjian Fu
- Department of Gynecology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Qianxi Li
- Department of Gynecology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Dingyuan Zeng
- Department of Gynecology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
14
|
Role of genetic mutations in folate-related enzyme genes on Male Infertility. Sci Rep 2015; 5:15548. [PMID: 26549413 PMCID: PMC4637885 DOI: 10.1038/srep15548] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility.
Collapse
|
15
|
Li WX, Lv WW, Dai SX, Pan ML, Huang JF. Joint associations of folate, homocysteine and MTHFR, MTR and MTRR gene polymorphisms with dyslipidemia in a Chinese hypertensive population: a cross-sectional study. Lipids Health Dis 2015; 14:101. [PMID: 26337056 PMCID: PMC4558834 DOI: 10.1186/s12944-015-0099-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dyslipidemia is a well-established risk factor for cardiovascular disease. Serum lipids were affected by several gene polymorphisms, folate, homocysteine and other metabolite levels. We aim to investigate the effects of homocysteine metabolism enzyme polymorphisms (MTHTR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) and their interactions with folate, homocysteine on serum lipid levels in Chinese patients with hypertension. METHODS Participants were 480 hypertensive adults that enrolled in September to December 2005 from six different Chinese hospitals (Harbin, Shanghai, Shenyang, Beijing, Xi'an, and Nanjing). Known MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G genotypes were determined by PCR-RFLP methods. Serum folate was measured by chemiluminescent immunoassay, homocysteine was measured by high-performance liquid chromatography, serum lipids parameters were determined by an automatic biochemistry analyzer, low-density lipoprotein was calculated by Friedewald's equation. Unitary linear regression model was used to assess the associations of gene polymorphisms, folate and homocysteine on serum lipid profiles. Unconditional logistic regression model was applied to test the interactions of folate, homocysteine and gene polymorphisms on dyslipidemia. RESULTS No correlations between gene polymorphisms and homocysteine on serum lipid profiles. Compared with normal folate patients, patients with low folate showed higher odds of hypertriglyceridemia (OR = 2.02, 95 % CI: 1.25-3.25, P = 0.004) and low levels of high-density lipoprotein cholesterol (OR = 1.88, 95 % CI: 1.07-3.28, P = 0.027). Each of four gene polymorphisms (MTHTR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) combined with low folate showed higher odds of hypertriglyceridemia (P for trend: 0.049, 0.004, 0.007 and 0.005, respectively). MTHFR C677T and A1298C with low folate showed higher odds of low levels of high-density lipoprotein cholesterol (P for trend: 0.008 and 0.031). CONCLUSIONS Low folate status and homocysteine metabolism gene polymorphisms (MTHTR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) may have a synergistic effect increased the incidence of dyslipidemia in Chinese hypertensive population.
Collapse
Affiliation(s)
- Wen-Xing Li
- Institute of Health Sciences, Anhui University, Hefei, 230601, PR China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, PR China.
| | - Wen-Wen Lv
- School of Life Sciences, Anhui University, Hefei, 230601, PR China.
| | - Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, PR China.
| | - Ming-Luo Pan
- School of Life Sciences, Anhui University, Hefei, 230601, PR China.
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, PR China. .,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China. .,Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming, 650223, PR China.
| |
Collapse
|
16
|
Coppedè F. The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects. Front Genet 2015; 6:223. [PMID: 26161087 PMCID: PMC4479818 DOI: 10.3389/fgene.2015.00223] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/10/2015] [Indexed: 11/13/2022] Open
Abstract
Almost 15 years ago it was hypothesized that polymorphisms of genes encoding enzymes involved in folate metabolism could lead to aberrant methylation of peri-centromeric regions of chromosome 21, favoring its abnormal segregation during maternal meiosis. Subsequently, more than 50 small case-control studies investigated whether or not maternal polymorphisms of folate pathway genes could be risk factors for the birth of a child with Down syndrome (DS), yielding conflicting and inconclusive results. However, recent meta-analyses of those studies suggest that at least three of those polymorphisms, namely MTHFR 677C>T, MTRR 66A>G, and RFC1 80G>A, are likely to act as maternal risk factors for the birth of a child with trisomy 21, revealing also complex gene-nutrient interactions. A large-cohort study also revealed that lack of maternal folic acid supplementation at peri-conception resulted in increased risk for a DS birth due to errors occurred at maternal meiosis II in the aging oocyte, and it was shown that the methylation status of chromosome 21 peri-centromeric regions could favor recombination errors during meiosis leading to its malsegregation. In this regard, two recent case-control studies revealed association of maternal polymorphisms or haplotypes of the DNMT3B gene, coding for an enzyme required for the regulation of DNA methylation at centromeric and peri-centromeric regions of human chromosomes, with risk of having a birth with DS. Furthermore, congenital heart defects (CHD) are found in almost a half of DS births, and increasing evidence points to a possible contribution of lack of folic acid supplementation at peri-conception, maternal polymorphisms of folate pathway genes, and resulting epigenetic modifications of several genes, at the basis of their occurrence. This review summarizes available case-control studies and literature meta-analyses in order to provide a critical and up to date overview of what we currently know in this field.
Collapse
Affiliation(s)
- Fabio Coppedè
- Section of Medical Genetics, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy ; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health," University of Pisa Pisa, Italy
| |
Collapse
|
17
|
Webber DM, MacLeod SL, Bamshad MJ, Shaw GM, Finnell RH, Shete SS, Witte JS, Erickson SW, Murphy LD, Hobbs C. Developments in our understanding of the genetic basis of birth defects. ACTA ACUST UNITED AC 2015; 103:680-91. [PMID: 26033863 DOI: 10.1002/bdra.23385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Birth defects are a major cause of morbidity and mortality worldwide. There has been much progress in understanding the genetic basis of familial and syndromic forms of birth defects. However, the etiology of nonsydromic birth defects is not well-understood. Although there is still much work to be done, we have many of the tools needed to accomplish the task. Advances in next-generation sequencing have introduced a sea of possibilities, from disease-gene discovery to clinical screening and diagnosis. These advances have been fruitful in identifying a host of candidate disease genes, spanning the spectrum of birth defects. With the advent of CRISPR-Cas9 gene editing, researchers now have a precise tool for characterizing this genetic variation in model systems. Work in model organisms has also illustrated the importance of epigenetics in human development and birth defects etiology. Here we review past and current knowledge in birth defects genetics. We describe genotyping and sequencing methods for the detection and analysis of rare and common variants. We remark on the utility of model organisms and explore epigenetics in the context of structural malformation. We conclude by highlighting approaches that may provide insight into the complex genetics of birth defects.
Collapse
Affiliation(s)
- Daniel M Webber
- Division of Birth Defects Research, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stewart L MacLeod
- Division of Birth Defects Research, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Gary M Shaw
- Stanford University School of Medicine, Stanford, California
| | - Richard H Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas
| | - Sanjay S Shete
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Stephen W Erickson
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Linda D Murphy
- Division of Birth Defects Research, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Charlotte Hobbs
- Division of Birth Defects Research, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
18
|
Zhao CM, Peng LY, Li L, Liu XY, Wang J, Zhang XL, Yuan F, Li RG, Qiu XB, Yang YQ. PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome. PLoS One 2015; 10:e0124409. [PMID: 25893250 PMCID: PMC4404345 DOI: 10.1371/journal.pone.0124409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/13/2015] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD), the most common type of birth defect, is still the leading non-infectious cause of infant morbidity and mortality in humans. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous and the genetic components underpinning CHD in an overwhelming majority of patients remain unclear. In the present study, the coding exons and flanking introns of the PITX2 gene, which encodes a paired-like homeodomain transcription factor 2essential for cardiovascular morphogenesis as well as maxillary facial development, was sequenced in 196 unrelated patients with CHD and subsequently in the mutation carrier's family members available. As a result, a novel heterozygous PITX2 mutation, p.Q102X for PITX2a, or p.Q148X for PITX2b, or p.Q155X for PITX2c, was identified in a family with endocardial cushion defect (ECD) and Axenfeld-Rieger syndrome (ARS). Genetic analysis of the pedigree showed that the nonsense mutation co-segregated with ECD and ARS transmitted in an autosomal dominant pattern with complete penetrance. The mutation was absent in 800 control chromosomes from an ethnically matched population. Functional analysis by using a dual-luciferase reporter assay system revealed that the mutant PITX2 had no transcriptional activity and that the mutation eliminated synergistic transcriptional activation between PITX2 and NKX2.5, another transcription factor pivotal for cardiogenesis. To our knowledge, this is the first report on the association of PITX2 loss-of-function mutation with increased susceptibility to ECD and ARS. The findings provide novel insight into the molecular mechanisms underpinning ECD and ARS, suggesting the potential implications for the antenatal prophylaxis and personalized treatment of CHD and ARS.
Collapse
Affiliation(s)
- Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Lu-Ying Peng
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xian-Ling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Zhang Q, Bai B, Liu X, Miao C, Li H. Association of folate metabolism genes MTHFR and MTRR with multiple complex congenital malformation risk in Chinese population of Shanxi. Transl Pediatr 2014; 3:259-67. [PMID: 26835343 PMCID: PMC4729852 DOI: 10.3978/j.issn.2224-4336.2014.07.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Birth defects are common, serious malformations with a complex etiology that suggests involvement of both genetic and environmental factors. Low dietary folate and polymorphisms in genes of folate metabolism can influence risk for birth defects. In the present study 250 Chinese birth defects cases who suffered 1-8 types of birth defect disease phenotypes were subjected and two genetic variants in two folate metabolism key enzymes, rs1801394 of methionine synthase reductase (MTRR) and rs1801133 of methylenetetrahydrofolate reductase (MTHFR) were genotyped by using SNaPshot method. The results indicated that rs1801394 and rs1801133 were associated with multiple birth defects. According to homology of organogenesis, the disease phenotypes were classified into ectoderm-, mesoderm-, and endoderm-developed groups. Genetic analysis results displayed that as protective factors, genetic variants of rs1801133 and rs1801394 were associated with the risk of ectoderm-, and endoderm-developed malformations, but only the variant of rs1801394 was associated with the risk of mesoderm-developed malformations. Our present study first related nutrition metabolism related gene variants to germ layers and provided a novel understanding of an implication of earlier causation of birth defects pathogenesis in humans.
Collapse
Affiliation(s)
- Qin Zhang
- Beijing Municipal Key Laboratory of Child Development Nutrigenomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Baoling Bai
- Beijing Municipal Key Laboratory of Child Development Nutrigenomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaozhen Liu
- Beijing Municipal Key Laboratory of Child Development Nutrigenomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Chunyue Miao
- Beijing Municipal Key Laboratory of Child Development Nutrigenomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Huili Li
- Beijing Municipal Key Laboratory of Child Development Nutrigenomics, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|