1
|
Miller HS, Avrahami HM, Zanno LE. Dental pathologies in lamniform and carcharhiniform sharks with comments on the classification and homology of double tooth pathologies in vertebrates. PeerJ 2022; 10:e12775. [PMID: 35578672 PMCID: PMC9107304 DOI: 10.7717/peerj.12775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Double tooth pathologies are important indicators of trauma, disease, diet, and feeding biomechanics, and are widely documented in mammals. However, diagnosis of double tooth pathologies in extinct non-mammalian vertebrates is complicated by several compounding factors including: a lack of shared terminology reflecting shared etiology, inconsistencies in definitions and key features within and outside of mammals (e.g., gemination, fusion, twinning, concrescence); differences in tooth morphology, heterodonty, regeneration, and implantation between mammals and non-mammalian vertebrates; and the unmet need for diagnostic criteria that can be applied to isolated teeth, which are common in the fossil record. Here we report on double tooth pathologies in the lamniform and carcharhiniform Cenozoic sharks Otodus megalodon (NCSM 33639) and Carcharhinus leucas (NCSM 33640, 33641). All three teeth bear a singular bifid crown with mirrored halves and abnormal internal microstructure-a single, bifurcating pulp cavity in C. leucas and a more than tripling of vessels in O. megalodon (from two to seven main ascending canals). We identify these abnormalities as likely examples of gemination due to their symmetry, which rules out fusion of tooth buds in one tooth file in different developmental stages in polyphyodont taxa; however, we note that incomplete forms of mesiodistal tooth fusion can be morphologically indistinguishable from gemination, and thus fusion cannot be rejected. We further compile and recategorize, when possible, the diversity of tooth pathologies in sharks. The identification of double tooth pathologies in O. megalodon and C. leucas has paleobiological implications. Such pathologies in sharks are largely hypothesized to stem from trauma to developing tooth buds. Carcharhinus leucas is known to feed on prey documented to cause feeding-related oral traumas (e.g., rays, sawfish, spiny fish, and sea urchins). However, O. megalodon, is considered to have largely fed on marine mammals, and perhaps turtles and/or fish, raising the possibility that the dietary diversity of this species is, as of yet, underappreciated. The genetic underpinnings of tooth morphogenesis and regeneration is highly conserved throughout vertebrate evolution, suggesting a homologous framework can be established. However, more research is needed to link developmental, paleobiological, and/or paleoenvironmental factors to gemination/fusion in polyphyodont taxa. We argue that the definitions and diagnostic criteria for dental pathologies in vertebrates require standardization in order to advance macroevolutionary studies of feeding trauma in deep time.
Collapse
Affiliation(s)
- Harrison S. Miller
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States
| | - Haviv M. Avrahami
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States
| | - Lindsay E. Zanno
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States
| |
Collapse
|
2
|
Valenzuela-Toro A, Pyenson ND. What do we know about the fossil record of pinnipeds? A historiographical investigation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191394. [PMID: 31827869 PMCID: PMC6894555 DOI: 10.1098/rsos.191394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/22/2019] [Indexed: 05/31/2023]
Abstract
The fossil record of pinnipeds (seals, fur seals and walruses) is globally distributed, spanning from the late Oligocene to the Holocene. This record shows a complex evolutionary history that could not otherwise be inferred from their extant relatives, including multiple radiations and iterative ecomorphological specializations among different lineages, many of which are extinct. The fossil record of pinnipeds is not uniformly represented in space and time, however, leaving some gaps in our knowledge. We performed a historiographical investigation of the published fossil record of pinnipeds based on the information available in the Paleobiology Database, with the aim to broadly characterize and evaluate it from a taxonomic, geographical and temporal perspective. We identified major trends, strengths and weaknesses of the pinniped fossil record, including potential biases that may affect our interpretations. We found that 39% of the record corresponds to extant taxa, which are essentially from the Pleistocene and Holocene. There is a larger record from the Northern Hemisphere, suggesting biases in sampling and collection effort. The record is not strongly biased by sedimentary outcrop bias. Specifically, for extinct species, nearly half of them are represented by a single occurrence and a large proportion have type specimens consisting of single isolated postcranial elements. While the pinniped fossil record may have adequate temporal and taxonomic coverage, it has a strong geographical bias and its comparability is hindered by the incompleteness of type specimens. These results should be taken into account when addressing patterns of their past diversity, evolutionary history and paleoecology.
Collapse
Affiliation(s)
- Ana Valenzuela-Toro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Nicholas D. Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013, USA
- Department of Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA 98105, USA
| |
Collapse
|
3
|
Boessenecker RW, Ehret DJ, Long DJ, Churchill M, Martin E, Boessenecker SJ. The Early Pliocene extinction of the mega-toothed shark Otodus megalodon: a view from the eastern North Pacific. PeerJ 2019; 7:e6088. [PMID: 30783558 PMCID: PMC6377595 DOI: 10.7717/peerj.6088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/08/2018] [Indexed: 11/24/2022] Open
Abstract
The extinct giant shark Otodus megalodon is the last member of the predatory megatoothed lineage and is reported from Neogene sediments from nearly all continents. The timing of the extinction of Otodus megalodon is thought to be Pliocene, although reports of Pleistocene teeth fuel speculation that Otodus megalodon may still be extant. The longevity of the Otodus lineage (Paleocene to Pliocene) and its conspicuous absence in the modern fauna begs the question: when and why did this giant shark become extinct? Addressing this question requires a densely sampled marine vertebrate fossil record in concert with a robust geochronologic framework. Many historically important basins with stacked Otodus-bearing Neogene marine vertebrate fossil assemblages lack well-sampled and well-dated lower and upper Pliocene strata (e.g., Atlantic Coastal Plain). The fossil record of California, USA, and Baja California, Mexico, provides such an ideal sequence of assemblages preserved within well-dated lithostratigraphic sequences. This study reviews all records of Otodus megalodon from post-Messinian marine strata from western North America and evaluates their reliability. All post-Zanclean Otodus megalodon occurrences from the eastern North Pacific exhibit clear evidence of reworking or lack reliable provenance; the youngest reliable records of Otodus megalodon are early Pliocene, suggesting an extinction at the early-late Pliocene boundary (∼3.6 Ma), corresponding with youngest occurrences of Otodus megalodon in Japan, the North Atlantic, and Mediterranean. This study also reevaluates a published dataset, thoroughly vetting each occurrence and justifying the geochronologic age of each, as well as excluding several dubious records. Reanalysis of the dataset using optimal linear estimation resulted in a median extinction date of 3.51 Ma, somewhat older than a previously proposed Pliocene-Pleistocene extinction date (2.6 Ma). Post-middle Miocene oceanographic changes and cooling sea surface temperature may have resulted in range fragmentation, while alongside competition with the newly evolved great white shark (Carcharodon carcharias) during the Pliocene may have led to the demise of the megatoothed shark. Alternatively, these findings may also suggest a globally asynchronous extinction of Otodus megalodon.
Collapse
Affiliation(s)
- Robert W Boessenecker
- Department of Geology and Environmental Geosciences, College of Charleston, Charleston, SC, USA.,Mace Brown Museum of Natural History, College of Charleston, Charleston, SC, USA.,Museum of Paleontology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Douglas J Long
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA, USA.,Department of Biology, St. Mary's College, Moraga, CA, USA
| | - Morgan Churchill
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, WI, USA
| | - Evan Martin
- San Diego Natural History Museum, San Diego, CA, USA
| | - Sarah J Boessenecker
- Department of Geology and Environmental Geosciences, College of Charleston, Charleston, SC, USA.,Mace Brown Museum of Natural History, College of Charleston, Charleston, SC, USA.,School of Museum Studies, University of Leicester, Leicester, UK
| |
Collapse
|
4
|
Dal Sasso C, Maganuco S, Cau A. The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds. PeerJ 2018; 6:e5976. [PMID: 30588396 PMCID: PMC6304160 DOI: 10.7717/peerj.5976] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
The homology of the tridactyl hand of birds is a still debated subject, with both paleontological and developmental evidence used in support of alternative identity patterns in the avian fingers. With its simplified phalangeal morphology, the Late Jurassic ceratosaurian Limusaurus has been argued to support a II-III-IV digital identity in birds and a complex pattern of homeotic transformations in three-fingered (tetanuran) theropods. We report a new large-bodied theropod, Saltriovenator zanellai gen. et sp. nov., based on a partial skeleton from the marine Saltrio Formation (Sinemurian, lowermost Jurassic) of Lombardy (Northern Italy). Taphonomical analyses show bone bioerosion by marine invertebrates (first record for dinosaurian remains) and suggest a complex history for the carcass before being deposited on a well-oxygenated and well-illuminated sea bottom. Saltriovenator shows a mosaic of features seen in four-fingered theropods and in basal tetanurans. Phylogenetic analysis supports sister taxon relationships between the new Italian theropod and the younger Early Jurassic Berberosaurus from Morocco, in a lineage which is the basalmost of Ceratosauria. Compared to the atrophied hand of later members of Ceratosauria, Saltriovenator demonstrates that a fully functional hand, well-adapted for struggling and grasping, was primitively present in ceratosaurians. Ancestral state reconstruction along the avian stem supports 2-3-4-1-X and 2-3-4-0-X as the manual phalangeal formulae at the roots of Ceratosauria and Tetanurae, confirming the I-II-III pattern in the homology of the avian fingers. Accordingly, the peculiar hand of Limusaurus represents a derived condition restricted to late-diverging ceratosaurians and cannot help in elucidating the origin of the three-fingered condition of tetanurans. The evolution of the tridactyl hand of birds is explained by step-wise lateral simplification among non-tetanuran theropod dinosaurs, followed by a single primary axis shift from digit position 4 to 3 at the root of Tetanurae once the fourth finger was completely lost, which allowed independent losses of the vestigial fourth metacarpal among allosaurians, tyrannosauroids, and maniraptoromorphs. With an estimated body length of 7.5 m, Saltriovenator is the largest and most robust theropod from the Early Jurassic, pre-dating the occurrence in theropods of a body mass approaching 1,000 Kg by over 25 My. The radiation of larger and relatively stockier averostran theropods earlier than previously known may represent one of the factors that ignited the trend toward gigantism in Early Jurassic sauropods.
Collapse
Affiliation(s)
| | | | - Andrea Cau
- Museo Geologico "Giovanni Capellini", Bologna, Italy
| |
Collapse
|
5
|
Magallanes I, Parham JF, Santos GP, Velez-Juarbe J. A new tuskless walrus from the Miocene of Orange County, California, with comments on the diversity and taxonomy of odobenids. PeerJ 2018; 6:e5708. [PMID: 30345169 PMCID: PMC6188011 DOI: 10.7717/peerj.5708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/05/2018] [Indexed: 11/22/2022] Open
Abstract
We describe Titanotaria orangensis (gen. et. sp. nov.), a new species of walrus (odobenid) from the upper Miocene Oso Member of the Capistrano Formation of Orange County, California. This species is important because: (1) It is one of the best-known and latest-surviving tuskless walruses; (2) It raises the number of reported odobenid taxa from the Oso Member to four species making it one of the richest walrus assemblages known (along with the basal Purisima of Northern California); (3) It is just the second record of a tuskless walrus from the same unit as a tusked taxon. Our phylogenetic analysis places T. orangensis as sister to a clade that includes Imagotaria downsi, Pontolis magnus, Dusignathus spp., Gomphotaria pugnax, and Odobeninae. We propose new branch-based phylogenetic definitions for Odobenidae, Odobeninae, and a new node-based name (Neodobenia) for the clade that includes Dusignathus spp., G. pugnax, and Odobeninae. A richness analysis at the 0.1 Ma level that incorporates stratigraphic uncertainty and ghost lineages demonstrates maximum peaks of richness (up to eight or nine coeval lineages) near the base of Odobenidae, Neodobenia, and Odobenini. A more conservative minimum curve demonstrates that standing richness may have been much lower than the maximum lineage richness estimates that are biased by stratigraphic uncertainty. Overall the odobenid fossil record is uneven, with large time slices of the record missing on either side of the Pacific Ocean at some times and biases from the preserved depositional environments at other times. We recognize a provisional timescale for the transition of East Pacific odobenid assemblages that include "basal odobenids" (stem neodobenians) from the Empire and older formations (>7 Ma), to a mixture of basal odobenids and neodobenians from the Capistrano and basal Purisima (7-5 Ma), and then just neodobenians from all younger units (<5 Ma). The large amount of undescribed material will add new taxa and range extensions for existing taxa, which will likely change some of the patterns we describe.
Collapse
Affiliation(s)
- Isaac Magallanes
- Department of Geological Sciences, California State University, Fullerton, Fullerton, CA, USA
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - James F. Parham
- Department of Geological Sciences, California State University, Fullerton, Fullerton, CA, USA
| | | | - Jorge Velez-Juarbe
- Department of Mammalogy, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA
| |
Collapse
|
6
|
Maisch HM, Becker MA, Chamberlain JA. Lamniform and Carcharhiniform Sharks from the Pungo River and Yorktown Formations (Miocene–Pliocene) of the Submerged Continental Shelf, Onslow Bay, North Carolina, USA. COPEIA 2018. [DOI: 10.1643/ot-18-016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Syme CE, Salisbury SW. Taphonomy of Isisfordia duncani specimens from the Lower Cretaceous (upper Albian) portion of the Winton Formation, Isisford, central-west Queensland. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171651. [PMID: 29657771 PMCID: PMC5882695 DOI: 10.1098/rsos.171651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/09/2018] [Indexed: 05/12/2023]
Abstract
Taphonomic analysis of fossil material can benefit from including the results of actualistic decay experiments. This is crucial in determining the autochthony or allochthony of fossils of juvenile and adult Isisfordia duncani, a basal eusuchian from the Lower Cretaceous (upper Albian) distal-fluvial-deltaic lower Winton Formation near Isisford. The taphonomic characteristics of the I. duncani fossils were documented using a combination of traditional taphonomic analysis alongside already published actualistic decay data from juvenile Crocodylus porosus carcasses. We found that the I. duncani holotype, paratypes and referred specimens show little signs of weathering and no signs of abrasion. Disarticulated skeletal elements are often found in close proximity to the rest of the otherwise articulated skeleton. The isolated and disarticulated skeletal elements identified, commonly cranial, maxillary and mandibular elements, are typical of lag deposits. The holotype QM F36211 and paratype QM F34642 were classified as autochthonous, and the remaining I. duncani paratypes and referred specimens are parautochthonous. We propose that I. duncani inhabited upper and lower delta plains near the Eromanga Sea in life. Their carcasses were buried in sediment-laden floodwaters in delta plain overbank and distributary channel deposits. Future studies should refer to I. duncani as a brackish water tolerant species.
Collapse
|
8
|
Dewaele L, Lambert O, Louwye S. On Prophoca and Leptophoca (Pinnipedia, Phocidae) from the Miocene of the North Atlantic realm: redescription, phylogenetic affinities and paleobiogeographic implications. PeerJ 2017; 5:e3024. [PMID: 28243538 PMCID: PMC5322758 DOI: 10.7717/peerj.3024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/24/2017] [Indexed: 11/20/2022] Open
Abstract
Background Prophoca and Leptophoca represent the oldest known genera of phocine seals, dating from the latest early to middle Miocene. Originally, Prophoca rousseaui and Prophoca proxima were described based on fragmentary remains from the Miocene of Belgium. However, several researchers contested the union of Prophoca rousseaui and Prophoca proxima into one genus, without providing evidence. The stratigraphic context of Prophoca remained poorly constrained due to the lack of precise data associated with the original specimens collected in the area of Antwerp (north of Belgium). Methods Prophoca and Leptophoca are redescribed and their phylogenetic position among Phocidae is reassessed using PAUP. Dinoflagellate biostratigraphy has been carried out on sediment samples associated with specimens from Prophoca and Leptophoca to elucidate their approximate ages. Results Whereas the species Prophoca rousseaui is redescribed, Prophoca proxima is considered synonymous to Leptophoca lenis, with the proposal of a new combination Leptophoca proxima (Van Beneden, 1877). Sediment samples from specimens of both taxa have been dated to the late Langhian–early Serravallian (middle Miocene). Following a reinvestigation of Leptophoca amphiatlantica, characters from the original diagnosis are questioned and the specimens of Leptophoca amphiatlantica are considered Leptophoca cf. L. proxima. In a phylogenetic analysis, Prophoca rousseaui and Leptophoca proxima constitute early branching stem-phocines. Discussion Leptophoca proxima from the North Sea Basin is younger than the oldest known find of Leptophoca proxima from North America, which does not contradict the hypothesis that Phocinae originated along the east coast of North America during the late early Miocene, followed by dispersal to Europe shortly after. Morphological features of the appendicular skeleton indicate that Prophoca rousseaui and Leptophoca proxima have archaic locomotory modes, retaining a more prominent use of the fore flipper for aquatic propulsion than extant Phocidae.
Collapse
Affiliation(s)
- Leonard Dewaele
- Department of Geology, Ghent University, Ghent, Belgium; O.D. Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Olivier Lambert
- O.D. Earth and History of Life, Royal Belgian Institute of Natural Sciences , Brussels , Belgium
| | - Stephen Louwye
- Department of Geology, Ghent University , Ghent , Belgium
| |
Collapse
|
9
|
Abstract
Abstract This study forms part of a larger project to reconstruct the Mio-Pliocene marine palaeoenvironment along South Africa’s west coast. It documents the shark–cetacean trophic interaction during the Zanclean (5 Ma) at Duinefontein (Koeberg). The damage described on the fragmentary cetacean bones was compared with similar damage observed on fossils from Langebaanweg, a Mio-Pliocene site on the west coast of South Africa, and data present in the literature. This comparison showed that the damage was the result of shark bites. The state of preservation makes it difficult to determine if the shark bite marks were the cause of death or as a result of scavenging. The presence of the bite marks on the bone would, however, indicate some degree of skeletonisation. Bite marks on some cranial fragments would suggest that the cetacean’s body was in an inverted position typical of a floating carcass. The preservation of the material suggests that the bones were exposed to wave action resulting in their fragmentation as well as abrasion, polishing and rolling. It also suggests that the cetacean skeletons were exposed for a long time prior to burial. The morphology of the bites suggests that the damage was inflicted by sharks with serrated and unserrated teeth. Shark teeth collected from the deposit include megalodon (Carcharodon megalodon), white (Carcharodon carcharias) as well as mako (Isurus sp. and Cosmopolitodus hastalis) sharks, making these sharks the most likely predators/scavengers.
Collapse
|
10
|
Walsh SA, Milner AC, Bourdon E. A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia. J Anat 2015; 229:215-27. [PMID: 26553244 DOI: 10.1111/joa.12406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 11/30/2022] Open
Abstract
The evolution of the avian brain is of crucial importance to studies of the transition from non-avian dinosaurs to modern birds, but very few avian fossils provide information on brain morphological development during the Mesozoic. An isolated specimen from the Cenomanian of Melovatka in Russia was described by Kurochkin and others as a fossilized brain, designated the holotype of Cerebavis cenomanica Kurochkin and Saveliev and tentatively referred to Enantiornithes. We have previously highlighted that this specimen is an incomplete skull, rendering the diagnostic characters invalid and Cerebavis cenomanica a nomen dubium. We provide here a revised diagnosis of Cerebavis cenomanica based on osteological characters, and a reconstruction of the endocranial morphology (= brain shape) based on μCT investigation of the braincase. Absence of temporal fenestrae indicates an ornithurine affinity for Cerebavis. The brain of this taxon was clearly closer to that of modern birds than to Archaeopteryx and does not represent a divergent evolutionary pathway as originally concluded by Kurochkin and others. No telencephalic wulst is present, suggesting that this advanced avian neurological feature was not recognizably developed 93 million years ago.
Collapse
Affiliation(s)
- Stig A Walsh
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Angela C Milner
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Estelle Bourdon
- Natural History Museum of Denmark, Section of Biosystematics, Copenhagen, Denmark
| |
Collapse
|
11
|
Piscivory in a Miocene Cetotheriidae of Peru: first record of fossilized stomach content for an extinct baleen-bearing whale. Naturwissenschaften 2015; 102:70. [PMID: 26553062 DOI: 10.1007/s00114-015-1319-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.
Collapse
|
12
|
Boessenecker RW, Fordyce RE. Anatomy, feeding ecology, and ontogeny of a transitional baleen whale: a new genus and species of Eomysticetidae (Mammalia: Cetacea) from the Oligocene of New Zealand. PeerJ 2015; 3:e1129. [PMID: 26380800 PMCID: PMC4570844 DOI: 10.7717/peerj.1129] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/05/2015] [Indexed: 12/01/2022] Open
Abstract
The Eocene history of cetacean evolution is now represented by the expansive fossil record of archaeocetes elucidating major morphofunctional shifts relating to the land to sea transition, but the change from archaeocetes to modern cetaceans is poorly established. New fossil material of the recently recognized family Eomysticetidae from the upper Oligocene Otekaike Limestone includes a new genus and species, Waharoa ruwhenua, represented by skulls and partial skeletons of an adult, juvenile, and a smaller juvenile. Ontogenetic status is confirmed by osteohistology of ribs. Waharoa ruwhenua is characterized by an elongate and narrow rostrum which retains vestigial alveoli and alveolar grooves. Palatal foramina and sulci are present only on the posterior half of the palate. The nasals are elongate, and the bony nares are positioned far anteriorly. Enormous temporal fossae are present adjacent to an elongate and narrow intertemporal region with a sharp sagittal crest. The earbones are characterized by retaining inner and outer posterior pedicles, lacking fused posterior processes, and retaining a separate accessory ossicle. Phylogenetic analysis supports inclusion of Waharoa ruwhenua within a monophyletic Eomysticetidae as the earliest diverging clade of toothless mysticetes. This eomysticetid clade also included Eomysticetus whitmorei, Micromysticetus rothauseni, Tohoraata raekohao, Tokarahia kauaeroa, Tokarahia lophocephalus, and Yamatocetus canaliculatus. Detailed study of ontogenetic change demonstrates postnatal elaboration of the sagittal and nuchal crests, elongation of the intertemporal region, inflation of the zygomatic processes, and an extreme proportional increase in rostral length. Tympanic bullae are nearly full sized during early postnatal ontogeny indicating precocial development of auditory structures, but do increase slightly in size. Positive allometry of the rostrum suggests an ontogenetic change in feeding ecology, from neonatal suckling to a more specialized adult feeding behaviour. Possible absence of baleen anteriorly, a delicate temporomandibular joint with probable synovial capsule, non-laterally deflected coronoid process, and anteroposteriorly expanded palate suggests skim feeding as likely mode of adult feeding for zooplankton. Isotopic data in concert with preservation of young juveniles suggests the continental shelf of Zealandia was an important calving ground for latitudinally migrating Oligocene baleen whales.
Collapse
Affiliation(s)
- Robert W Boessenecker
- Department of Geology, University of Otago , Dunedin , New Zealand ; University of California Museum of Paleontology, University of California , Berkeley, CA , USA ; Current affiliation: Department of Geology and Environmental Geosciences, College of Charleston , Charleston, SC , USA
| | - R Ewan Fordyce
- Department of Geology, University of Otago , Dunedin , New Zealand
| |
Collapse
|
13
|
Pyenson ND, Vélez-Juarbe J, Gutstein CS, Little H, Vigil D, O’Dea A. Isthminia panamensis, a new fossil inioid (Mammalia, Cetacea) from the Chagres Formation of Panama and the evolution of 'river dolphins' in the Americas. PeerJ 2015; 3:e1227. [PMID: 26355720 PMCID: PMC4562255 DOI: 10.7717/peerj.1227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022] Open
Abstract
In contrast to dominant mode of ecological transition in the evolution of marine mammals, different lineages of toothed whales (Odontoceti) have repeatedly invaded freshwater ecosystems during the Cenozoic era. The so-called 'river dolphins' are now recognized as independent lineages that converged on similar morphological specializations (e.g., longirostry). In South America, the two endemic 'river dolphin' lineages form a clade (Inioidea), with closely related fossil inioids from marine rock units in the South Pacific and North Atlantic oceans. Here we describe a new genus and species of fossil inioid, Isthminia panamensis, gen. et sp. nov. from the late Miocene of Panama. The type and only known specimen consists of a partial skull, mandibles, isolated teeth, a right scapula, and carpal elements recovered from the Piña Facies of the Chagres Formation, along the Caribbean coast of Panama. Sedimentological and associated fauna from the Piña Facies point to fully marine conditions with high planktonic productivity about 6.1-5.8 million years ago (Messinian), pre-dating the final closure of the Isthmus of Panama. Along with ecomorphological data, we propose that Isthminia was primarily a marine inhabitant, similar to modern oceanic delphinoids. Phylogenetic analysis of fossil and living inioids, including new codings for Ischyrorhynchus, an enigmatic taxon from the late Miocene of Argentina, places Isthminia as the sister taxon to Inia, in a broader clade that includes Ischyrorhynchus and Meherrinia, a North American fossil inioid. This phylogenetic hypothesis complicates the possible scenarios for the freshwater invasion of the Amazon River system by stem relatives of Inia, but it remains consistent with a broader marine ancestry for Inioidea. Based on the fossil record of this group, along with Isthminia, we propose that a marine ancestor of Inia invaded Amazonia during late Miocene eustatic sea-level highs.
Collapse
Affiliation(s)
- Nicholas D. Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA, USA
| | - Jorge Vélez-Juarbe
- Department of Mammalogy, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Carolina S. Gutstein
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Comisión de Patrimonio Natural, Consejo de Monumentos Nacionales, Santiago, Chile
| | - Holly Little
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Dioselina Vigil
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Aaron O’Dea
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
14
|
Pimiento C, Balk MA. Body-size trends of the extinct giant shark Carcharocles megalodon: a deep-time perspective on marine apex predators. PALEOBIOLOGY 2015; 41:479-490. [PMID: 26321775 PMCID: PMC4541548 DOI: 10.1017/pab.2015.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
The extinct shark Carcharocles megalodon is one of the largest marine apex predators ever to exist. Nonetheless, little is known about its body-size variations through time and space. Here, we studied the body-size trends of C. megalodon through its temporal and geographic range to better understand its ecology and evolution. Given that this species was the last of the megatooth lineage, a group of species that shows a purported size increase through time, we hypothesized that C. megalodon also displayed this trend, increasing in size over time and reaching its largest size prior to extinction. We found that C. megalodon body-size distribution was left-skewed (suggesting a long-term selective pressure favoring larger individuals), and presented significant geographic variation (possibly as a result of the heterogeneous ecological constraints of this cosmopolitan species) over geologic time. Finally, we found that stasis was the general mode of size evolution of C. megalodon (i.e., no net changes over time), contrasting with the trends of the megatooth lineage and our hypothesis. Given that C. megalodon is a relatively long-lived species with a widely distributed fossil record, we further used this study system to provide a deep-time perspective to the understanding of the body-size trends of marine apex predators. For instance, our results suggest that (1) a selective pressure in predatory sharks for consuming a broader range of prey may favor larger individuals and produce left-skewed distributions on a geologic time scale; (2) body-size variations in cosmopolitan apex marine predators may depend on their interactions with geographically discrete communities; and (3) the inherent characteristics of shark species can produce stable sizes over geologic time, regardless of the size trends of their lineages.
Collapse
Affiliation(s)
- Catalina Pimiento
- Florida Museum of Natural History , University of Florida , Gainesville , Florida 32611 , U.S.A. ; Department of Biology , University of Florida , Gainesville , Florida , U.S.A. and Smithsonian Tropical Research Institute , Box 2072 , Balboa , Panama . E-mail:
| | - Meghan A Balk
- University of New Mexico , Albuquerque , New Mexico 87131 , U.S.A
| |
Collapse
|