1
|
Santinelli R, Benz N, Guellec J, Quinquis F, Kocas E, Thomas J, Montier T, Ka C, Luczka-Majérus E, Sage E, Férec C, Coraux C, Trouvé P. The Inhibition of the Membrane-Bound Transcription Factor Site-1 Protease (MBTP1) Alleviates the p.Phe508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Defects in Cystic Fibrosis Cells. Cells 2024; 13:185. [PMID: 38247876 PMCID: PMC10814821 DOI: 10.3390/cells13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cystic Fibrosis (CF) is present due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, the most frequent variant being p.phe508del. The CFTR protein is a chloride (Cl-) channel which is defective and almost absent of cell membranes when the p.Phe508del mutation is present. The p.Phe508del-CFTR protein is retained in the endoplasmic reticulum (ER) and together with inflammation and infection triggers the Unfolded Protein Response (UPR). During the UPR, the Activating Transcription Factor 6 (ATF6) is activated with cleavage and then decreases the expression of p.Phe508del-CFTR. We have previously shown that the inhibition of the activation of ATF6 alleviates the p.Phe508del-CFTR defects in cells overexpressing the mutated protein. In the present paper, our aim was to inhibit the cleavage of ATF6, and thus its activation in a human bronchial cell line with endogenous p.Phe508del-CFTR expression and in bronchial cells from patients, to be more relevant to CF. This was achieved by inhibiting the protease MBTP1 which is responsible for the cleavage of ATF6. We show here that this inhibition leads to increased mRNA and p.Phe508del-CFTR expression and, consequently, to increased Cl-efflux. We also explain the mechanisms linked to these increases with the modulation of genes when MBTP1 is inhibited. Indeed, RT-qPCR assays show that genes such as HSPA1B, CEBPB, VIMP, PFND2, MAPK8, XBP1, INSIG1, and CALR are modulated. In conclusion, we show that the inhibition of MBTP1 has a beneficial effect in relevant models to CF and that this is due to the modulation of genes involved in the disease.
Collapse
Affiliation(s)
- Raphaël Santinelli
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Nathalie Benz
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Julie Guellec
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Fabien Quinquis
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Ervin Kocas
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Johan Thomas
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Chandran Ka
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Emilie Luczka-Majérus
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, F-51100 Reims, France; (E.L.-M.); (C.C.)
| | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, F-78350 Jouy-en-Josas, France;
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Christelle Coraux
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, F-51100 Reims, France; (E.L.-M.); (C.C.)
| | - Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| |
Collapse
|
2
|
He H, Bell SM, Davis AK, Zhao S, Sridharan A, Na CL, Guo M, Xu Y, Snowball J, Swarr DT, Zacharias WJ, Whitsett JA. PRDM3/16 Regulate Chromatin Accessibility Required for NKX2-1 Mediated Alveolar Epithelial Differentiation and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.570481. [PMID: 38187557 PMCID: PMC10769259 DOI: 10.1101/2023.12.20.570481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Differential chromatin accessibility accompanies and mediates transcriptional control of diverse cell fates and their differentiation during embryogenesis. While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Here, we demonstrate that the paired domain zinc finger transcriptional regulators PRDM3 and PRDM16 regulate chromatin accessibility to mediate cell differentiation decisions during lung morphogenesis. Combined deletion of Prdm3 and Prdm16 in early lung endoderm caused perinatal lethality due to respiratory failure from loss of AT2 cell function. Prdm3/16 deletion led to the accumulation of partially differentiated AT1 cells and loss of AT2 cells. Combination of single cell RNA-seq, bulk ATAC-seq, and CUT&RUN demonstrated that PRDM3 and PRDM16 enhanced chromatin accessibility at NKX2-1 transcriptional targets in peripheral epithelial cells, all three factors binding together at a multitude of cell-type specific cis-active DNA elements. Network analysis demonstrated that PRDM3/16 regulated genes critical for perinatal AT2 cell differentiation, surfactant homeostasis, and innate host defense. Lineage specific deletion of PRDM3/16 in AT2 cells led to lineage infidelity, with PRDM3/16 null cells acquiring partial AT1 fate. Together, these data demonstrate that NKX2-1-dependent regulation of alveolar epithelial cell differentiation is mediated by epigenomic modulation via PRDM3/16.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital Sichuan University, Chengdu, Sichuan, 610041, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Sichuan 610041, China
| | - Sheila M. Bell
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Ashley Kuenzi Davis
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Shuyang Zhao
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Anusha Sridharan
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Yan Xu
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - John Snowball
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Daniel T. Swarr
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - William J. Zacharias
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Jeffrey A. Whitsett
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
3
|
Baguma-Nibasheka M, Kablar B. Mechanics of Lung Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:131-150. [PMID: 37955774 DOI: 10.1007/978-3-031-38215-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Vashi N, Ackerley C, Post M, Justice MJ. Aberrant lung lipids cause respiratory impairment in a Mecp2-deficient mouse model of Rett syndrome. Hum Mol Genet 2021; 30:2161-2176. [PMID: 34230964 PMCID: PMC8561422 DOI: 10.1093/hmg/ddab182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Severe respiratory impairment is a prominent feature of Rett syndrome (RTT), an X-linked disorder caused by mutations in methyl CpG-binding protein 2 (MECP2). Despite MECP2's ubiquitous expression, respiratory anomalies are attributed to neuronal dysfunction. Here, we show that neutral lipids accumulate in mouse Mecp2-mutant lungs, while surfactant phospholipids decrease. Conditional deletion of Mecp2 from lipid-producing alveolar epithelial 2 (AE2) cells causes aberrant lung lipids and respiratory symptoms, while deletion of Mecp2 from hindbrain neurons results in distinct respiratory abnormalities. Single-cell RNA sequencing of AE2 cells suggests lipid production and storage increase at the expense of phospholipid synthesis. Lipid production enzymes are confirmed as direct targets of MECP2-directed nuclear receptor corepressor 1/2 (NCOR1/2) transcriptional repression. Remarkably, lipid-lowering fluvastatin improves respiratory anomalies in Mecp2-mutant mice. These data implicate autonomous pulmonary loss of MECP2 in respiratory symptoms for the first time and have immediate impacts on patient care.
Collapse
Affiliation(s)
- Neeti Vashi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.,Genetics and Genome Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Cameron Ackerley
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Monica J Justice
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.,Genetics and Genome Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| |
Collapse
|
5
|
Le F, Wang N, Wang Q, Yang X, Li L, Wang L, Liu X, Hu M, Jin F, Lou H. Long-Term Disturbed Expression and DNA Methylation of SCAP/SREBP Signaling in the Mouse Lung From Assisted Reproductive Technologies. Front Genet 2021; 12:566168. [PMID: 34249075 PMCID: PMC8266399 DOI: 10.3389/fgene.2021.566168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Assisted reproductive technology (ART) has been linked to cholesterol metabolic and respiratory disorders later in life, but the mechanisms by which biosynthetic signaling remain unclear. Lung inflammatory diseases are tightly linked with the sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein (SCAP), but this has not been shown in an ART offspring. Here, mouse models from a young to old age were established including in vitro fertilization (IVF), intracytoplasmic injection (ICSI), and in vivo fertilized groups. In our results, significantly higher plasma levels of CRP, IgM, and IgG were identified in the aged ICSI mice. Additionally, pulmonary inflammation was found in four aged ART mice. At three weeks, ART mice showed significantly downregulated levels of Scap, Srebp-1a, Srebp-1c, and Srebf2 mRNA in the lung. At the same time, significant differences in the DNA methylation rates of Scap-Srebfs and protein expression of nuclear forms of SREBPs (nSREBPs) were detected in the ART groups. Only abnormalities in the expression levels of Srebp-1a and Srebp-1c mRNA and nSREBP1 protein were found in the ART groups at 10 weeks. However, at 1.5 years old, aberrant expression levels and DNA methylation of SCAP, SREBP1, and SREBP2, and their associated target genes, were observed in the lung of the ART groups. Our results indicate that ART increases long-term alterations in SCAP/SREBP expression that may be associated with their aberrant methylation status in mouse.
Collapse
Affiliation(s)
- Fang Le
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Ning Wang
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Qijing Wang
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Xinyun Yang
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Lejun Li
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Liya Wang
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Xiaozhen Liu
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Minhao Hu
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Fan Jin
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
| | - Hangying Lou
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| |
Collapse
|
6
|
Regulatory Roles of SREBF1 and SREBF2 in Lipid Metabolism and Deposition in Two Chinese Representative Fat-Tailed Sheep Breeds. Animals (Basel) 2020; 10:ani10081317. [PMID: 32751718 PMCID: PMC7460493 DOI: 10.3390/ani10081317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Sterol regulatory element binding proteins (SREBPs) play the crucial role in regulating the cholesterol and fatty acid metabolism. However, it is unclear whether SREBPs are involved in the regulation of lipid metabolism in fat-tailed sheep. This study reveals the expression profiles of SREBF1 and SREBF2 in liver and adipose tissues of two Chinese representative fat-tailed sheep breeds, and provides a new insight for the regulatory role of SREBP1 and SREBP2 in fat metabolism and deposition in fat-tailed sheep. Abstract Sterol regulatory element binding proteins (SREBPs) can regulate the lipid homeostasis by regulating its target genes, which are crucial for the cholesterol and fatty acid metabolism. However, the transcriptional regulation role of SREBPs in fat-tailed sheep is unclear. In this study, two Chinese representative breeds of total 80 fat-tailed sheep were employed, serum triglyceride, total cholesterol (TC), non-esterified fatty acid (NEFA), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and mRNA expressions of SREBF1 and SREBF2 in seven different adipose tissues and liver were examined in sheep at the ages of 4, 6, 8, 10, and 12 months, respectively. The subcellular localization and function of SREBP1/2 were predicted through bioinformatics approaches. The results demonstrated that serum TC and NEFA levels among breeds were significantly different, and most serum indices were dynamically altered in an age-dependent manner. The mRNA expression profiling of SREBF1 and SREBF2 are breed-specific with temporal and spatial expressions differences. Further analysis shows that SREBF1/2 transcriptional levels and tail traits are closely related. All investigations simplify that SREBF1/2 play a crucial role in lipid metabolism and deposition during growth and development of the fat-tailed sheep, which also provides a novel insight for revealing the genetic mechanism of different tail type and meat quality.
Collapse
|
7
|
Ruiz CF, Montal ED, Haley JA, Bott AJ, Haley JD. SREBP1 regulates mitochondrial metabolism in oncogenic KRAS expressing NSCLC. FASEB J 2020; 34:10574-10589. [PMID: 32568455 DOI: 10.1096/fj.202000052r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Cancer cells require extensive metabolic reprograming in order to provide the bioenergetics and macromolecular precursors needed to sustain a malignant phenotype. Mutant KRAS is a driver oncogene that is well-known for its ability to regulate the ERK and PI3K signaling pathways. However, it is now appreciated that KRAS can promote the tumor growth via upregulation of anabolic metabolism. We recently reported that oncogenic KRAS promotes a gene expression program of de novo lipogenesis in non-small cell lung cancer (NSCLC). To define the mechanism(s) responsible, we focused on the lipogenic transcription factor SREBP1. We observed that KRAS increases SREBP1 expression and genetic knockdown of SREBP1 significantly inhibited the cell proliferation of mutant KRAS-expressing cells. Unexpectedly, lipogenesis was not significantly altered in cells subject to SREBP1 knockdown. Carbon tracing metabolic studies showed a significant decrease in oxidative phosphorylation and RNA-seq data revealed a significant decrease in mitochondrial encoded subunits of the electron transport chain (ETC). Taken together, these data support a novel role, distinct from lipogenesis, of SREBP1 on mitochondrial function in mutant KRAS NSCLC.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Emily D Montal
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - John D Haley
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
8
|
Sunny SK, Zhang H, Rezwan FI, Relton CL, Henderson AJ, Merid SK, Melén E, Hallberg J, Arshad SH, Ewart S, Holloway JW. Changes of DNA methylation are associated with changes in lung function during adolescence. Respir Res 2020; 21:80. [PMID: 32264874 PMCID: PMC7140357 DOI: 10.1186/s12931-020-01342-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Adolescence is a significant period for the gender-dependent development of lung function. Prior studies have shown that DNA methylation (DNA-M) is associated with lung function and DNA-M at some cytosine-phosphate-guanine dinucleotide sites (CpGs) changes over time. This study examined whether changes of DNA-M at lung-function-related CpGs are associated with changes in lung function during adolescence for each gender, and if so, the biological significance of the detected CpGs. METHODS Genome-scale DNA-M was measured in peripheral blood samples at ages 10 (n = 330) and 18 years (n = 476) from the Isle of Wight (IOW) birth cohort in United Kingdom, using Illumina Infinium arrays (450 K and EPIC). Spirometry was conducted at both ages. A training and testing method was used to screen 402,714 CpGs for their potential associations with lung function. Linear regressions were applied to assess the association of changes in lung function with changes of DNA-M at those CpGs potentially related to lung function. Adolescence-related and personal and family-related confounders were included in the model. The analyses were stratified by gender. Multiple testing was adjusted by controlling false discovery rate of 0.05. Findings were further examined in two independent birth cohorts, the Avon Longitudinal Study of Children and Parents (ALSPAC) and the Children, Allergy, Milieu, Stockholm, Epidemiology (BAMSE) cohort. Pathway analyses were performed on genes to which the identified CpGs were mapped. RESULTS For females, 42 CpGs showed statistically significant associations with change in FEV1/FVC, but none for change in FEV1 or FVC. No CpGs were identified for males. In replication analyses, 16 and 21 of the 42 CpGs showed the same direction of associations among the females in the ALSPAC and BAMSE cohorts, respectively, with 11 CpGs overlapping across all the three cohorts. Through pathway analyses, significant biological processes were identified that have previously been related to lung function development. CONCLUSIONS The detected 11 CpGs in all three cohorts have the potential to serve as the candidate epigenetic markers for changes in lung function during adolescence in females.
Collapse
Affiliation(s)
- Shadia Khan Sunny
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152 USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152 USA
| | - Faisal I. Rezwan
- School of Water, Energy and Environment, Cranfield University, Cranfield Bedfordshire, MK43 0AL England
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN UK
| | - A. John Henderson
- Population Health Sciences, University of Bristol, Bristol, BS8 2BN UK
| | - Simon Kebede Merid
- Department of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children’s Hospital, Stockholm, Sweden
| | - Jenny Hallberg
- Department of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children’s Hospital, Stockholm, Sweden
| | - S. Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Parkhurst Road, Newport, Isle of Wight PO30 5TG UK
| | - Susan Ewart
- Large Animal Clinical Sciences, Michigan State University, East Lansing, MI USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| |
Collapse
|
9
|
Lin C, Ding J, Bar-Joseph Z. Inferring TF activation order in time series scRNA-Seq studies. PLoS Comput Biol 2020; 16:e1007644. [PMID: 32069291 PMCID: PMC7048296 DOI: 10.1371/journal.pcbi.1007644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/28/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Methods for the analysis of time series single cell expression data (scRNA-Seq) either do not utilize information about transcription factors (TFs) and their targets or only study these as a post-processing step. Using such information can both, improve the accuracy of the reconstructed model and cell assignments, while at the same time provide information on how and when the process is regulated. We developed the Continuous-State Hidden Markov Models TF (CSHMM-TF) method which integrates probabilistic modeling of scRNA-Seq data with the ability to assign TFs to specific activation points in the model. TFs are assumed to influence the emission probabilities for cells assigned to later time points allowing us to identify not just the TFs controlling each path but also their order of activation. We tested CSHMM-TF on several mouse and human datasets. As we show, the method was able to identify known and novel TFs for all processes, assigned time of activation agrees with both expression information and prior knowledge and combinatorial predictions are supported by known interactions. We also show that CSHMM-TF improves upon prior methods that do not utilize TF-gene interaction. An important attribute of time series single cell RNA-Seq (scRNA-Seq) data, is the ability to infer continuous trajectories of genes based on orderings of the cells. While several methods have been developed for ordering cells and inferring such trajectories, to date it was not possible to use these to infer the temporal activity of several key TFs. These TFs are are only post-transcriptionally regulated and so their expression does not provide complete information on their activity. To address this we developed the Continuous-State Hidden Markov Models TF (CSHMM-TF) methods that assigns continuous activation time to TFs based on both, their expression and the expression of their targets. Applying our method to several time series scRNA-Seq datasets we show that it correctly identifies the key regulators for the processes being studied. We analyze the temporal assignments for these TFs and show that they provide new insights about combinatorial regulation and the ordering of TF activation. We used several complementary sources to validate some of these predictions and discuss a number of other novel suggestions based on the method. As we show, the method is able to scale to large and noisy datasets and so is appropriate for several studies utilizing time series scRNA-Seq data.
Collapse
Affiliation(s)
- Chieh Lin
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jun Ding
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ziv Bar-Joseph
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
10
|
Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat Commun 2019; 10:37. [PMID: 30604742 PMCID: PMC6318311 DOI: 10.1038/s41467-018-07770-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The respiratory system undergoes a diversity of structural, biochemical, and functional changes necessary for adaptation to air breathing at birth. To identify the heterogeneity of pulmonary cell types and dynamic changes in gene expression mediating adaptation to respiration, here we perform single cell RNA analyses of mouse lung on postnatal day 1. Using an iterative cell type identification strategy we unbiasedly identify the heterogeneity of murine pulmonary cell types. We identify distinct populations of epithelial, endothelial, mesenchymal, and immune cells, each containing distinct subpopulations. Furthermore we compare temporal changes in RNA expression patterns before and after birth to identify signaling pathways selectively activated in specific pulmonary cell types, including activation of cell stress and the unfolded protein response during perinatal adaptation of the lung. The present data provide a single cell view of the adaptation to air breathing after birth. The respiratory system is transformed in terms of functional change at birth to adapt to breathing air. Here, the authors examine the molecular changes behind the first breath in the mouse by Drop-seq based RNA sequencing, identifying activation of the unfolded protein response as a perinatal adaptation of the lung.
Collapse
|
11
|
Deng YZ, Cai Z, Shi S, Jiang H, Shang YR, Ma N, Wang JJ, Guan DX, Chen TW, Rong YF, Qian ZY, Zhang EB, Feng D, Zhou QL, Du YN, Liu DP, Huang XX, Liu LM, Chin E, Li DS, Wang XF, Zhang XL, Xie D. Cilia loss sensitizes cells to transformation by activating the mevalonate pathway. J Exp Med 2018; 215:177-195. [PMID: 29237705 PMCID: PMC5748847 DOI: 10.1084/jem.20170399] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Although cilia loss and cell transformation are frequently observed in the early stage of tumorigenesis, the roles of cilia in cell transformation are unknown. In this study, disrupted ciliogenesis was observed in cancer cells and pancreatic cancer tissues, which facilitated oncogene-induced transformation of normal pancreatic cells (HPDE6C7) and NIH3T3 cells through activating the mevalonate (MVA) pathway. Disruption of ciliogenesis up-regulated MVA enzymes through β catenin-T cell factor (TCF) signaling, which synchronized with sterol regulatory element binding transcription factor 2 (SREBP2), and the regulation of MVA by β-catenin-TCF signaling was recapitulated in a mouse model of pancreatic ductal adenocarcinoma (PDAC) and human PDAC samples. Moreover, disruption of ciliogenesis by depleting Tg737 dramatically promoted tumorigenesis in the PDAC mouse model, driven by KrasG12D , which was inhibited by statin, an inhibitor of the MVA pathway. Collectively, this study emphasizes the crucial roles of cilia in governing the early steps of the transformation by activating the MVA pathway, suggesting that statin has therapeutic potential for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yue-Zhen Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Cai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuo Shi
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Jiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Rong Shang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Ma
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jing Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong-Xian Guan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tian-Wei Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye-Fei Rong
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen-Yu Qian
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Er-Bin Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dan Feng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Quan-Li Zhou
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Nan Du
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Dong-Ping Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xing-Xu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Lu-Ming Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Eugene Chin
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dang-Sheng Li
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Xue-Li Zhang
- Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Dong Xie
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Tang X, Snowball JM, Xu Y, Na CL, Weaver TE, Clair G, Kyle JE, Zink EM, Ansong C, Wei W, Huang M, Lin X, Whitsett JA. EMC3 coordinates surfactant protein and lipid homeostasis required for respiration. J Clin Invest 2017; 127:4314-4325. [PMID: 29083321 DOI: 10.1172/jci94152] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/26/2017] [Indexed: 01/30/2023] Open
Abstract
Adaptation to respiration at birth depends upon the synthesis of pulmonary surfactant, a lipid-protein complex that reduces surface tension at the air-liquid interface in the alveoli and prevents lung collapse during the ventilatory cycle. Herein, we demonstrated that the gene encoding a subunit of the endoplasmic reticulum membrane complex, EMC3, also known as TMEM111 (Emc3/Tmem111), was required for murine pulmonary surfactant synthesis and lung function at birth. Conditional deletion of Emc3 in murine embryonic lung epithelial cells disrupted the synthesis and packaging of surfactant lipids and proteins, impaired the formation of lamellar bodies, and induced the unfolded protein response in alveolar type 2 (AT2) cells. EMC3 was essential for the processing and routing of surfactant proteins, SP-B and SP-C, and the biogenesis of the phospholipid transport protein ABCA3. Transcriptomic, lipidomic, and proteomic analyses demonstrated that EMC3 coordinates the assembly of lipids and proteins in AT2 cells that is necessary for surfactant synthesis and function at birth.
Collapse
Affiliation(s)
- Xiaofang Tang
- Divisions of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John M Snowball
- Divisions of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yan Xu
- Divisions of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cheng-Lun Na
- Divisions of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Timothy E Weaver
- Divisions of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Meina Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeffrey A Whitsett
- Divisions of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Engelking LJ, Cantoria MJ, Xu Y, Liang G. Developmental and extrahepatic physiological functions of SREBP pathway genes in mice. Semin Cell Dev Biol 2017; 81:98-109. [PMID: 28736205 DOI: 10.1016/j.semcdb.2017.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs), master transcriptional regulators of cholesterol and fatty acid synthesis, have been found to contribute to a diverse array of cellular processes. In this review, we focus on genetically engineered mice in which the activities of six components of the SREBP gene pathway, namely SREBP-1, SREBP-2, Scap, Insig-1, Insig-2, or Site-1 protease have been altered through gene knockout or transgenic approaches. In addition to the expected impacts on lipid metabolism, manipulation of these genes in mice is found to affect a wide array of developmental and physiologic processes ranging from interferon signaling in macrophages to synaptic transmission in the brain. The findings reviewed herein provide a blueprint to guide future studies defining the complex interactions between lipid biology and the physiologic processes of many distinct organ systems.
Collapse
Affiliation(s)
- Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mary Jo Cantoria
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanchao Xu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guosheng Liang
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Phelps CA, Lai SC, Mu D. Roles of Thyroid Transcription Factor 1 in Lung Cancer Biology. VITAMINS AND HORMONES 2017; 106:517-544. [PMID: 29407447 PMCID: PMC11528467 DOI: 10.1016/bs.vh.2017.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thyroid transcription factor 1 (TTF-1 or NKX2-1) is a transcription factor of fundamental importance in driving lung maturation and morphogenesis. In the last decade, scientists began to appreciate the functional roles of TTF-1 in lung tumorigenesis. This movement was triggered by the discoveries of genetic alterations of TTF-1 in the form of gene amplification in lung cancer. Many downstream target genes of TTF-1 relevant to the lung cancer biology of TTF-1 have been documented. One of the most surprising findings was that TTF-1 may exhibit either pro- or antitumorigenic activities, an outcome with the complexity exceeding the original anticipation purely based on the fact that TTF-1 undergoes gene amplification in lung cancer. In the coming decade, we believe, we will witness additional surprises as the research exploring the cancer roles of TTF-1 progresses.
Collapse
Affiliation(s)
- Cody A Phelps
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Shao-Chiang Lai
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - David Mu
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
15
|
Abstract
Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. The lack of lung maturation and the associated lack of pulmonary surfactant in preterm infants causes respiratory distress syndrome, a common cause of morbidity and mortality associated with premature birth. At the time of birth, surfactant homeostasis begins to be established by balanced processes involved in surfactant production, storage, secretion, recycling, and catabolism. Insights from physiology and engineering made in the 20th century enabled survival of newborn infants requiring mechanical ventilation for the first time. Thereafter, advances in biochemistry, biophysics, and molecular biology led to an understanding of the pulmonary surfactant system that made possible exogenous surfactant replacement for the treatment of preterm infants. Identification of surfactant proteins, cloning of the genes encoding them, and elucidation of their roles in the regulation of surfactant synthesis, structure, and function have provided increasing understanding of alveolar homeostasis in health and disease. This Perspective seeks to consider developmental aspects of the pulmonary surfactant system and its importance in the pathogenesis of acute and chronic lung diseases related to alveolar homeostasis.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Timothy E Weaver
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|