1
|
Park H. Unraveling the Molecular Puzzle: Exploring Gene Networks across Diverse EMT Status of Cell Lines. Int J Mol Sci 2023; 24:12784. [PMID: 37628965 PMCID: PMC10454379 DOI: 10.3390/ijms241612784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Understanding complex disease mechanisms requires a comprehensive understanding of the gene regulatory networks, as complex diseases are often characterized by the dysregulation and dysfunction of molecular networks, rather than abnormalities in single genes. Specifically, the exploration of cell line-specific gene networks can provide essential clues for precision medicine, as this methodology can uncover molecular interplays specific to particular cell line statuses, such as drug sensitivity, cancer progression, etc. In this article, we provide a comprehensive review of computational strategies for cell line-specific gene network analysis: (1) cell line-specific gene regulatory network estimation and analysis of gene networks under varying epithelial-mesenchymal transition (EMT) statuses of cell lines; and (2) an explainable artificial intelligence approach for interpreting the estimated massive multiple EMT-status-specific gene networks. The objective of this review is to help readers grasp the concept of computational network biology, which holds significant implications for precision medicine by offering crucial clues.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul 02844, Republic of Korea
| |
Collapse
|
2
|
Lipolysis-stimulated lipoprotein receptor-targeted antibody-drug conjugate demonstrates potent antitumor activity against epithelial ovarian cancer. Neoplasia 2022; 35:100853. [PMID: 36413881 PMCID: PMC9679668 DOI: 10.1016/j.neo.2022.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a lethal malignant tumor, for which new treatment options are urgently required. Lipolysis-stimulated lipoprotein receptor (LSR) is widely expressed in EOC, and it is associated with poor prognosis. In this study, we developed an antibody-drug conjugate (ADC) targeting LSR as a new therapeutic approach to EOC. METHODS We, herein, developed novel anti-LSR monoclonal antibodies (mAbs) and an LSR-ADC by conjugating monomethyl auristatin E as a payload. We subsequently evaluated the in vitro and in vivo (on xenograft models) antitumor effect of the LSR-ADC. RESULTS An overexpression of LSR was observed not only in the primary EOC tumor but also in its lymph node and omental metastases. The EOC cell lines NOVC7-C and OVCAR3 strongly expressed LSR (as compared to ES2 cells). Both the anti-LSR mAb and the LSR-ADC were able to specifically bind to LSR-positive cells and were rapidly internalized and trafficked to the lysosomes. The LSR-ADC demonstrated a potent antitumor effect against NOVC-7C and OVCAR3, but little activity against ES2 cells. In vitro, the LSR-ADC exhibited a potent antitumor effect against NOVC-7C and OVCAR3. Moreover, in the OVCAR3 xenograft models as well as in the patient-derived xenograft models of LSR-positive EOC, the LSR-ADC significantly inhibited tumor growth. The LSR-ADC also suppressed the omental/bowel metastases in OVCAR3-Luc xenografts and improved the median survival. CONCLUSION The developed LSR-ADC demonstrated a significant antitumor activity against LSR-positive EOC cell lines and tumors. Our preclinical data support the use of the LSR-ADC as a novel therapy for patients with LSR-positive ovarian cancer.
Collapse
|
3
|
Dong X, Zhang X, Liu P, Tian Y, Li L, Gong P. Lipolysis-Stimulated Lipoprotein Receptor Impairs Hepatocellular Carcinoma and Inhibits the Oncogenic Activity of YAP1 via PPPY Motif. Front Oncol 2022; 12:896412. [PMID: 35586495 PMCID: PMC9108500 DOI: 10.3389/fonc.2022.896412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Lipolysis-stimulated lipoprotein receptor (LSR) is a type I single-pass transmembrane protein which is mainly expressed in the liver. In this study, we investigated if and how LSR is involved in the carcinogenesis of hepatocellular carcinoma (HCC). Experimental Design To evaluate if LSR was abnormally expressed in human HCC tissues, and how its expression was associated with the survival probability of patients, we obtained data from Gene Expression Omnibus and The Cancer Genome Atlas Program. To investigate if and how LSR regulates tumor growth, we knocked down and overexpressed LSR in human HCC cell lines. In addition, to evaluate the interaction between LSR and yes-associated protein1 (YAP1), we mutated LSR at PPPY motif, a binding site of YAP1. Results Totally, 454 patients were enrolled in the present study, and high expression of LSR significantly decreased the probability of death. Knockdown of LSR significantly increased the expansion of HCC cells and significantly promoted tumor growth. In addition, downregulation of LSR increased the nuclear accumulation and transcriptional function of YAP1. Conversely, overexpression of LSR impairs this function of YAP1 and phosphorylates YAP1 at serine 127. Of note, mutation of LSR at the PPPY motif could block the interaction between LSR and YAP1, and restore the transcriptional ability of YAP1. Conclusions The present study suggests that LSR binds to YAP1 via the PPPY motif. Thus, LSR increases the phosphorylation of YAP1 and impairs the growth of HCC. This highlights that targeting LSR might be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xin Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Xianbin Zhang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Peng Liu
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Yu Tian
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Li
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
4
|
Shimada H, Kohno T, Konno T, Okada T, Saito K, Shindo Y, Kikuchi S, Tsujiwaki M, Ogawa M, Matsuura M, Saito T, Kojima T. The Roles of Tricellular Tight Junction Protein Angulin-1/Lipolysis-Stimulated Lipoprotein Receptor (LSR) in Endometriosis and Endometrioid-Endometrial Carcinoma. Cancers (Basel) 2021; 13:6341. [PMID: 34944960 PMCID: PMC8699113 DOI: 10.3390/cancers13246341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022] Open
Abstract
Tight junction proteins play roles beyond permeability barriers functions and control cell proliferation and differentiation. The relation between tight junctions and the signal transduction pathways affects cell growth, invasion and migration. Abnormality of tight junction proteins closely contributes to epithelial mesenchymal transition (EMT) and malignancy of various cancers. Angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) forms tricellular contacts that has a barrier function. Downregulation of angulin-1/LSR correlates with the malignancy in various cancers, including endometrioid-endometrial carcinoma (EEC). These alterations have been shown to link to not only multiple signaling pathways such as Hippo/YAP, HDAC, AMPK, but also cell metabolism in ECC cell line Sawano. Moreover, loss of angulin-1/LSR upregulates claudin-1, and loss of apoptosis stimulating p53 protein 2 (ASPP2) downregulates angulin-1/LSR. Angulin-1/LSR and ASPP2 concentrate at both midbody and centrosome in cytokinesis. In EEC tissues, angulin-1/LSR and ASPP2 are reduced and claudin-2 is overexpressed during malignancy, while in the tissues of endometriosis changes in localization of angulin-1/LSR and claudin-2 are seen. This review highlights how downregulation of angulin-1/LSR promotes development of endometriosis and EEC and discusses about the roles of angulin-1/LSR and its related proteins, including claudins and ASPP2.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| | - Tadahi Okada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Kimihito Saito
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Yuma Shindo
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Marie Ogawa
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Motoki Matsuura
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Tsuyoshi Saito
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| |
Collapse
|
5
|
LSR Promotes Cell Proliferation and Invasion in Lung Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6651907. [PMID: 33763152 PMCID: PMC7964108 DOI: 10.1155/2021/6651907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
The lipolysis-stimulated lipoprotein receptor (LSR) displays an important regulatory role in cancer. However, the association between LSR and lung cancer is still elusive. Here, the candidate oncogene LSR on Ch.9q was obtained and assessed by bioinformatics analysis of The Cancer Genome Atlas (TCGA) dataset of lung cancer. We conducted clinical pathology and survival analysis based on the lung cancer database. We assessed the biological effects of LSR in lung cancer cells on cell proliferation. Our data indicated that LSR was upregulated in lung cancer cells. Meanwhile, LSR was identified in this study to be a poor prognostic factor, and its high expression exhibited relations with grades, stages, and nodal metastasis status. Using in vitro analysis, our data revealed that LSR could promote lung cancer progression by regulating cell proliferation, migration, and invasion. In our study, our data demonstrated that LSR was a tumor promoter for lung cancer and was a potential biomarker and target for lung cancer prognosis and treatment.
Collapse
|
6
|
Tight Junction Modulating Bioprobes for Drug Delivery System to the Brain: A Review. Pharmaceutics 2020; 12:pharmaceutics12121236. [PMID: 33352631 PMCID: PMC7767277 DOI: 10.3390/pharmaceutics12121236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), which is composed of endothelial cells, pericytes, astrocytes, and neurons, separates the brain extracellular fluid from the circulating blood, and maintains the homeostasis of the central nervous system (CNS). The BBB endothelial cells have well-developed tight junctions (TJs) and express specific polarized transport systems to tightly control the paracellular movements of solutes, ions, and water. There are two types of TJs: bicellular TJs (bTJs), which is a structure at the contact of two cells, and tricellular TJs (tTJs), which is a structure at the contact of three cells. Claudin-5 and angulin-1 are important components of bTJs and tTJs in the brain, respectively. Here, we review TJ-modulating bioprobes that enable drug delivery to the brain across the BBB, focusing on claudin-5 and angulin-1.
Collapse
|
7
|
Park H, Maruhashi K, Yamaguchi R, Imoto S, Miyano S. Global gene network exploration based on explainable artificial intelligence approach. PLoS One 2020; 15:e0241508. [PMID: 33156825 PMCID: PMC7647077 DOI: 10.1371/journal.pone.0241508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, personalized gene regulatory networks have received significant attention, and interpretation of the multilayer networks has been a critical issue for a comprehensive understanding of gene regulatory systems. Although several statistical and machine learning approaches have been developed and applied to reveal sample-specific regulatory pathways, integrative understanding of the massive multilayer networks remains a challenge. To resolve this problem, we propose a novel artificial intelligence (AI) strategy for comprehensive gene regulatory network analysis. In our strategy, personalized gene networks corresponding specific clinical characteristic are constructed and the constructed network is considered as a second-order tensor. Then, an explainable AI method based on deep learning is applied to decompose the multilayer networks, thus we can reveal all-encompassing gene regulatory systems characterized by clinical features of patients. To evaluate the proposed methodology, we apply our method to the multilayer gene networks under varying conditions of an epithelial–mesenchymal transition (EMT) process. From the comprehensive analysis of multilayer networks, we identified novel markers, and the biological mechanisms of the identified genes and their reciprocal mechanisms are verified through the literature. Although any biological knowledge about the identified genes was not incorporated in our analysis, our data-driven approach based on AI approach provides biologically reliable results. Furthermore, the results provide crucial evidences to reveal biological mechanism related to various diseases, e.g., keratinocyte proliferation. The use of explainable AI method based on the tensor decomposition enables us to reveal global and novel mechanisms of gene regulatory system from the massive multiple networks, which cannot be demonstrated by existing methods. We expect that the proposed method provides a new insight into network biology and it will be a useful tool to integrative gene network analysis related complex architectures of diseases.
Collapse
Affiliation(s)
- Heewon Park
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | | | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Aichi, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Hu JCE, Bojarski C, Branchi F, Fromm M, Krug SM. Leptin Downregulates Angulin-1 in Active Crohn's Disease via STAT3. Int J Mol Sci 2020; 21:ijms21217824. [PMID: 33105684 PMCID: PMC7672602 DOI: 10.3390/ijms21217824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Crohn’s disease (CD) has an altered intestinal barrier function, yet the underlying mechanisms remain to be disclosed. The tricellular tight junction protein tricellulin is involved in the maintenance of the paracellular macromolecule barrier and features an unchanged expression level in CD but a shifted localization. As angulins are known to regulate the localization of tricellulin, we hypothesized the involvement of angulins in CD. Using human biopsies, we found angulin-1 was downregulated in active CD compared with both controls and CD in remission. In T84 and Caco-2 monolayers, leptin, a cytokine secreted by fat tissue and affected in CD, decreased angulin-1 expression. This effect was completely blocked by STAT3 inhibitors, Stattic and WP1066, but only partially by JAK2 inhibitor AG490. The effect of leptin was also seen at a functional level as we observed in Caco-2 cells an increased permeability for FITC-dextran 4 kDa indicating an impaired barrier against macromolecule uptake. In conclusion, we were able to show that in active CD angulin-1 expression is downregulated, which leads to increased macromolecule permeability and is inducible by leptin via STAT3. This suggests that angulin-1 and leptin secretion are potential targets for intervention in CD to restore the impaired intestinal barrier.
Collapse
Affiliation(s)
- Jia-Chen E. Hu
- Institute of Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Christian Bojarski
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Federica Branchi
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Susanne M. Krug
- Institute of Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
- Correspondence:
| |
Collapse
|
9
|
ASPP2 suppression promotes malignancy via LSR and YAP in human endometrial cancer. Histochem Cell Biol 2020; 154:197-213. [PMID: 32266459 DOI: 10.1007/s00418-020-01876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
Apoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and epithelial polarity molecule PAR3. Lipolysis-stimulated lipoprotein receptor (LSR) is an important molecule at tricellular contacts, and loss of LSR promotes cell migration and invasion via Yes-associated protein (YAP) in human endometrial cancer cells. In the present study, to find how ASPP2 suppression promotes malignancy in human endometrial cancer, we investigated its mechanisms including the relationship with LSR. In endometriosis and endometrial cancers (G1 and G2), ASPP2 was observed as well as PAR3 and LSR in the subapical region. ASPP2 decreased in G3 endometrial cancer compared to G1. In human endometrial cancer cell line Sawano, ASPP2 was colocalized with LSR and tricellulin at tricellular contacts and binding to PAR3, LSR, and tricellulin in the confluent state. ASPP2 suppression promoted cell migration and invasion, decreased LSR expression, and induced expression of phosphorylated YAP, claudin-1, -4, and -7 as effectively as the loss of LSR. Knockdown of YAP prevented the upregulation of pYAP, cell migration and invasion induced by the ASPP2 suppression. Treatment with a specific antibody against ASPP2 downregulated ASPP2 and LSR, affected F-actin at tricellular contacts, upregulated expression of pYAP and claudin-1, and induced cell migration and invasion via YAP. In normal human endometrial epithelial cells, ASPP2 was in part colocalized with LSR at tricellular contacts and knockdown of ASPP2 or LSR induced expression of claudin-1 and claudin-4. ASPP2 suppression promoted cell invasion and migration via LSR and YAP in human endometrial cancer cells.
Collapse
|
10
|
González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M, Amaya E. Relationship between apical junction proteins, gene expression and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183278. [PMID: 32240623 DOI: 10.1016/j.bbamem.2020.183278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Elida Amaya
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
11
|
Molecular organization, regulation and function of tricellular junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183143. [DOI: 10.1016/j.bbamem.2019.183143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
|
12
|
Swierczynska MM, Betz MJ, Colombi M, Dazert E, Jenö P, Moes S, Pfaff C, Glatz K, Reincke M, Beuschlein F, Donath MY, Hall MN. Proteomic Landscape of Aldosterone-Producing Adenoma. Hypertension 2019; 73:469-480. [PMID: 30580688 DOI: 10.1161/hypertensionaha.118.11733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Primary aldosteronism is a disease of excessive production of adrenal steroid hormones and the most common cause of endocrine hypertension. Primary aldosteronism results mainly from bilateral adrenal hyperplasia or unilateral aldosterone-producing adenoma (APA). Primary aldosteronism cause at the molecular level is incompletely understood and a targeted treatment preventing excessive adrenal steroid production is not available. Here, we perform deep quantitative proteomic and phosphoproteomic profiling of 6 pairs of APA and adjacent nontumoral adrenal cortex. We show that increased steroidogenesis in APA is accompanied by upregulation of steroidogenic enzymes (HSD3B2, CYP21A2, CYP11B2) and of proteins involved in cholesterol uptake (LSR). We demonstrate that HSD3B2 is phosphorylated at Ser95 or 96 and identify a novel phosphorylation site, Ser489, in CYP21A2, suggesting that steroidogenic enzymes are regulated by phosphorylation. Our analysis also reveals altered ECM (extracellular matrix) composition in APA that affects ECM-cell surface interactions and actin cytoskeleton rearrangements. We show that RHOC, a GTPase controlling actin organization in response to extracellular stimuli, is upregulated in APA and promotes expression of the aldosterone synthase gene CYP11B2. Our data also indicate deregulation of protein N-glycosylation and GABAergic signaling in APAs. Finally, we find that mTORC1 (mammalian target of rapamycin complex 1) signaling is the major pathway deregulated in APA. Our study provides a rich resource for future research on the molecular mechanisms of primary aldosteronism.
Collapse
Affiliation(s)
- Marta M Swierczynska
- From the Biozentrum, University of Basel, Switzerland (M.M.S., M.C., E.D., P.J., S.M., C.P., M.N.H.), University Hospital Basel, Switzerland
| | - Matthias J Betz
- Clinic of Endocrinology, Diabetes & Metabolism (M.J.B., M.Y.D.), University Hospital Basel, Switzerland
| | - Marco Colombi
- From the Biozentrum, University of Basel, Switzerland (M.M.S., M.C., E.D., P.J., S.M., C.P., M.N.H.), University Hospital Basel, Switzerland
| | - Eva Dazert
- From the Biozentrum, University of Basel, Switzerland (M.M.S., M.C., E.D., P.J., S.M., C.P., M.N.H.), University Hospital Basel, Switzerland
| | - Paul Jenö
- From the Biozentrum, University of Basel, Switzerland (M.M.S., M.C., E.D., P.J., S.M., C.P., M.N.H.), University Hospital Basel, Switzerland
| | - Suzette Moes
- From the Biozentrum, University of Basel, Switzerland (M.M.S., M.C., E.D., P.J., S.M., C.P., M.N.H.), University Hospital Basel, Switzerland
| | - Cécile Pfaff
- From the Biozentrum, University of Basel, Switzerland (M.M.S., M.C., E.D., P.J., S.M., C.P., M.N.H.), University Hospital Basel, Switzerland
| | - Katharina Glatz
- Institute of Pathology (K.G.), University Hospital Basel, Switzerland
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany (M.R., F.B.)
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany (M.R., F.B.).,Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Switzerland (F.B.)
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes & Metabolism (M.J.B., M.Y.D.), University Hospital Basel, Switzerland
| | - Michael N Hall
- From the Biozentrum, University of Basel, Switzerland (M.M.S., M.C., E.D., P.J., S.M., C.P., M.N.H.), University Hospital Basel, Switzerland
| |
Collapse
|
13
|
Barrow MA, Martin ME, Coffey A, Andrews PL, Jones GS, Reaves DK, Parker JS, Troester MA, Fleming JM. A functional role for the cancer disparity-linked genes, CRYβB2 and CRYβB2P1, in the promotion of breast cancer. Breast Cancer Res 2019; 21:105. [PMID: 31511085 PMCID: PMC6739962 DOI: 10.1186/s13058-019-1191-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Background In the USA, the breast cancer mortality rate is 41% higher for African-American women than non-Hispanic White women. While numerous gene expression studies have classified biological features that vary by race and may contribute to poorer outcomes, few studies have experimentally tested these associations. CRYβB2 gene expression has drawn particular interest because of its association with overall survival and African-American ethnicity in multiple cancers. Several reports indicate that overexpression of the CRYβB2 pseudogene, CRYβB2P1, and not CRYβB2 is linked with race and poor outcome. It remains unclear whether either or both genes are linked to breast cancer outcomes. This study investigates CRYβB2 and CRYβB2P1 expression in human breast cancers and breast cancer cell line models, with the goal of elucidating the mechanistic contribution of CRYβB2 and CRYβB2P1 to racial disparities. Methods Custom scripts for CRYβB2 or CRYβB2P1 were generated and used to identify reads that uniquely aligned to either gene. Gene expression according to race and tumor subtype were assessed using all available TCGA breast cancer RNA sequencing alignment samples (n = 1221). In addition, triple-negative breast cancer models engineered to have each gene overexpressed or knocked out were developed and evaluated by in vitro, biochemical, and in vivo assays to identify biological functions. Results We provide evidence that CRYβB2P1 is expressed at higher levels in breast tumors compared to CRYβB2, but only CRYβB2P1 is significantly increased in African-American tumors relative to White American tumors. We show that independent of CRYβB2, CRYβB2P1 enhances tumorigenesis in vivo via promoting cell proliferation. Our data also reveal that CRYβB2P1 may function as a non-coding RNA to regulate CRYβB2 expression. A key observation is that the combined overexpression of both genes was found to suppress cell growth. CRYβB2 overexpression in triple-negative breast cancers increases invasive cellular behaviors, tumor growth, IL6 production, immune cell chemoattraction, and the expression of metastasis-associated genes. These data underscore that both CRYβB2 and CRYβB2P1 promote tumor growth, but their mechanisms for tumor promotion are likely distinct. Conclusions Our findings provide novel data emphasizing the need to distinguish and study the biological effects of both CRYβB2 and CRYβB2P1 as both genes independently promote tumor progression. Our data demonstrate novel molecular mechanisms of two understudied, disparity-linked molecules. Electronic supplementary material The online version of this article (10.1186/s13058-019-1191-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maya A Barrow
- Department of Biological and Biomedical Sciences, North Carolina Central University, 1801 Fayetteville Street, Mary Townes Science Complex, Durham, NC, 27707, USA
| | - Megan E Martin
- Department of Biological and Biomedical Sciences, North Carolina Central University, 1801 Fayetteville Street, Mary Townes Science Complex, Durham, NC, 27707, USA
| | - Alisha Coffey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Portia L Andrews
- Department of Biological and Biomedical Sciences, North Carolina Central University, 1801 Fayetteville Street, Mary Townes Science Complex, Durham, NC, 27707, USA
| | - Gieira S Jones
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Denise K Reaves
- Department of Biological and Biomedical Sciences, North Carolina Central University, 1801 Fayetteville Street, Mary Townes Science Complex, Durham, NC, 27707, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jodie M Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, 1801 Fayetteville Street, Mary Townes Science Complex, Durham, NC, 27707, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Kohno T, Konno T, Kojima T. Role of Tricellular Tight Junction Protein Lipolysis-Stimulated Lipoprotein Receptor (LSR) in Cancer Cells. Int J Mol Sci 2019; 20:E3555. [PMID: 31330820 PMCID: PMC6679224 DOI: 10.3390/ijms20143555] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Maintaining a robust epithelial barrier requires the accumulation of tight junction proteins, LSR/angulin-1 and tricellulin, at the tricellular contacts. Alterations in the localization of these proteins temporarily cause epithelial barrier dysfunction, which is closely associated with not only physiological differentiation but also cancer progression and metastasis. In normal human endometrial tissues, the endometrial cells undergo repeated proliferation and differentiation under physiological conditions. Recent observations have revealed that the localization and expression of LSR/angulin-1 and tricellulin are altered in a menstrual cycle-dependent manner. Moreover, it has been shown that endometrial cancer progression affects these alterations. This review highlights the differences in the localization and expression of tight junction proteins in normal endometrial cells and endometrial cancers and how they cause functional changes in cells.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo 060-8556, Japan.
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| |
Collapse
|
15
|
Stiles BG. Clostridial Binary Toxins: Basic Understandings that Include Cell Surface Binding and an Internal "Coup de Grâce". Curr Top Microbiol Immunol 2019; 406:135-162. [PMID: 27380267 DOI: 10.1007/82_2016_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium species can make a remarkable number of different protein toxins, causing many diverse diseases in humans and animals. The binary toxins of Clostridium botulinum, C. difficile, C. perfringens, and C. spiroforme are one group of enteric-acting toxins that attack the actin cytoskeleton of various cell types. These enterotoxins consist of A (enzymatic) and B (cell binding/membrane translocation) components that assemble on the targeted cell surface or in solution, forming a multimeric complex. Once translocated into the cytosol via endosomal trafficking and acidification, the A component dismantles the filamentous actin-based cytoskeleton via mono-ADP-ribosylation of globular actin. Knowledge of cell surface receptors and how these usurped, host-derived molecules facilitate intoxication can lead to novel ways of defending against these clostridial binary toxins. A molecular-based understanding of the various steps involved in toxin internalization can also unveil therapeutic intervention points that stop the intoxication process. Furthermore, using these bacterial proteins as medicinal shuttle systems into cells provides intriguing possibilities in the future. The pertinent past and state-of-the-art present, regarding clostridial binary toxins, will be evident in this chapter.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, 17201, USA.
| |
Collapse
|
16
|
Receptor-Binding and Uptake of Binary Actin-ADP-Ribosylating Toxins. Curr Top Microbiol Immunol 2019; 406:119-133. [PMID: 27817176 DOI: 10.1007/82_2016_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Binary actin-ADP-ribosylating toxins (e.g., Clostridium botulinum C2 toxin or Clostridium perfringens iota toxin ) consist of two separate proteins: An ADP-ribosyltransferase, which modifies actin thereby inhibiting actin polymerization, and a binding component that forms heptamers after proteolytic activation. While C2 toxin interacts with carbohydrate structures on host cells, the group of iota-like toxins binds to lipolysis-stimulated lipoprotein receptor (LSR). Here, we review LSR and discuss the role and function of LSR in interaction of iota-like toxins with host cells.
Collapse
|
17
|
Sugase T, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Hiramatsu K, Koh M, Saito Y, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Nakajima K, Hanazaki K, Mori M, Doki Y, Naka T. Lipolysis-stimulated lipoprotein receptor overexpression is a novel predictor of poor clinical prognosis and a potential therapeutic target in gastric cancer. Oncotarget 2018; 9:32917-32928. [PMID: 30250639 PMCID: PMC6152476 DOI: 10.18632/oncotarget.25952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/28/2018] [Indexed: 01/01/2023] Open
Abstract
The prognosis of patients with advanced gastric cancer (GC) remains poor despite the recent advances in molecular targeted therapies, and the search for biomarkers that can predict prognosis and additional new agents with acceptable toxicity profiles are needed. Lipolysis-stimulated lipoprotein receptor (LSR) is a lipoprotein receptor that binds to triglyceride-rich lipoproteins and related to some malignancies. Herein, we examined the association between LSR expression and the prognosis of patients with GC, and investigated the antitumor effect of a previously developed anti-human LSR monoclonal antibody (#1-25). We first performed immunohistochemical analysis of LSR protein expression in GC and normal tissues, and then examined its association with the prognosis of 110 patients with GC. LSR was overexpressed in most of primary GC and metastatic tumors, but not in normal tissues. Patients with strong LSR expression (N = 80, 72.7%) had significantly poorer overall survival (OS) than those with weak expression (P = 0.017). Multivariate analysis identified strong LSR (as well as pT) as independent and significant prognostic factors for OS. Next, we demonstrated that very low density lipoprotein (VLDL) treatment increases cell proliferation in LSR-expressing GC cell lines in vitro; LSR inhibition using #1-25 inhibited VLDL-induced proliferation by suppressing JAK/STAT and PI3K signaling. In vivo, we demonstrated a marked antitumor effect of #1-25 in 2 distinct GC cell line xenograft mice models. Our findings suggest that LSR plays a key functional role in GC development, and that this antigen can be therapeutically targeted to improve GC treatment.
Collapse
Affiliation(s)
- Takahito Sugase
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan.,Center for Intractable Immune Disease, Kochi University, Nankoku, Japan.,Department of Surgery, Kochi University, Nankoku, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi University, Nankoku, Japan
| | - Minoru Fujimoto
- Center for Intractable Immune Disease, Kochi University, Nankoku, Japan
| | - Tomoharu Ohkawara
- Center for Intractable Immune Disease, Kochi University, Nankoku, Japan
| | - Kosuke Hiramatsu
- Center for Intractable Immune Disease, Kochi University, Nankoku, Japan
| | - Masahiro Koh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yurina Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi University, Nankoku, Japan
| |
Collapse
|
18
|
Beer LA, Tatge H, Schneider C, Ruschig M, Hust M, Barton J, Thiemann S, Fühner V, Russo G, Gerhard R. The Binary Toxin CDT of Clostridium difficile as a Tool for Intracellular Delivery of Bacterial Glucosyltransferase Domains. Toxins (Basel) 2018; 10:toxins10060225. [PMID: 29865182 PMCID: PMC6024811 DOI: 10.3390/toxins10060225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
Binary toxins are produced by several pathogenic bacteria. Examples are the C2 toxin from Clostridium botulinum, the iota toxin from Clostridium perfringens, and the CDT from Clostridium difficile. All these binary toxins have ADP-ribosyltransferases (ADPRT) as their enzymatically active component that modify monomeric actin in their target cells. The binary C2 toxin was intensively described as a tool for intracellular delivery of allogenic ADPRTs. Here, we firstly describe the binary toxin CDT from C. difficile as an effective tool for heterologous intracellular delivery. Even 60 kDa glucosyltransferase domains of large clostridial glucosyltransferases can be delivered into cells. The glucosyltransferase domains of five tested large clostridial glucosyltransferases were successfully introduced into cells as chimeric fusions to the CDTa adapter domain (CDTaN). Cell uptake was demonstrated by the analysis of cell morphology, cytoskeleton staining, and intracellular substrate glucosylation. The fusion toxins were functional only when the adapter domain of CDTa was N-terminally located, according to its native orientation. Thus, like other binary toxins, the CDTaN/b system can be used for standardized delivery systems not only for bacterial ADPRTs but also for a variety of bacterial glucosyltransferase domains.
Collapse
Affiliation(s)
- Lara-Antonia Beer
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Carmen Schneider
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Maximilian Ruschig
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Michael Hust
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Jessica Barton
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Stefan Thiemann
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| | - Viola Fühner
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Giulio Russo
- Department of Biochemistry and Biotechnology, Technical University Braunschweig, 38106 Braunschweig, Germany.
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
19
|
Czulkies BA, Mastroianni J, Lutz L, Lang S, Schwan C, Schmidt G, Lassmann S, Zeiser R, Aktories K, Papatheodorou P. Loss of LSR affects epithelial barrier integrity and tumor xenograft growth of CaCo-2 cells. Oncotarget 2018; 8:37009-37022. [PMID: 27391068 PMCID: PMC5514888 DOI: 10.18632/oncotarget.10425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022] Open
Abstract
The lipolysis-stimulated lipoprotein receptor (LSR) is a lipoprotein receptor, serves as host receptor for clostridial iota-like toxins and is involved in the formation of tricellular contacts. Of particular interest is the role of LSR in progression of various cancers. Here we aimed to study the tumor growth of LSR-deficient colon carcinoma-derived cell lines HCT116 and CaCo-2 in a mouse xenograft model. Whereas knockout of LSR had no effect on tumor growth of HCT116 cells, we observed that CaCo-2 LSR knockout tumors grew to a smaller size than their wild-type counterparts. Histological analysis revealed increased apoptotic and necrotic cell death in a tumor originating from LSR-deficient CaCo-2 cells. LSR-deficient CaCo-2 cells exhibited increased cell proliferation in vitro and an altered epithelial morphology with impaired targeting of tricellulin to tricellular contacts. In addition, loss of LSR reduced the transepithelial electrical resistance of CaCo-2 cell monolayers and increased permeability for small molecules. Moreover, LSR-deficient CaCo-2 cells formed larger cysts in 3D culture than their wild-type counterparts. Our study provides evidence that LSR affects epithelial morphology and barrier formation in CaCo-2 cells and examines for the first time the effects of LSR deficiency on the tumor growth properties of colon carcinoma-derived cell lines.
Collapse
Affiliation(s)
- Bernd A Czulkies
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Justin Mastroianni
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Lisa Lutz
- Department of Pathology, University Medical Center, ALU, Freiburg, Germany
| | - Sarah Lang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Gudula Schmidt
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Silke Lassmann
- Department of Pathology, University Medical Center, ALU, Freiburg, Germany.,German Consortium for Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Biological Signalling Studies (BIOSS), ALU, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), ALU, Freiburg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), ALU, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Present address: Institute of Pharmaceutical Biotechnology. University of Ulm, Ulm, Germany.,Present address: Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
20
|
Hecht I, Toporik A, Podojil JR, Vaknin I, Cojocaru G, Oren A, Aizman E, Liang SC, Leung L, Dicken Y, Novik A, Marbach-Bar N, Elmesmari A, Tange C, Gilmour A, McIntyre D, Kurowska-Stolarska M, McNamee K, Leitner J, Greenwald S, Dassa L, Levine Z, Steinberger P, Williams RO, Miller SD, McInnes IB, Neria E, Rotman G. ILDR2 Is a Novel B7-like Protein That Negatively Regulates T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2025-2037. [PMID: 29431694 PMCID: PMC6860365 DOI: 10.4049/jimmunol.1700325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
Abstract
The B7-like protein family members play critical immunomodulatory roles and constitute attractive targets for the development of novel therapies for human diseases. We identified Ig-like domain-containing receptor (ILDR)2 as a novel B7-like protein with robust T cell inhibitory activity, expressed in immune cells and in immune-privileged and inflamed tissues. A fusion protein, consisting of ILDR2 extracellular domain with an Fc fragment, that binds to a putative counterpart on activated T cells showed a beneficial effect in the collagen-induced arthritis model and abrogated the production of proinflammatory cytokines and chemokines in autologous synovial-like cocultures of macrophages and cytokine-stimulated T cells. Collectively, these findings point to ILDR2 as a novel negative regulator for T cells, with potential roles in the development of immune-related diseases, including autoimmunity and cancer.
Collapse
Affiliation(s)
| | | | - Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | | | | | - Anat Oren
- Compugen Ltd., Holon 5885849, Israel
| | | | | | - Ling Leung
- Compugen USA Inc., South San Francisco, CA 94080
| | | | | | | | - Aziza Elmesmari
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Clare Tange
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Ashley Gilmour
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Donna McIntyre
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Kay McNamee
- Kennedy Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard O Williams
- Kennedy Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom; and
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | |
Collapse
|
21
|
Shimada H, Satohisa S, Kohno T, Takahashi S, Hatakeyama T, Konno T, Tsujiwaki M, Saito T, Kojima T. The roles of tricellular tight junction protein lipolysis-stimulated lipoprotein receptor in malignancy of human endometrial cancer cells. Oncotarget 2017; 7:27735-52. [PMID: 27036040 PMCID: PMC5053684 DOI: 10.18632/oncotarget.8408] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Lipolysis-stimulated lipoprotein receptor (LSR) has been identified as a novel molecular constituent of tricellular contacts that have a barrier function for the cellular sheet. LSR recruits tricellulin (TRIC), which is the first molecular component of tricellular tight junctions. Knockdown of LSR increases cell motility and invasion of certain cancer cells. However, the behavior and the roles of LSR in endometrial cancer remain unknown. In the present study, we investigated the behavior and roles of LSR in normal and endometrial cancer cells in vivo and in vitro. In endometriosis and endometrial cancer, LSR was observed not only in the subapical region but also throughout the lateral region as well as in normal endometrial epithelial cells in the secretory phase, and LSR in the cancer was reduced in correlation with the malignancy. Knockdown of LSR by the siRNA in cells of the endometrial cancer cell line Sawano, induced cell migration, invasion and proliferation, while TRIC relocalized from the tricellular region to the bicellular region at the membrane. In Sawano cells and normal HEEs, a decrease of LSR induced by leptin and an increase of LSR induced by adiponectin and the drugs for type 2 diabetes metformin and berberine were observed via distinct signaling pathways including JAK2/STAT. In Sawano cells, metformin and berberine prevented cell migration and invasion induced by downregulation of LSR by the siRNA and leptin treatment. The dissection of the mechanism in the downregulation of endometrial LSR during obesity is important in developing new diagnostic and therapy for endometrial cancer.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Seiro Satohisa
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Syunta Takahashi
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsubasa Hatakeyama
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
22
|
Hiramatsu K, Serada S, Enomoto T, Takahashi Y, Nakagawa S, Nojima S, Morimoto A, Matsuzaki S, Yokoyama T, Takahashi T, Fujimoto M, Takemori H, Ueda Y, Yoshino K, Morii E, Kimura T, Naka T. LSR Antibody Therapy Inhibits Ovarian Epithelial Tumor Growth by Inhibiting Lipid Uptake. Cancer Res 2017; 78:516-527. [DOI: 10.1158/0008-5472.can-17-0910] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/29/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022]
|
23
|
Shimada H, Satohisa S, Kohno T, Konno T, Takano KI, Takahashi S, Hatakeyama T, Arimoto C, Saito T, Kojima T. Downregulation of lipolysis-stimulated lipoprotein receptor promotes cell invasion via claudin-1-mediated matrix metalloproteinases in human endometrial cancer. Oncol Lett 2017; 14:6776-6782. [PMID: 29151917 DOI: 10.3892/ol.2017.7038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/05/2017] [Indexed: 12/30/2022] Open
Abstract
Lipolysis-stimulated lipoprotein receptor (LSR) is a novel molecule present at tricellular contacts which recruits tricellulin (TRIC), a molecular component of tricellular tight junctions (tTJs). LSR and TRIC are colocalized with the bicellular tight junction (bTJ) protein claudin (CLDN)-1-based tight junction strands at tricellular corners. Knockdown of LSR in normal epithelial cells affects tTJ formation and the epithelial barrier function. In cancer cells knockdown of LSR has been demonstrated to increase cell invasion. However, the detailed mechanisms of how the downregulation of LSR enhances cell invasion in cancer remain unclear. In the present study, knockdown of LSR by small interfering RNA (siRNA) in Sawano human endometrial adenocarcinoma cells induced cell invasion. In LSR-knockdown Sawano cells, upregulation of CLDN-1 protein, which contributes to the cell invasion via matrix metalloproteinases (MMPs), was observed compared with the control group by western blotting and immunostaining. Knockdown of LSR significantly induced Sp1 transcription factor activity in the CLDN-1 promoter region. In LSR-knockdown Sawano cells, DNA microarray analysis demonstrated that MMP-1, MMP-2 and MMP-10 mRNA levels were increased, and the protein levels of membrane-type 1-MMP, MMP-2, MMP-9 and MMP-10 were shown to be increased on western blots. Knockdown of CLDN-1 with siRNA prevented the upregulation of cell invasion induced by the knockdown of LSR in Sawano cells. On the invasive front of human endometrial carcinoma tissue samples, a decrease in LSR and increase in CLDN-1 protein levels were observed using immunohistochemical methods. In conclusion, the results indicate that the downregulation of LSR promotes cell invasion of human endometrial cancer via CLDN-1 mediation of MMPs. This mechanism is important for studying the association of tTJs with the cellular invasion of cancer.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Seiro Satohisa
- Department of Obstetrics and Gynecology, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Syunta Takahashi
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Tsubasa Hatakeyama
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Chihiro Arimoto
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo, Hokkaido 060-8556, Japan
| |
Collapse
|
24
|
Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer. Oncogene 2017; 36:6446-6461. [PMID: 28759043 PMCID: PMC5701091 DOI: 10.1038/onc.2017.246] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
The majority of long noncoding RNAs (lncRNAs) is still poorly characterized with respect to function, interactions with protein-coding genes, and mechanisms that regulate their expression. As for protein-coding RNAs, epigenetic deregulation of lncRNA expression by alterations in DNA methylation might contribute to carcinogenesis. To provide genome-wide information on lncRNAs aberrantly methylated in breast cancer we profiled tumors of the C3(1) SV40TAg mouse model by MCIp-seq (Methylated CpG Immunoprecipitation followed by sequencing). This approach detected 69 lncRNAs differentially methylated between tumor tissue and normal mammary glands, with 26 located in antisense orientation of a protein-coding gene. One of the hypomethylated lncRNAs, 1810019D21Rik (now called Esrp2-antisense (as)) was identified in proximity to the epithelial splicing regulatory protein 2 (Esrp2) that is significantly elevated in C3(1) tumors. ESRPs were shown previously to have a dual role in carcinogenesis. Both gain and loss have been associated with poor prognosis in human cancers, but the mechanisms regulating expression are not known. In-depth analyses indicate that coordinate overexpression of Esrp2 and Esrp2-as inversely correlates with DNA methylation. Luciferase reporter gene assays support co-expression of Esrp2 and the major short Esrp2-as variant from a bidirectional promoter, and transcriptional regulation by methylation of a proximal enhancer. Ultimately, this enhancer-based regulatory mechanism provides a novel explanation for tissue-specific expression differences and upregulation of Esrp2 during carcinogenesis. Knockdown of Esrp2-as reduced Esrp2 protein levels without affecting mRNA expression and resulted in an altered transcriptional profile associated with extracellular matrix (ECM), cell motility and reduced proliferation, whereas overexpression enhanced proliferation. Our findings not only hold true for the murine tumor model, but led to the identification of an unannotated human homolog of Esrp2-as which is significantly upregulated in human breast cancer and associated with poor prognosis.
Collapse
|
25
|
Parsana P, Amend SR, Hernandez J, Pienta KJ, Battle A. Identifying global expression patterns and key regulators in epithelial to mesenchymal transition through multi-study integration. BMC Cancer 2017. [PMID: 28651527 PMCID: PMC5485747 DOI: 10.1186/s12885-017-3413-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Epithelial to mesenchymal transition (EMT) is the process by which stationary epithelial cells transdifferentiate to mesenchymal cells with increased motility. EMT is integral in early stages of development and wound healing. Studies have shown that EMT could be a critical early event in tumor metastasis that is involved in acquisition of migratory and invasive properties in multiple carcinomas. Methods In this study, we used 15 published gene expression microarray datasets from Gene Expression Omnibus (GEO) that represent 12 cell lines from 6 cancer types across 95 observations (45 unique samples and 50 replicates) with different modes of induction of EMT or the reverse transition, mesenchymal to epithelial transition (MET). We integrated multiple gene expression datasets while considering study differences, batch effects, and noise in gene expression measurements. A universal differential EMT gene list was obtained by normalizing and correcting the data using four approaches, computing differential expression from each, and identifying a consensus ranking. We confirmed our discovery of novel EMT genes at mRNA and protein levels in an in vitro EMT model of prostate cancer – PC3 epi, EMT and Taxol resistant cell lines. We validate our discovery of C1orf116 as a novel EMT regulator by siRNA knockdown of C1orf116 in PC3 epithelial cells. Results Among differentially expressed genes, we found known epithelial and mesenchymal marker genes such as CDH1 and ZEB1. Additionally, we discovered genes known in a subset of carcinomas that were unknown in prostate cancer. This included epithelial specific LSR and S100A14 and mesenchymal specific DPYSL3. Furthermore, we also discovered novel EMT genes including a poorly-characterized gene C1orf116. We show that decreased expression of C1orf116 is associated with poor prognosis in lung and prostate cancer patients. We demonstrate that knockdown of C1orf116 expression induced expression of mesenchymal genes in epithelial prostate cancer cell line PC3-epi cells, suggesting it as a candidate driver of the epithelial phenotype. Conclusions This comprehensive approach of statistical analysis and functional validation identified global expression patterns in EMT and candidate regulatory genes, thereby both extending current knowledge and identifying novel drivers of EMT. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3413-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Princy Parsana
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah R Amend
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - James Hernandez
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alexis Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
26
|
Reaves DK, Hoadley KA, Fagan-Solis KD, Jima DD, Bereman M, Thorpe L, Hicks J, McDonald D, Troester MA, Perou CM, Fleming JM. Nuclear Localized LSR: A Novel Regulator of Breast Cancer Behavior and Tumorigenesis. Mol Cancer Res 2017; 15:165-178. [PMID: 27856957 PMCID: PMC5290211 DOI: 10.1158/1541-7786.mcr-16-0085-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/28/2016] [Accepted: 10/23/2016] [Indexed: 01/17/2023]
Abstract
Lipolysis-stimulated lipoprotein receptor (LSR) has been found in the plasma membrane and is believed to function in lipoprotein endocytosis and tight junctions. Given the impact of cellular metabolism and junction signaling pathways on tumor phenotypes and patient outcome, it is important to understand how LSR cellular localization mediates its functions. We conducted localization studies, evaluated DNA binding, and examined the effects of nuclear LSR in cells, xenografts, and clinical specimens. We found LSR within the membrane, cytoplasm, and the nucleus of breast cancer cells representing multiple intrinsic subtypes. Chromatin immunoprecipitation (ChIP) showed direct binding of LSR to DNA, and sequence analysis identified putative functional motifs and post-translational modifications of the LSR protein. While neither overexpression of transcript variants, nor pharmacologic manipulation of post-translational modification significantly altered localization, inhibition of nuclear export enhanced nuclear localization, suggesting a mechanism for nuclear retention. Coimmunoprecipitation and proximal ligation assays indicated LSR-pericentrin interactions, presenting potential mechanisms for nuclear-localized LSR. The clinical significance of LSR was evaluated using data from over 1,100 primary breast tumors, which showed high LSR levels in basal-like tumors and tumors from African-Americans. In tumors histosections, nuclear localization was significantly associated with poor outcomes. Finally, in vivo xenograft studies revealed that basal-like breast cancer cells that overexpress LSR exhibited both membrane and nuclear localization, and developed tumors with 100% penetrance, while control cells lacking LSR developed no tumors. These results show that nuclear LSR alters gene expression and may promote aggressive cancer phenotypes. IMPLICATIONS LSR functions in the promotion of aggressive breast cancer phenotypes and poor patient outcome via differential subcellular localization to alter cell signaling, bioenergetics, and gene expression. Mol Cancer Res; 15(2); 165-78. ©2016 AACR.
Collapse
Affiliation(s)
- Denise K Reaves
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Katerina D Fagan-Solis
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dereje D Jima
- Center for Human Health and the Environment, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina
| | - Michael Bereman
- Center for Human Health and the Environment, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina
| | - Lynnelle Thorpe
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jyla Hicks
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David McDonald
- Department of Biology, North Carolina Central University, Durham, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Jodie M Fleming
- Department of Biology, North Carolina Central University, Durham, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Human Health and the Environment, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
27
|
Shimada H, Abe S, Kohno T, Satohisa S, Konno T, Takahashi S, Hatakeyama T, Arimoto C, Kakuki T, Kaneko Y, Takano KI, Saito T, Kojima T. Loss of tricellular tight junction protein LSR promotes cell invasion and migration via upregulation of TEAD1/AREG in human endometrial cancer. Sci Rep 2017; 7:37049. [PMID: 28071680 PMCID: PMC5223122 DOI: 10.1038/srep37049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Lipolysis-stimulated lipoprotein receptor (LSR) is a unique molecule of tricellular contacts of normal and cancer cells. We investigated how the loss of LSR induced cell migration, invasion and proliferation in endometrial cancer cell line Sawano. mRNAs of amphiregulin (AREG) and TEA domain family member 1 (TEAD1) were markedly upregulated by siRNA-LSR. In endometrial cancer tissues, downregulation of LSR and upregulation of AREG were observed together with malignancy, and Yes-associated protein (YAP) was present in the nuclei. siRNA-AREG prevented the cell migration and invasion induced by siRNA-LSR, whereas treatment with AREG induced cell migration and invasion. LSR was colocalized with TRIC, angiomotin (AMOT), Merlin and phosphorylated YAP (pYAP). siRNA-LSR increased expression of pYAP and decreased that of AMOT and Merlin. siRNA-YAP prevented expression of the mRNAs of AREG and TEAD1, and the cell migration and invasion induced by siRNA-LSR. Treatment with dobutamine and 2-deoxy-D-glucose and glucose starvation induced the pYAP expression and prevented the cell migration and invasion induced by siRNA-LSR. siRNA-AMOT decreased the Merlin expression and prevented the cell migration and invasion induced by siRNA-LSR. The loss of LSR promoted cell invasion and migration via upregulation of TEAD1/AREG dependent on YAP/pYAP and AMOT/Merlin in human endometrial cancer cells.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Departments of Obstetrics and Gynecology, University School of Medicine, Sapporo, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shyuetsu Abe
- Departments of Obstetrics and Gynecology, University School of Medicine, Sapporo, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Seiro Satohisa
- Departments of Obstetrics and Gynecology, University School of Medicine, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Syunta Takahashi
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsubasa Hatakeyama
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Chihiro Arimoto
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takuya Kakuki
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Departments of Otolaryngology, Sapporo Medical, University School of Medicine, Sapporo, Japan
| | - Yakuto Kaneko
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Departments of Otolaryngology, Sapporo Medical, University School of Medicine, Sapporo, Japan
| | - Ken-Ichi Takano
- Departments of Otolaryngology, Sapporo Medical, University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Departments of Obstetrics and Gynecology, University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
28
|
Hu D, Gur M, Zhou Z, Gamper A, Hung MC, Fujita N, Lan L, Bahar I, Wan Y. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun 2015; 6:8419. [PMID: 26420673 PMCID: PMC4598737 DOI: 10.1038/ncomms9419] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022] Open
Abstract
KLF4 is an important regulator of cell-fate decision, including DNA damage response and apoptosis. We identify a novel interplay between protein modifications in regulating KLF4 function. Here we show that arginine methylation of KLF4 by PRMT5 inhibits KLF4 ubiquitylation by VHL and thereby reduces KLF4 turnover, resulting in the elevation of KLF4 protein levels concomitant with increased transcription of KLF4-dependent p21 and reduced expression of KLF4-repressed Bax. Structure-based modelling and simulations provide insight into the molecular mechanisms of KLF4 recognition and catalysis by PRMT5. Following genotoxic stress, disruption of PRMT5-mediated KLF4 methylation leads to abrogation of KLF4 accumulation, which, in turn, attenuates cell cycle arrest. Mutating KLF4 methylation sites suppresses breast tumour initiation and progression, and immunohistochemical stain shows increased levels of both KLF4 and PRMT5 in breast cancer tissues. Taken together, our results point to a critical role for aberrant KLF4 regulation by PRMT5 in genome stability and breast carcinogenesis. Krüppel-like factor 4 plays an important role in regulating responses to DNA damage, cell-fate decision and apoptosis. Here the authors show that aberrant regulation by methyltransferase PRMT5 results in failure to arrest the cell cycle and genome instability, pointing to a role in carcinogenesis.
Collapse
Affiliation(s)
- Dong Hu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | - Mert Gur
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | - Armin Gamper
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 402, Taiwan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Li Lan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
29
|
Sapio L, Sorvillo L, Illiano M, Chiosi E, Spina A, Naviglio S. Inorganic Phosphate Prevents Erk1/2 and Stat3 Activation and Improves Sensitivity to Doxorubicin of MDA-MB-231 Breast Cancer Cells. Molecules 2015; 20:15910-15928. [PMID: 26340617 PMCID: PMC6332303 DOI: 10.3390/molecules200915910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
Due to its expression profile, triple-negative breast cancer (TNBC) is refractory to the most effective targeted therapies available for breast cancer treatment. Thus, cytotoxic chemotherapy represents the mainstay of treatment for early and metastatic TNBC. Therefore, it would be greatly beneficial to develop therapeutic approaches that cause TNBC cells to increase their sensitivity to cytotoxic drugs. Inorganic phosphate (Pi) is emerging as an important signaling molecule in many cell types. Interestingly, it has been shown that Pi greatly enhances the sensitivity of human osteosarcoma cell line (U2OS) to doxorubicin. We investigated the effects of Pi on the sensitivity of TNBC cells to doxorubicin and the underlying molecular mechanisms, carrying out flow cytometry-based assays of cell-cycle progression and cell death, MTT assays, direct cell number counting and immunoblotting experiments. We report that Pi inhibits the proliferation of triple-negative MDA-MB-231 breast cancer cells mainly by slowing down cell cycle progression. Interestingly, we found that Pi strongly increases doxorubicin-induced cytotoxicity in MDA-MB-231 cells by apoptosis induction, as revealed by a marked increase of sub-G1 population, Bcl-2 downregulation, caspase-3 activation and PARP cleavage. Remarkably, Pi/doxorubicin combination-induced cytotoxicity was dynamically accompanied by profound changes in Erk1/2 and Stat3 protein and phosphorylation levels. Altogether, our data enforce the evidence of Pi acting as a signaling molecule in MDA-MB-231 cells, capable of inhibiting Erk and Stat3 pathways and inducing sensitization to doxorubicin of TNBC cells, and suggest that targeting Pi levels at local sites might represent the rationale for developing effective and inexpensive strategies for improving triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Luca Sorvillo
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Emilio Chiosi
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Annamaria Spina
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, Medical School, Second University of Naples, via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
30
|
Systematic transcriptome analysis reveals tumor-specific isoforms for ovarian cancer diagnosis and therapy. Proc Natl Acad Sci U S A 2015; 112:E3050-7. [PMID: 26015570 PMCID: PMC4466751 DOI: 10.1073/pnas.1508057112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor-specific molecules are needed across diverse areas of oncology for use in early detection, diagnosis, prognosis and therapy. Large and growing public databases of transcriptome sequencing data (RNA-seq) derived from tumors and normal tissues hold the potential of yielding tumor-specific molecules, but because the data are new they have not been fully explored for this purpose. We have developed custom bioinformatic algorithms and used them with 296 high-grade serous ovarian (HGS-OvCa) tumor and 1,839 normal RNA-seq datasets to identify mRNA isoforms with tumor-specific expression. We rank prioritized isoforms by likelihood of being expressed in HGS-OvCa tumors and not in normal tissues and analyzed 671 top-ranked isoforms by high-throughput RT-qPCR. Six of these isoforms were expressed in a majority of the 12 tumors examined but not in 18 normal tissues. An additional 11 were expressed in most tumors and only one normal tissue, which in most cases was fallopian or colon. Of the 671 isoforms, the topmost 5% (n = 33) ranked based on having tumor-specific or highly restricted normal tissue expression by RT-qPCR analysis are enriched for oncogenic, stem cell/cancer stem cell, and early development loci--including ETV4, FOXM1, LSR, CD9, RAB11FIP4, and FGFRL1. Many of the 33 isoforms are predicted to encode proteins with unique amino acid sequences, which would allow them to be specifically targeted for one or more therapeutic strategies--including monoclonal antibodies and T-cell-based vaccines. The systematic process described herein is readily and rapidly applicable to the more than 30 additional tumor types for which sufficient amounts of RNA-seq already exist.
Collapse
|
31
|
Fagan-Solis KD, Reaves DK, Rangel MC, Popoff MR, Stiles BG, Fleming JM. Challenging the roles of CD44 and lipolysis stimulated lipoprotein receptor in conveying Clostridium perfringens iota toxin cytotoxicity in breast cancer. Mol Cancer 2014; 13:163. [PMID: 24990559 PMCID: PMC4086999 DOI: 10.1186/1476-4598-13-163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/24/2014] [Indexed: 01/01/2023] Open
Abstract
Background Translational exploration of bacterial toxins has come to the forefront of research given their potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted breast cancer therapy. Methods In vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines. Results Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+ lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance. CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity. Conclusions Collectively, these data are the first to show that iota toxin has the potential to be an effective, targeted therapy for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Jodie M Fleming
- Department of Biology, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|