1
|
Guo C, Zhang Z, Zhang M, Guo G, Yu G, Zhao D, Li M, Li G, Liu B. Screening and Stability Analysis of Reference Genes for Gene Expression Normalization in Hybrid Yellow Catfish ( Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂) Fed Diets Containing Different Soybean Meal Levels. AQUACULTURE NUTRITION 2023; 2023:1232518. [PMID: 37780581 PMCID: PMC10541299 DOI: 10.1155/2023/1232518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
In this study, we screened the expression stability of six reference genes (18S rRNA, β-actin, GAPDH, EF1a, B2M, and HPRT1) in hybrid yellow catfish (n = 6), considering the SBM levels, sampling time points, and different tissues. Four different statistical programs, BestKeeper, NormFinder, Genorm, and Delta Ct, combined with a method that comprehensively considered all results, were used to evaluate the expression stability of these reference genes systematically. The results showed that SBM levels significantly impacted the expression stability of most of the reference genes studied and that this impact was time-, dose-, and tissue-dependent. The expression stability of these six reference genes varied depending on tissue, sampling time point, and SBM dosage. Additionally, more variations were found among different tissues than among different SBM levels or sampling time points. Due to its high expression, 18S rRNA was excluded from the list of candidate reference genes. β-actin and GAPDH in the liver and β-actin, HPRT1 and EF1a in the intestine were the most stable reference genes when SBM levels were considered. HPRT1, and EF1a in tissues sampled at 2 W and EF1a and β-actin in tissues sampled at 4 and 6 W were proposed as two stable reference genes when different tissues were considered. When the sampling time points were considered, β-actin, EF1a, and HPRT1 were the top three stable reference genes in the intestine. In contrast, β-actin and B2M are the most stable reference genes in the liver. In summary, β-actin, EF1a, and HPRT1 were the more stable reference genes in this study. The stability of reference genes depends on the tissues, sampling time points, and SBM diet levels in hybrid yellow catfish. Therefore, attention should be paid to these factors before selecting suitable reference genes for normalizing the target genes.
Collapse
Affiliation(s)
- Chaohui Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Meina Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guojun Guo
- Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Daoquan Zhao
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China
- Yiluo River Field Scientifical Observation and Reseaarch Station of Aquatic Animals in Yellow River Basin, Lushi 472200, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Yiluo River Field Scientifical Observation and Reseaarch Station of Aquatic Animals in Yellow River Basin, Lushi 472200, China
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Yiluo River Field Scientifical Observation and Reseaarch Station of Aquatic Animals in Yellow River Basin, Lushi 472200, China
| |
Collapse
|
2
|
Kaur R, Ahlawat S, Choudhary V, Kumari A, Kumar A, Kaur M, Arora R, Sharma R, Vijh RK. Validation of stable reference genes in peripheral blood mononuclear cells for expression studies involving vector-borne haemoparasitic diseases in bovines. Ticks Tick Borne Dis 2023; 14:102168. [PMID: 36940645 DOI: 10.1016/j.ttbdis.2023.102168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
Normalization of gene expression data using appropriate reference genes is critical to diminish any technical bias in an experiment involving quantitative real-time PCR (qPCR). To the best of our knowledge, this is the first report offering a systematic assessment of 14 potential reference genes (RPLP0, ACTB, RPS28, YWHAZ, SDHA, PPIA, RPS9, RPS15, UXT, GAPDH, B2M, BACH1, HMBS, and PPIB) for the identification of the most stable normalizers for qPCR of target genes in peripheral blood mononuclear cells (PBMCs) of bovines for vector-borne haemoparasitic diseases such as anaplasmosis, babesiosis, theileriosis, and trypanosomiasis. A total of 38 blood samples were collected from healthy as well as diseased cattle and buffaloes representing different haemoparasitic diseases. RNA isolated from the PBMCs was subjected to qPCR for the 14 prospective internal control genes. The comprehensive ranking of the genes was accomplished by the RefFinder tool that integrates the results of three algorithms (geNorm, NormFinder, and BestKeeper) and the comparative CT method. RPS15, B2M, and GAPDH were ranked to be the most stable genes, whereas, PPIA and HMBS emerged to be the least suitable genes. Validation of the selected reference genes by the qPCR analysis of two immunity genes, ISG15 and GPX7 was congruent with the observations of this study. We recommend that a panel of three reference genes including RPS15, B2M, and GAPDH could prove useful in delineating the transcriptional landscape of PBMCs for vector-borne haemoparasitic diseases in bovines.
Collapse
Affiliation(s)
- Rashmeet Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India; ICAR-National Dairy Research Institute, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Vikas Choudhary
- Department of Animal Husbandry and Dairying, District Disease Diagnostic Laboratory, Karnal, Haryana, India
| | - Anisha Kumari
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | |
Collapse
|
3
|
Sahoo PK, Parida S, Parida S, Parida P, Paul A. Stability evaluation and validation of appropriate reference genes for real-time PCR expression analysis of immune genes in the rohu (Labeo rohita) skin following argulosis. Sci Rep 2023; 13:2660. [PMID: 36792637 PMCID: PMC9932016 DOI: 10.1038/s41598-023-29325-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Argulosis is one of the most unrestrained economically significant freshwater fish ectoparasitic diseases. Proper selection or normalization of the best reference gene governs the accuracy of results of gene expression studies using real-time PCR. Earlier studies in rohu carp (Labeo rohita) have used reference genes without proper validation. Here, seven candidate reference genes viz., acidic ribosomal protein (ARP0), glyceraldehyde 3-phosphate dehydrogenase, RNA polymerase II (RPo), elongation factor1α (EF1α), α- tubulin (AT), ribosomal protein L 10, and β-actin were evaluated using four algorithms (geNorm, BestKeeper, NormFinder and ∆Ct) followed by a comprehensive gene expression analysis using skin tissue of rohu at varied time points of experimental Argulus siamensis infection. ARP0 and EF1α were found to be the most stable whereas RPo and AT were considered as least stable genes based on basal expression level and variation in expression levels. Validation of candidate reference genes was undertaken by looking into the expression of six immune-related genes using the two most stable and two least stable genes as housekeeping genes in Argulus-infected rohu skin at different time points of infection. An increased expression of immune genes indicated the role of inflammation and the immune modulation process at the site of attachment of parasites in governing infection.
Collapse
Affiliation(s)
- Pramoda Kumar Sahoo
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, India.
| | - Sonali Parida
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, India
| | - Subhadarshini Parida
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, India
| | - Priyashree Parida
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, India
| | - Anirban Paul
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, India
| |
Collapse
|
4
|
Li YY, Chen X, Yang JX, Chen Q, Song TY, Ge JQ. Evaluation of housekeeping genes as references for quantitative real-time PCR analysis of European eel, Anguilla anguilla. JOURNAL OF FISH BIOLOGY 2023; 102:141-154. [PMID: 36222316 DOI: 10.1111/jfb.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Eels are important aquaculture species for which an increasing number of reference genes are being identified and applied. In this study, five housekeeping genes [RPL7 (ribosomal protein L7), 18 S (18 S ribosomal RNA), EF1A (elongation factor 1α), ACTB (β-actin) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase)] were chosen to evaluate their reliability as reference genes for quantitative real-time PCR (qPCR) for the study of Anguilla anguilla. The expression of the selected genes in different eel tissues was determined using qPCR at different growth stages or upon challenge by Anguillid herpesvirus (AngHV), and the expression levels of these genes were then compared and evaluated using the geNorm and NormFinder algorithms. Then, RefFinder was used to comprehensively rank the examined housekeeping genes. Interestingly, the expression of the evaluated housekeeping genes exhibited tissue-dependent and treatment-dependent variations. In different growth periods A. anguilla tissues, the most stable genes were the following: ACTB in mucus; 18 S in skin and kidney; RPL7 in muscle, gill, intestine and brain; EF1A in heart and liver; and GAPDH in spleen. In contrast, in AngHV-challenged A. anguilla tissues, the most stable genes were the following: 18 S in mucus; RPL7 in skin, gill, heart, spleen, kidney and intestine; EF1A in muscle and liver; and ACTB in brain. Further comparison analysis indicated that the expression of RPL7 and EF1A was stable in multiple A. anguilla tissues in different growth periods and in eels challenged by AngHV. Nonetheless, the expression level of GAPDH in eel tissues was lower, and it was unstable in several tissues. These results indicated that the selection of reference genes for qPCR analysis in A. anguilla should be made in accordance with experimental parameters, and both RPL7 and EF1A could be used as reference genes for qPCR study of A. anguilla at different growth stages or upon challenge by AngHV. The reference genes identified in this study could improve the accuracy of qPCR data and facilitate further studies aimed at understanding the biology of eels.
Collapse
Affiliation(s)
- Ying-Ying Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Xi Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jin-Xian Yang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Qiang Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Tie-Ying Song
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jun-Qing Ge
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Zeng R, Pan W, Lin Y, He J, Luo Z, Li Z, Weng S, He J, Guo C. Development of a gene-deleted live attenuated candidate vaccine against fish virus (ISKNV) with low pathogenicity and high protection. iScience 2021; 24:102750. [PMID: 34278259 PMCID: PMC8261673 DOI: 10.1016/j.isci.2021.102750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/29/2020] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
Aquaculture provides important food, nutrition, and income sources for humans. However, aquaculture industry is seriously threatened by viral diseases. Infectious spleen and kidney necrosis virus (ISKNV) disease causes high mortality and economic losses to the fish culture industry in Asia and has been listed as a certifiable disease by the International Epizootic Office. Vaccine development is urgent to control this disease. Here, a gene-deleted live attenuated candidate vaccine (ΔORF022L) against ISKNV with low pathogenicity and high protection was developed. ΔORF022L replicated well in mandarin fish fry-1 cells and showed similar structure with wild-type ISKNV. However, the pathogenicity was significantly lower as 98% of the mandarin fish infected with ΔORF022L survived, whereas all those infected with wild-type ISKNV died. Of importance, 100% of the ΔORF022L-infected fish survived the ISKNV challenge. ΔORF022L induced anti-ISKNV specific antibody response and upregulation of immune-related genes. This work could be beneficial to the control of fish diseases.
Collapse
Affiliation(s)
- Ruoyun Zeng
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Yifan Lin
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Zhiyong Luo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Zhimin Li
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China
| | - Shaoping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong 510006, PR China.,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| |
Collapse
|
6
|
Validation of Reference Genes via qRT-PCR in Multiple Conditions in Brandt's Voles, Lasiopodomys brandtii. Animals (Basel) 2021; 11:ani11030897. [PMID: 33801053 PMCID: PMC8004067 DOI: 10.3390/ani11030897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary This study validated the stability of the expression profiles of nine common candidate reference genes (Gapdh, Hprt1, β-actin, PPIA, Rpl13a, Tbp, Sdha, Hmbs, and B2M) using qRT-PCR in different tissues, developmental stages, and photoperiods. None of these genes were suitable as optimal reference genes at 4 weeks postnatal in different tissues. Under different developmental stages in the hypothalamus, B2M for males and Rpl13a for females were suitable as reference genes. Under different photoperiods in the hypothalamus, none of the selected genes were suitable as reference genes at 6 weeks postnatal, β-actin and PPIA were the optimal reference genes at 12 weeks postnatal, while Hprt1, β-actin, PPIA, Hmbs, and B2M were excellent reference genes at 24 weeks postnatal. Abstract The choice of optimal reference gene is challenging owing to the varied expression of reference genes in different organs, development stages, and experimental treatments. Brandt’s vole (Lasiopodomys brandtii) is an ideal animal to explore the regulatory mechanism of seasonal breeding, and many studies on this vole involve gene expression analysis using quantitative real-time polymerase chain reaction (qRT-PCR). In this study, we used the method of the coefficient of variation and the NormFinder algorithm to evaluate the performance of nine commonly used reference genes Gapdh, Hprt1, β-actin, PPIA, Rpl13a, Tbp, Sdha, Hmbs, and B2M using qRT-PCR in eight different tissues, five developmental stages, and three different photoperiods. We found that all nine genes were not uniformly expressed among different tissues. B2M and Rpl13a were the optimal reference genes for different postnatal development stages in the hypothalamus for males and females, respectively. Under different photoperiods in the hypothalamus, none of the selected genes were suitable as reference genes at 6 weeks postnatal; β-actin and PPIA were the optimal reference genes at 12 weeks postnatal; Hprt1, β-actin, PPIA, Hmbs, and B2M were excellent reference genes at 24 weeks postnatal. The present study provides a useful basis for selecting the appropriate reference gene in Lasiopodomys brandtii.
Collapse
|
7
|
Azemi NFH, Misnan R, Keong PB, Yadzir ZHM. Reference gene and tropomyosin expression in mud crab Scylla olivacea, Scylla paramamosain and Scylla tranquebarica. Mol Biol Rep 2020; 47:9765-9777. [PMID: 33170423 DOI: 10.1007/s11033-020-05966-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Tropomyosin, a muscle tissue protein is a major allergen in most of shellfish including mud crab. Quantitative real time-PCR (qRT-PCR) using a stable reference gene is the most sensitive approach to produce accurate relative gene expression that has yet to be demonstrated for allergenic tropomyosin in mud crab species. This study was conducted to identify the suitable reference gene and tropomyosin expression in different body parts of local mud crabs, Scylla olivacea, Scylla paramamosain and Scylla tranquebarica. Myosin, 18S rRNA, GADPH and EF1α were selected as candidate reference genes and their expression was measured in the abdomen, walking leg and cheliped tissues of local Scylla spp. The expression stability was analyzed using the comparative delta-Ct method, BestKeeper, NormFinder and geNorm then comprehensively ranked by RefFinder algorithm. Findings showed that EF1α was the most suitable reference gene across three mud crab species. Meanwhile, the abdomen, walking leg and cheliped selected their own suitable reference gene either Myosin, 18S rRNA, EF1α or GADPH. Overall, tropomyosin was the highest in S. tranquebarica, whereas the least was in S. paramamosain. Interestingly, tropomyosin was the highest in the abdomen of all mud crab species. This is the first analysis on reference genes selection for qRT-PCR data normalization of tropomyosin expression in mud crab. These results will provide more accurate findings for further gene expression and allergen analysis in Scylla spp.
Collapse
Affiliation(s)
- Nur Farah Hani Azemi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Rosmilah Misnan
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
| | - Poh Bun Keong
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | | |
Collapse
|
8
|
Jeon JH, Moon K, Kim Y, Kim YH. Reference gene selection for qRT-PCR analysis of season- and tissue-specific gene expression profiles in the honey bee Apis mellifera. Sci Rep 2020; 10:13935. [PMID: 32811887 PMCID: PMC7435199 DOI: 10.1038/s41598-020-70965-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 01/10/2023] Open
Abstract
Honey bees are both important pollinators and model insects due to their highly developed sociality and colony management. To better understand the molecular mechanisms underlying honey bee colony management, it is important to investigate the expression of genes putatively involved in colony physiology. Although quantitative real-time PCR (qRT-PCR) can be used to quantify the relative expression of target genes, internal reference genes (which are stably expressed across different conditions) must first be identified to ensure accurate normalisation of target genes. To identify reliable reference genes in honey bee (Apis mellifera) colonies, therefore, we evaluated seven candidate genes (ACT, EIF, EF1, RPN2, RPS5, RPS18 and GAPDH) in samples collected from three honey bee tissue types (head, thorax and abdomen) across all four seasons using three analysis programmes (NormFinder, BestKeeper and geNorm). Subsequently, we validated various normalisation methods using each of the seven reference genes and a combination of multiple genes by calculating the expression of catalase (CAT). Although the genes ranked as the most stable gene were slightly different on conditions and analysis methods, our results suggest that RPS5, RPS18 and GAPDH represent optimal honey bee reference genes for target gene normalisation in qRT-PCR analysis of various honey bee tissue samples collected across seasons.
Collapse
Affiliation(s)
- Ji Hyang Jeon
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - KyungHwan Moon
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - YeongHo Kim
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Young Ho Kim
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea. .,Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea.
| |
Collapse
|
9
|
Evaluation of qPCR reference genes in GH-overexpressing transgenic zebrafish (Danio rerio). Sci Rep 2020; 10:12692. [PMID: 32728128 PMCID: PMC7391647 DOI: 10.1038/s41598-020-69423-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Reference genes (RGs) must have a stable expression in tissues in all experimental conditions to normalize real-time quantitative reverse transcription PCR (qRT-PCR) data. F0104 is a highly studied lineage of zebrafish developed to overexpress the growth hormone (GH). It is assumed that the transgenic process may influence the expression levels of commonly used RGs. The objective of the present study was to make a comprehensive analysis of stability of canditade RGs actb1, actb2, b2m, eif2s2, eef1a1, gapdh, rplp2, rpl7, rpl13α, tuba1, and rps18, in gh-transgenic and non-transgenic zebrafish. Liver, brain, intestine and muscle samples from both groups had qRT-PCR results analyzed by dCt, geNorm, NormFinder, BestKeeper, and RefFinder softwares. Consensus analyses among software concluded that rpl13α, rpl7, and eef1a1 are the most stable genes for zebrafish, considering the studied groups and tissues. Gapdh, rps18, and tuba1 suffered variations in stability among different tissues of both groups, and so, they were listed as the genes with lowest stability. Results from an average pairwise variations test indicated that the use of two RGs would generate reliable results for gene expression analysis in the studied tissues. We conclude that genes that are commonly used in mammals for qRT-PCR assays have low stability in both non-transgenic and gh-transgenic zebrafish reinforcing the importance of using species-specific RGs.
Collapse
|
10
|
Long C, Xiao Y, Li S, Tang X, Yuan Z, Bai Y. Identification of optimal endogenous reference RNAs for RT-qPCR normalization in hindgut of rat models with anorectal malformations. PeerJ 2019; 7:e6829. [PMID: 31065464 PMCID: PMC6485207 DOI: 10.7717/peerj.6829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/20/2019] [Indexed: 01/27/2023] Open
Abstract
Background Quantitative real-time polymerase chain reaction (RT-qPCR) is a sensitive method for quantifying mRNA abundance. With relative expression analysis, however, reliable data output is dependent on stably expressed reference genes across the samples being studied. In anorectal malformations (ARMs), there is limited data on the selection of appropriate reference genes. Purpose This study was aimed to investigate the optimal reference genes for PCR in ARM rat models. Methods We selected 15 commonly used reference genes (Rps18, Actb, B2m, Gapdh, Ppia, Hprt1, Pgk1, Ywhaz, Tbp, Ubc, Rps16, Rpl13a, Rplp1, Sdha, and Hmbs) as candidate reference genes and detected their mRNA expression in ARM samples by RT-qPCR. The expression stability and variability of these transcripts were subsequently evaluated using four methods (geNorm, NormFinder, comparative ΔCt, and BestKeeper). Results The abundance of the candidate reference genes was qualified by RT-qPCR and the cycle threshold (Ct) values ranged between 14.07 (Rplp1) and 21.89 (Sdha). In the overall candidate genes, different variations existed across the different algorithms. A comprehensive analysis revealed that Rpl13a ranked first among the relatively stable genes, followed by Ywhaz, Rps18, Sdha, and Hmbs. Conclusions The most stable reference genes for RT-qPCR were Rpl13a, Ywhaz, and Rps18 in ETU-induced ARMs in rat fetus. This study provided a foundation for reference gene selection for future gene expression analyses.
Collapse
Affiliation(s)
- Caiyun Long
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yunxia Xiao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Siying Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaobing Tang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhengwei Yuan
- The Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
11
|
Wang B, Yang F, Li R, Li X, Wu X, Sun Z, Zhai J, He Y, Qi J. Functional characterization of Cynoglossus semilaevis R-spondin2 and its role in muscle development during embryogenesis. Genes Genet Syst 2018; 93:181-190. [PMID: 30333384 DOI: 10.1266/ggs.18-00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
R-spondin2 (Rspo2) is a member of the R-spondin family, which plays important roles in cell proliferation, cell fate determination and organogenesis. Rspo2 exhibits important functions during embryonic development and muscle maintenance in adult human, mouse and Xenopus. In the present study, the tongue sole Cynoglossus semilaevis Rspo2 (CsRspo2) gene was isolated and characterized, and its role in muscle development during embryogenesis was studied. Our results showed that CsRspo2 expression was abundant during gastrulation and significantly high during somite formation, but then decreased markedly after hatching. CsRspo2 expression was high in brain and gill, moderate in heart, ovary and testis, and almost undetectable in muscle and other tissues. Moreover, the potential involvement of Rspo2 in muscle development was investigated. We found that overexpression of CsRspo2 mRNA in zebrafish embryos resulted in slow development and abnormal muscle formation at the embryonic stage. Our work provides a fundamental understanding of the structure and potential functions of CsRspo2 during muscle development.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Fan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Rui Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Xuemei Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Xiaolong Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Zheng Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | | | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China
| |
Collapse
|
12
|
Li C, Jiang J, Zhang Q, Wang X. Duplicated major histocompatibility complex class II genes in the tongue sole (Cynoglossus semilaevis
). Int J Immunogenet 2018; 45:210-224. [DOI: 10.1111/iji.12368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/25/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022]
Affiliation(s)
- C. Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - J. Jiang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Q. Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - X. Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| |
Collapse
|
13
|
Silveira TLR, Domingues WB, Remião MH, Santos L, Barreto B, Lessa IM, Varela Junior AS, Martins Pires D, Corcini C, Collares T, Seixas FK, Robaldo RB, Campos VF. Evaluation of Reference Genes to Analyze Gene Expression in Silverside Odontesthes humensis Under Different Environmental Conditions. Front Genet 2018; 9:75. [PMID: 29593778 PMCID: PMC5861154 DOI: 10.3389/fgene.2018.00075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/19/2018] [Indexed: 01/12/2023] Open
Abstract
Some mammalian reference genes, which are widely used to normalize the qRT-PCR, could not be used for this purpose due to its high expression variation. The normalization with false reference genes leads to misinterpretation of results. The silversides (Odontesthes spp.) has been used as models for evolutionary, osmoregulatory and environmental pollution studies but, up to now, there are no studies about reference genes in any Odontesthes species. Furthermore, many studies on silversides have used reference genes without previous validations. Thus, present study aimed to was to clone and sequence potential reference genes, thereby identifying the best ones in Odontesthes humensis considering different tissues, ages and conditions. For this purpose, animals belonging to three ages (adults, juveniles, and immature) were exposed to control, Roundup®, and seawater treatments for 24 h. Blood samples were subjected to flow-cytometry and other collected tissues to RNA extraction; cDNA synthesis; molecular cloning; DNA sequencing; and qRT-PCR. The candidate genes tested included 18s, actb, ef1a, eif3g, gapdh, h3a, atp1a, and tuba. Gene expression results were analyzed using five algorithms that ranked the candidate genes. The flow-cytometry data showed that the environmental challenges could trigger a systemic response in the treated fish. Even during this systemic physiological disorder, the consensus analysis of gene expression revealed h3a to be the most stable gene expression when only the treatments were considered. On the other hand, tuba was the least stable gene in the control and gapdh was the least stable in both Roundup® and seawater groups. In conclusion, the consensus analyses of different tissues, ages, and treatments groups revealed that h3a is the most stable gene whereas gapdh and tuba are the least stable genes, even being considered two constitutive genes.
Collapse
Affiliation(s)
- Tony L R Silveira
- Laboratory of Structural Genomics, Biotechnology Graduate Program, Federal University of Pelotas, Pelotas, Brazil
| | - William B Domingues
- Laboratory of Structural Genomics, Biotechnology Graduate Program, Federal University of Pelotas, Pelotas, Brazil
| | - Mariana H Remião
- Laboratory of Structural Genomics, Biotechnology Graduate Program, Federal University of Pelotas, Pelotas, Brazil
| | - Lucas Santos
- Laboratory of Structural Genomics, Biotechnology Graduate Program, Federal University of Pelotas, Pelotas, Brazil
| | - Bruna Barreto
- Laboratory of Structural Genomics, Biotechnology Graduate Program, Federal University of Pelotas, Pelotas, Brazil
| | - Ingrid M Lessa
- Laboratory of Structural Genomics, Biotechnology Graduate Program, Federal University of Pelotas, Pelotas, Brazil
| | | | | | - Carine Corcini
- Veterinary Faculty, Federal University of Pelotas, Pelotas, Brazil
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana K Seixas
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Federal University of Pelotas, Pelotas, Brazil
| | - Ricardo B Robaldo
- Laboratory of Physiology, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - Vinicius F Campos
- Laboratory of Structural Genomics, Biotechnology Graduate Program, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
14
|
Xu D, Liu A, Wang X, Zhang M, Zhang Z, Tan Z, Qiu M. Identifying suitable reference genes for developing and injured mouse CNS tissues. Dev Neurobiol 2017; 78:39-50. [PMID: 29134774 DOI: 10.1002/dneu.22558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Accurate quantification of gene expression is fundamental for understanding the molecular, genetic and functional bases of tissue development and diseases. Quantitative real-time PCR (qPCR) is now the most widely used method of quantifying gene expression due to its simplicity, specificity, sensitivity, and wide quantification range. The use of appropriate reference genes to ensure accurate normalization is crucial for the correct quantification of gene expression from the early development, maturation, aging to injury processes in the central nervous system (CNS). In this study, we have determined the expression profiles of 12 candidate housekeeping genes (ACTB, CYC1, HMBS, GAPDH, HPRT1, RPL13A, YWHAZ, PPIA, RPLP0, TFRC, GUS, and 18S rRNA) in developing mouse brain and spinal cord. Throughout development, there was a significant degree of fluctuations in their expression levels, indicating the importance and complexity of finding appropriate reference genes. Three software including BestKeeper, geNorm and NormFinder were used to evaluate the stability of potential reference genes. GUS was the most stable gene and GUS/YWHAZ were the most stable reference gene pair across different developmental stages in different CNS regions, whereas HPRT1 and GAPDH were the most variable genes and thus inappropriate to use as reference genes. Therefore, our results identified GUS and YWHAZ as the best combination of two reference genes for expression data normalization in CNS developmental studies. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 39-50, 2018.
Collapse
Affiliation(s)
- Dongchao Xu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Ajuan Liu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Xuan Wang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Ming Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zunyi Zhang
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Zhou Tan
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Zhejiang, 311121, China.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY40292
| |
Collapse
|
15
|
Validation of reference genes for expression analysis in a teleost fish (Catla catla Hamilton) exposed to an endocrine-disrupting chemical, bisphenol-A. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2017. [DOI: 10.1007/s12210-017-0653-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Song H, Wang M, Wang Z, Liu J, Qi J, Zhang Q. Characterization of kiss2 and kissr2 genes and the regulation of kisspeptin on the HPG axis in Cynoglossus semilaevis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:731-753. [PMID: 28120214 DOI: 10.1007/s10695-016-0328-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Reproduction allows organisms to produce offspring. Animals shift from immature juveniles into mature adults and become capable of sexual reproduction during puberty, which culminates in the first spermiation and sperm hydration or ovulation. Reproduction is closely related to the precise control of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin peptides are considered as the important regulator of HPG axis in mammalian. However, the current understanding of kisspeptin in flatfish is not comprehensive. In this study, we cloned and analyzed the kiss2 and kissr2 genes in Cynoglossus semilaevis. Interesting alternative splicing in the 5'-untranslated regions (UTR) of the Cskissr2 gene was found. The expression profiles of Cskiss2 and Cskissr2 showed relative high messenger RNA (mRNA) levels at the late gastrula stage during embryonic development, at total length = 40 mm during early gonadal differentiation, and in the brains and gonads of all investigated tissues. These results suggested that the kisspeptin system participated in embryogenesis and in the regulation of gonadal differentiation and development. Considering that the control and regulatory mechanisms of kisspeptin in the central reproductive axis are still unclear, we documented that the intramuscular injection of kisspeptin caused different sGnRH and cGnRH mRNA levels in a dose- and tissue-dependent manner. The mRNA expressions of FSH and LH were stimulated in the ovary and were inhibited in the testis under the kisspeptin treatments. These results provided foundations for understanding the roles of kisspeptin in the neuroendocrine system in fish. The manipulation of the kisspeptin system may provide new opportunities to control the gonadal development and even reproduction in fish.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
17
|
Ashish S, Bhure SK, Harikrishna P, Ramteke SS, Muhammed Kutty VH, Shruthi N, Ravi Kumar GVPPS, Manish M, Ghosh SK, Mihir S. Identification and evaluation of reference genes for accurate gene expression normalization of fresh and frozen-thawed spermatozoa of water buffalo (Bubalus bubalis). Theriogenology 2017; 92:6-13. [PMID: 28237344 DOI: 10.1016/j.theriogenology.2017.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/16/2022]
Abstract
The quantitative real time PCR (qRT-PCR) has become an important tool for gene-expression analysis for a selected number of genes in life science. Although large dynamic range, sensitivity and reproducibility of qRT-PCR is good, the reliability majorly depend on the selection of proper reference genes (RGs) employed for normalization. Although, RGs expression has been reported to vary considerably within same cell type with different experimental treatments. No systematic study has been conducted to identify and evaluate the appropriate RGs in spermatozoa of domestic animals. Therefore, this study was conducted to analyze suitable stable RGs in fresh and frozen-thawed spermatozoa. We have assessed 13 candidate RGs (BACT, RPS18s, RPS15A, ATP5F1, HMBS, ATP2B4, RPL13, EEF2, TBP, EIF2B2, MDH1, B2M and GLUT5) of different functions and pathways using five algorithms. Regardless of the approach, the ranking of the most and the least candidate RGs remained almost same. The comprehensive ranking by RefFinder showed GLUT5, ATP2B4 and B2M, MDH1 as the top two stable and least stable RGs, respectively. The expression levels of four heat shock proteins (HSP) were employed as a target gene to evaluate RGs efficiency for normalization. The results demonstrated an exponential difference in expression levels of the four HSP genes upon normalization of the data with the most stable and the least stable RGs. Our study, provides a convenient RGs for normalization of gene-expression of key metabolic pathways effected during freezing and thawing of spermatozoa of buffalo and other closely related bovines.
Collapse
Affiliation(s)
- Shende Ashish
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - S K Bhure
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India.
| | - Pillai Harikrishna
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - S S Ramteke
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - V H Muhammed Kutty
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - N Shruthi
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - G V P P S Ravi Kumar
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - Mahawar Manish
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - S K Ghosh
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| | - Sarkar Mihir
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, 243122, Bareilly, U.P., India
| |
Collapse
|
18
|
van de Moosdijk AAA, van Amerongen R. Identification of reliable reference genes for qRT-PCR studies of the developing mouse mammary gland. Sci Rep 2016; 6:35595. [PMID: 27752147 PMCID: PMC5067587 DOI: 10.1038/srep35595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023] Open
Abstract
Cell growth and differentiation are often driven by subtle changes in gene expression. Many challenges still exist in detecting these changes, particularly in the context of a complex, developing tissue. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) allows relatively high-throughput evaluation of multiple genes and developmental time points. Proper quantification of gene expression levels by qRT-PCR requires normalization to one or more reference genes. Traditionally, these genes have been selected based on their presumed “housekeeping” function, with the implicit assumption that they are stably expressed over the entire experimental set. However, this is rarely tested empirically. Here we describe the identification of novel reference genes for the mouse mammary gland based on their stable expression in published microarray datasets. We compared eight novel candidate reference genes (Arpc3, Clock, Ctbp1, Phf7, Prdx1, Sugp2, Taf11 and Usp7) to eight traditional ones (18S, Actb, Gapdh, Hmbs, Hprt, Rpl13a, Sdha and Tbp) and analysed all genes for stable expression in the mouse mammary gland from pre-puberty to adulthood using four different algorithms (GeNorm, DeltaCt, BestKeeper and NormFinder). Prdx1, Phf7 and Ctbp1 were validated as novel and reliable, tissue-specific reference genes that outperform traditional reference genes in qRT-PCR studies of postnatal mammary gland development.
Collapse
Affiliation(s)
- Anoeska Agatha Alida van de Moosdijk
- Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Renée van Amerongen
- Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
19
|
Pashay Ahi E, Walker BS, Lassiter CS, Jónsson ZO. Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development. PeerJ 2016; 4:e1878. [PMID: 27069811 PMCID: PMC4824909 DOI: 10.7717/peerj.1878] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E 2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E 2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E 2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E 2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E 2 during larval head development.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland , Reykjavik , Iceland
| | | | | | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland; Biomedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
20
|
Liu J, Jiang J, Wang Z, He Y, Zhang Q. Origin and evolution of GATA2a and GATA2b in teleosts: insights from tongue sole, Cynoglossus semilaevis. PeerJ 2016; 4:e1790. [PMID: 27019782 PMCID: PMC4806627 DOI: 10.7717/peerj.1790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Following the two rounds of whole-genome duplication that occurred during deuterostome evolution, a third genome duplication occurred in the lineage of teleost fish and is considered to be responsible for much of the biological diversification within the lineage. GATA2, a member of GATA family of transcription factors, is an important regulator of gene expression in hematopoietic cell in mammals, yet the role of this gene or its putative paralogs in ray-finned fishes remains relatively unknown. Methods. In this study, we attempted to identify GATA2 sequences from the transcriptomes and genomes of multiple teleosts using the bioinformatic tools MrBayes, MEME, and PAML. Following identification, comparative analysis of genome structure, molecular evolution rate, and expression by real-time qPCR were used to predict functional divergence of GATA2 paralogs and their relative transcription in organs of female and male tongue soles (Cynoglossus semilaevis). Results. Two teleost GATA2 genes were identified in the transcriptomes of tongue sole and Japanese flounder (Paralichthysolivaceus). Synteny and phylogenetic analysis confirmed that the two genes likely originated from the teleost-specific genome duplication . Additionally, selection pressure analysis predicted these gene duplicates to have undergone purifying selection and possible divergent new functions. This was supported by differential expression pattern of GATA2a and GATA2b observed in organs of female and male tongue soles. Discussion. Our results indicate that two GATA2 genes originating from the first teleost-specific genome duplication have remained transcriptionally active in some fish species and have likely undergone neofunctionalization. This knowledge provides novel insights into the evolution of the teleost GATA2 genes and constituted important groundwork for further research on the GATA gene family.
Collapse
Affiliation(s)
- Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Jiajun Jiang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| |
Collapse
|
21
|
Sun BG, Hu YH. Evaluation of potential internal references for quantitative real-time RT-PCR normalization of gene expression in red drum (Sciaenops ocellatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:695-704. [PMID: 25743365 DOI: 10.1007/s10695-015-0039-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) has been used extensively for studying gene expression in diverse organisms including fish. In this study, with an aim to identify reliable reference genes for qRT-PCR in red drum (Sciaenops ocellatus), an economic fish species, we determined the expression stability of seven housekeeping genes in healthy and bacterium-infected red drum. Each of the selected candidate genes was amplified by qRT-PCR from the brain, gill, heart, intestine, kidney, liver, muscle, and spleen of red drum infected with or without a bacterial pathogen for 12 and 48 h. The mRNA levels of the genes were analyzed with the geNorm and NormFinder algorithms. The results showed that in the absence of bacterial infection, translation initiation factor 3, NADH dehydrogenase 1, and QM-like protein may be used together as internal references across the eight examined tissues. Bacterial infection caused variations in the rankings of the most stable genes in a tissue-dependent manner. For all tissues, two genes sufficed for reliable normalization at both 12 and 48 h post-infection. However, the optimal gene pairs differed among tissues and, for four of the examined eight tissues, between infection points. These results indicate that when studying gene expression in red drum under conditions of bacterial infection, the optimal reference genes should be selected on the basis of tissue type and, for accurate normalization, infection stage.
Collapse
Affiliation(s)
- Bo-Guang Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | | |
Collapse
|
22
|
HE YUXI, ZHANG YAN, YANG QIWEI, WANG CHENGUANG, SU GUANFANG. Selection of suitable reference genes for reverse transcription-quantitative polymerase chain reaction analysis of neuronal cells differentiated from bone mesenchymal stem cells. Mol Med Rep 2015; 12:2291-300. [DOI: 10.3892/mmr.2015.3671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/16/2015] [Indexed: 11/05/2022] Open
|
23
|
Kumari K, Pathakota GB, Annam PK, Kumar S, Krishna G. Characterisation and Validation of House Keeping Gene for Expression Analysis in Catla catla (Hamilton). ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40011-014-0482-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|