1
|
Balint V, Peric M, Dacic S, Stanisavljevic Ninkovic D, Marjanovic J, Popovic J, Stevanovic M, Lazic A. The Role of SOX2 and SOX9 Transcription Factors in the Reactivation-Related Functional Properties of NT2/D1-Derived Astrocytes. Biomedicines 2024; 12:796. [PMID: 38672150 PMCID: PMC11048103 DOI: 10.3390/biomedicines12040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Astrocytes are the main homeostatic cells in the central nervous system, with the unique ability to transform from quiescent into a reactive state in response to pathological conditions by reacquiring some precursor properties. This process is known as reactive astrogliosis, a compensatory response that mediates tissue damage and recovery. Although it is well known that SOX transcription factors drive the expression of phenotype-specific genetic programs during neurodevelopment, their roles in mature astrocytes have not been studied extensively. We focused on the transcription factors SOX2 and SOX9, shown to be re-expressed in reactive astrocytes, in order to study the reactivation-related functional properties of astrocytes mediated by those proteins. We performed an initial screening of SOX2 and SOX9 expression after sensorimotor cortex ablation injury in rats and conducted gain-of-function studies in vitro using astrocytes derived from the human NT2/D1 cell line. Our results revealed the direct involvement of SOX2 in the reacquisition of proliferation in mature NT2/D1-derived astrocytes, while SOX9 overexpression increased migratory potential and glutamate uptake in these cells. Our results imply that modulation of SOX gene expression may change the functional properties of astrocytes, which holds promise for the discovery of potential therapeutic targets in the development of novel strategies for tissue regeneration and recovery.
Collapse
Affiliation(s)
- Vanda Balint
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (M.P.); (D.S.N.); (J.M.); (J.P.); (M.S.)
| | - Mina Peric
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (M.P.); (D.S.N.); (J.M.); (J.P.); (M.S.)
| | - Sanja Dacic
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia;
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (M.P.); (D.S.N.); (J.M.); (J.P.); (M.S.)
| | - Jelena Marjanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (M.P.); (D.S.N.); (J.M.); (J.P.); (M.S.)
| | - Jelena Popovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (M.P.); (D.S.N.); (J.M.); (J.P.); (M.S.)
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (M.P.); (D.S.N.); (J.M.); (J.P.); (M.S.)
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia;
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11001 Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (M.P.); (D.S.N.); (J.M.); (J.P.); (M.S.)
| |
Collapse
|
2
|
Stevanovic M, Lazic A, Schwirtlich M, Stanisavljevic Ninkovic D. The Role of SOX Transcription Factors in Ageing and Age-Related Diseases. Int J Mol Sci 2023; 24:851. [PMID: 36614288 PMCID: PMC9821406 DOI: 10.3390/ijms24010851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.
Collapse
Affiliation(s)
- Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | | |
Collapse
|
3
|
Lazic A, Balint V, Stanisavljevic Ninkovic D, Peric M, Stevanovic M. Reactive and Senescent Astroglial Phenotypes as Hallmarks of Brain Pathologies. Int J Mol Sci 2022; 23:ijms23094995. [PMID: 35563385 PMCID: PMC9100382 DOI: 10.3390/ijms23094995] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, as the most abundant glial cells in the central nervous system, are tightly integrated into neural networks and participate in numerous aspects of brain physiology and pathology. They are the main homeostatic cells in the central nervous system, and the loss of astrocyte physiological functions and/or gain of pro-inflammatory functions, due to their reactivation or cellular senescence, can have profound impacts on the surrounding microenvironment with pathological outcomes. Although the importance of astrocytes is generally recognized, and both senescence and reactive astrogliosis have been extensively reviewed independently, there are only a few comparative overviews of these complex processes. In this review, we summarize the latest data regarding astrocyte reactivation and senescence, and outline similarities and differences between these phenotypes from morphological, functional, and molecular points of view. A special focus has been given to neurodegenerative diseases, where these phenotypic alternations of astrocytes are significantly implicated. We also summarize current perspectives regarding new advances in model systems based on astrocytes as well as data pointing to these glial cells as potential therapeutic targets.
Collapse
Affiliation(s)
- Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
- Correspondence:
| | - Vanda Balint
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Mina Peric
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (V.B.); (D.S.N.); (M.P.); (M.S.)
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11001 Belgrade, Serbia
| |
Collapse
|
4
|
Balint V, Ninkovic DS, Anastasov N, Lazic S, Kovacevic-Grujicic N, Stevanovic M, Lazic A. Inhibition of miR-21 Promotes Cellular Senescence in NT2-Derived Astrocytes. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1434-1445. [PMID: 34906045 DOI: 10.1134/s0006297921110079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Astrocytes are the main homeostatic cells in the central nervous system (CNS) that provide mechanical, metabolic, and trophic support to neurons. Disruption of their physiological role or acquisition of senescence-associated phenotype can contribute to the CNS dysfunction and pathology. However, molecular mechanisms underlying the complex physiology of astrocytes are explored insufficiently. Recent studies have shown that miRNAs are involved in the regulation of astrocyte function through different mechanisms. Although miR-21 has been reported as an astrocytic miRNA with an important role in astrogliosis, no link between this miRNA and cellular senescence of astrocytes has been identified. To address the role of miR-21 in astrocytes, with special focus on cellular senescence, we used NT2/A (astrocytes derived from NT2/D1 cells). Downregulation of miR-21 expression in both immature and mature NT2/A by the antisense technology induced the arrest of cell growth and premature cellular senescence, as indicated by senescence hallmarks such as increased expression of cell cycle inhibitors p21 and p53 and augmented senescence-associated β-galactosidase activity. Additionally, in silico analysis predicted many of the genes, previously shown to be upregulated in astrocytes with the irradiation-induced senescence, as miR-21 targets. Taken together, our results point to miR-21 as a potential regulator of astrocyte senescence. To the best of our knowledge, these are the first data showing the link between miR-21 and cellular senescence of astrocytes. Since senescent astrocytes are associated with different CNS pathologies, development of novel therapeutic strategies based on miRNA manipulation could prevent senescence and may improve the physiological outcome.
Collapse
Affiliation(s)
- Vanda Balint
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
| | - Natasa Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Biological and Medical Imaging, Neuherberg, 85764, Germany
| | - Stefan Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, 11158, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11042, Serbia.
| |
Collapse
|
5
|
Katsuyama T, Kadoya M, Shirai M, Sasai N. Sox14 is essential for initiation of neuronal differentiation in the chick spinal cord. Dev Dyn 2021; 251:350-361. [PMID: 34181293 DOI: 10.1002/dvdy.392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The neural tube comprises several different types of progenitors and postmitotic neurons that co-ordinately act with each other to play integrated functions. Its development consists of two phases: proliferation of progenitor cells and differentiation into postmitotic neurons. How progenitor cells differentiate into each corresponding neuron is an important question for understanding the mechanisms of neuronal development. RESULTS Here we introduce one of the Sox transcription factors, Sox14, which plays an essential role in the promotion of neuronal differentiation. Sox14 belongs to the SoxB2 subclass and its expression starts in the progenitor regions before neuronal differentiation is initiated at the trunk level of the neural tube. After neuronal differentiation is initiated, Sox14 expression gradually becomes confined to the V2a region of the neural tube, where Chx10 is co-expressed. Overexpression of Sox14 restricts progenitor cell proliferation. Conversely, the blockade of Sox14 expression by the RNAi strategy inhibits V2a neuron differentiation and causes expansion of the progenitor domain. We further found that Sox14 acted as a transcriptional activator. CONCLUSIONS Sox14 acts as a modulator of cell proliferation and is essential for initiation of neuronal differentiation in the chick neural tube.
Collapse
Affiliation(s)
- Taiki Katsuyama
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Minori Kadoya
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
6
|
Lai X, Lin P, Ye J, Liu W, Lin S, Lin Z. Reference Module-Based Analysis of Ovarian Cancer Transcriptome Identifies Important Modules and Potential Drugs. Biochem Genet 2021; 60:433-451. [PMID: 34173117 DOI: 10.1007/s10528-021-10101-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Ovarian cancer (OVC) is often diagnosed at the advanced stage resulting in a poor overall outcome for the patient. The disease mechanisms, prognosis, and treatment require imperative elucidation. A rank-based module-centric framework was proposed to analyze the key modules related to the development, prognosis, and treatment of OVC. The ovarian cancer cell line microarray dataset GSE43765 from the Gene Expression Omnibus database was used to construct the reference modules by weighted gene correlation network analysis. Twenty-three reference modules were tested for stability and functionally annotated. Furthermore, to demonstrate the utility of reference modules, two more OVC datasets were collected, and their gene expression profiles were projected to the reference modules to generate a module-level expression. An epithelial-mesenchymal transition module was activated in OVC compared to the normal epithelium, and a pluripotency module was activated in ovarian cancer stroma compared to ovarian cancer epithelium. Seven differentially expressed modules were identified in OVC compared to the normal ovarian epithelium, with five up-regulated, and two down-regulated. One module was identified to be predictive of patient overall survival. Four modules were enriched with SNP signals. Based on differentially expressed modules and hub genes, five candidate drugs were screened. The hub genes of those modules merit further investigation. We firstly propose the reference module-based analysis of OVC. The utility of the analysis framework can be extended to transcriptome data of other kinds of diseases.
Collapse
Affiliation(s)
- Xuedan Lai
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, 350009, People's Republic of China
| | - Peihong Lin
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, 350009, People's Republic of China
| | - Jianwen Ye
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, 350009, People's Republic of China
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Shiqiang Lin
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zhou Lin
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, 350009, People's Republic of China.
| |
Collapse
|
7
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Soltanian S, Sheikhbahaei M, Ziasistani M. Phytol Down-Regulates Expression of Some Cancer Stem Cell Markers and Decreases Side Population Proportion in Human Embryonic Carcinoma NCCIT Cells. Nutr Cancer 2020; 73:1520-1533. [PMID: 32700607 DOI: 10.1080/01635581.2020.1795695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer stem cells (CSCs), a subgroup of cancer cells, have self-renewal capacity and differentiation potential and drive tumor growth. CSCs are highly-resistant to conventional chemo-radio therapy. Phytochemicals were shown to be able to eliminate CSCs. Phytol is a diterpene alcohol with demonstrated anticancer effects. The current study compared the effect of phytol with retinoic acid (RA) as a well-known inducers of CSC differentiation and cisplatin, a common chemotherapy drug, on CSC markers in human embryonic carcinoma NCCIT cells. NCCIT cells were exposed to 10 mM RA for 14 day to induce differentiation. Moreover, NCCIT cells were treated with IC50 dose of cisplatin (12 µM) and phytol (40 µM) for 7 day. Real-time PCR showed that phytol was more effective that RA and cisplatin in down-regulating the CSC markers OCT4, NANOG, SOX2, ALDH1, ABCB1, CD44 and CD133. Percentage of SP (13%) and ABCB1+ (0.34%) in NCCIT cells decreased to 7% and 0.1% respectively after treatment with phytol. A very small proportion of NCCIT cells were positive for CD44 (0.2%) and CD133 (0.48%) and this fraction did not change significantly after treatment with three agents. In conclusion, phytol has the greatest inhibitory effect on CSC population and markers than RA and cisplatin.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahboubeh Sheikhbahaei
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Ziasistani
- Pathology and Stem Cell Research Center, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Lazic A, Popović J, Paunesku T, Woloschak GE, Stevanović M. Insights into platinum-induced peripheral neuropathy-current perspective. Neural Regen Res 2020; 15:1623-1630. [PMID: 32209761 PMCID: PMC7437596 DOI: 10.4103/1673-5374.276321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a global health problem that is often successfully addressed by therapy, with cancer survivors increasing in numbers and living longer world around. Although new cancer treatment options are continuously explored, platinum based chemotherapy agents remain in use due to their efficiency and availability. Unfortunately, all cancer therapies affect normal tissues as well as cancer, and more than 40 specific side effects of platinum based drugs documented so far decrease the quality of life of cancer survivors. Chemotherapy-induced peripheral neuropathy is a frequent side effects of platinum-based chemotherapy agents. This cluster of complications is often so debilitating that patients occasionally have to discontinue the therapy. Sensory neurons of dorsal root ganglia are at the core of chemotherapy-induced peripheral neuropathy symptoms. In these postmitotic cells, DNA damage caused by platinum chemotherapy interferes with normal functioning. Accumulation of DNA-platinum adducts correlates with neurotoxic severity and development of sensation of pain. While biochemistry of DNA-platinum adducts is the same in all cell types, molecular mechanisms affected by DNA-platinum adducts are different in cancer cells and non-dividing cells. This review aims to raise awareness about platinum associated chemotherapy-induced peripheral neuropathy as a medical problem that has remained unexplained for decades. We emphasize the complexity of this condition both from clinical and mechanistical point of view and focus on recent findings about chemotherapy-induced peripheral neuropathy in in vitro and in vivo model systems. Finally, we summarize current perspectives about clinical approaches for chemotherapy-induced peripheral neuropathy treatment.
Collapse
Affiliation(s)
- Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Popović
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering; Faculty of Biology; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
10
|
Stanisavljevic D, Popovic J, Petrovic I, Davidovic S, Atkinson MJ, Anastasov N, Stevanovic M. Radiation effects on early phase of NT2/D1 neural differentiation in vitro. Int J Radiat Biol 2019; 95:1627-1639. [PMID: 31509479 DOI: 10.1080/09553002.2019.1665207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose: Widespread medical use of radiation in diagnosis, imaging and treatment of different central nervous system malignancies lead to various consequences. Aim of this study was to further elucidate mechanism of cell response to radiation and possible consequence on neural differentiation.Materials and methods: NT2/D1 cells that resemble neural progenitors were used as a model system. Undifferentiated NT2/D1 cells and NT2/D1 cells in the early phase of neural differentiation were irradiated with low (0.2 Gy) and moderate (2 Gy) doses of γ radiation. The effect was analyzed on apoptosis, cell cycle, senescence, spheroid formation and the expression of genes and miRNAs involved in the regulation of pluripotency or neural differentiation.Results: Two grays of irradiation induced apoptosis, senescence and cell cycle arrest of NT2/D1 cells, accompanied with altered expression of several genes (SOX2, OCT4, SOX3, PAX6) and miRNAs (miR-219, miR-21, miR124-a). Presented results show that 2 Gy of radiation significantly affected early phase of neural differentiation in vitro.Conclusions: These results suggest that 2 Gy of radiation significantly affected early phase of neural differentiation and affect the population of neural progenitors. These findings might help in better understanding of side effects of radiotherapy in treatments of central nervous system malignancies.
Collapse
Affiliation(s)
- Danijela Stanisavljevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Jelena Popovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Isidora Petrovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Slobodan Davidovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany.,Chair of Radiation Biology, Technical University of Munich, Munich, Germany
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Milena Stevanovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia.,University of Belgrade, Faculty of Biology, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
11
|
Popović J, Klajn A, Paunesku T, Ma Q, Chen S, Lai B, Stevanović M, Woloschak GE. Neuroprotective Role of Selected Antioxidant Agents in Preventing Cisplatin-Induced Damage of Human Neurons In Vitro. Cell Mol Neurobiol 2019; 39:619-636. [PMID: 30874981 PMCID: PMC6535150 DOI: 10.1007/s10571-019-00667-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of platinum-based chemotherapy and decreases the quality of life of cancer patients. We compared neuroprotective properties of several agents using an in vitro model of terminally differentiated human cells NT2-N derived from cell line NT2/D1. Sodium azide and an active metabolite of amifostine (WR1065) increase cell viability in simultaneous treatment with cisplatin. In addition, WR1065 protects the non-dividing neurons by decreasing cisplatin caused oxidative stress and apoptosis. Accumulation of Pt in cisplatin-treated cells was heterogeneous, but the frequency and concentration of Pt in cells were lowered in the presence of WR1065 as shown by X-ray fluorescence microscopy (XFM). Transition metals accumulation accompanied Pt increase in cells; this effect was equally diminished in the presence of WR1065. To analyze possible chemical modulation of Pt-DNA bonds, we examined the platinum LIII near edge spectrum by X-ray absorption spectroscopy. The spectrum found in cisplatin-DNA samples is altered differently by the addition of either WR1065 or sodium azide. Importantly, a similar change in Pt edge spectra was noted in cells treated with cisplatin and WR1065. Therefore, amifostine should be reconsidered as a candidate for treatments that reduce or prevent CIPN.
Collapse
Affiliation(s)
- Jelena Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - Andrijana Klajn
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - Qing Ma
- DND CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
- Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia.
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia.
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Bonatto Paese CL, Leite DJ, Schönauer A, McGregor AP, Russell S. Duplication and expression of Sox genes in spiders. BMC Evol Biol 2018; 18:205. [PMID: 30587109 PMCID: PMC6307133 DOI: 10.1186/s12862-018-1337-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The Sox family of transcription factors is an important part of the genetic 'toolbox' of all metazoans examined to date and is known to play important developmental roles in vertebrates and insects. However, outside the commonly studied Drosophila model little is known about the repertoire of Sox family transcription factors in other arthropod species. Here we characterise the Sox family in two chelicerate species, the spiders Parasteatoda tepidariorum and Stegodyphus mimosarum, which have experienced a whole genome duplication (WGD) in their evolutionary history. RESULTS We find that virtually all of the duplicate Sox genes have been retained in these spiders after the WGD. Analysis of the expression of Sox genes in P. tepidariorum embryos suggests that it is likely that some of these genes have neofunctionalised after duplication. Our expression analysis also strengthens the view that an orthologue of vertebrate Group B1 genes, SoxNeuro, is implicated in the earliest events of CNS specification in both vertebrates and invertebrates. In addition, a gene in the Dichaete/Sox21b class is dynamically expressed in the spider segment addition zone, suggestive of an ancient regulatory mechanism controlling arthropod segmentation as recently suggested for flies and beetles. Together with the recent analysis of Sox gene expression in the embryos of other arthropods, our findings support the idea of conserved functions for some of these genes, including a potential role for SoxC and SoxD genes in CNS development and SoxF in limb development. CONCLUSIONS Our study provides a new chelicerate perspective to understanding the evolution and function of Sox genes and how the retention of duplicates of such important tool-box genes after WGD has contributed to different aspects of spider embryogenesis. Future characterisation of the function of these genes in spiders will help us to better understand the evolution of the regulation of important developmental processes in arthropods and other metazoans including neurogenesis and segmentation.
Collapse
Affiliation(s)
- Christian L Bonatto Paese
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
13
|
Marjanovic Vicentic J, Drakulic D, Garcia I, Vukovic V, Aldaz P, Puskas N, Nikolic I, Tasic G, Raicevic S, Garros-Regulez L, Sampron N, Atkinson MJ, Anastasov N, Matheu A, Stevanovic M. SOX3 can promote the malignant behavior of glioblastoma cells. Cell Oncol (Dordr) 2018; 42:41-54. [PMID: 30209685 DOI: 10.1007/s13402-018-0405-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Glioblastoma is the most common and lethal adult brain tumor. Despite current therapeutic strategies, including surgery, radiation and chemotherapy, the median survival of glioblastoma patients is 15 months. The development of this tumor depends on a sub-population of glioblastoma stem cells governing tumor propagation and therapy resistance. SOX3 plays a role in both normal neural development and carcinogenesis. However, little is known about its role in glioblastoma. Thus, the aim of this work was to elucidate the role of SOX3 in glioblastoma. METHODS SOX3 expression was assessed using real-time quantitative PCR (RT-qPCR), Western blotting and immunohistochemistry. MTT, immunocytochemistry and Transwell assays were used to evaluate the effects of exogenous SOX3 overexpression on the viability, proliferation, migration and invasion of glioblastoma cells, respectively. The expression of Hedgehog signaling pathway components and autophagy markers was assessed using RT-qPCR and Western blot analyses, respectively. RESULTS Higher levels of SOX3 expression were detected in a subset of primary glioblastoma samples compared to those in non-tumoral brain tissues. Exogenous overexpression of this gene was found to increase the proliferation, viability, migration and invasion of glioblastoma cells. We also found that SOX3 up-regulation was accompanied by an enhanced activity of the Hedgehog signaling pathway and by suppression of autophagy in glioblastoma cells. Additionally, we found that SOX3 expression was elevated in patient-derived glioblastoma stem cells, as well as in oncospheres derived from glioblastoma cell lines, compared to their differentiated counterparts, implying that SOX3 expression is associated with the undifferentiated state of glioblastoma cells. CONCLUSION From our data we conclude that SOX3 can promote the malignant behavior of glioblastoma cells.
Collapse
Affiliation(s)
- Jelena Marjanovic Vicentic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Idoia Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Vladanka Vukovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Paula Aldaz
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Nela Puskas
- Institute of Histology and Embryology "Aleksandar Ð. Kostić", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Igor Nikolic
- Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Goran Tasic
- Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Savo Raicevic
- Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia
| | - Laura Garros-Regulez
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Nicolas Sampron
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,Neuro-oncology Tumor Board, Donostia Hospital, San Sebastian, Spain
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Radiation Biology, Technical University of Munich, Munich, Germany
| | - Natasa Anastasov
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,Neuro-oncology Tumor Board, Donostia Hospital, San Sebastian, Spain
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
14
|
Zaletel I, Schwirtlich M, Perović M, Jovanović M, Stevanović M, Kanazir S, Puškaš N. Early Impairments of Hippocampal Neurogenesis in 5xFAD Mouse Model of Alzheimer’s Disease Are Associated with Altered Expression of SOXB Transcription Factors. J Alzheimers Dis 2018; 65:963-976. [DOI: 10.3233/jad-180277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ivan Zaletel
- Institute of Histology and Embryology “Aleksandar Đ Kostić”, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milka Perović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Selma Kanazir
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology “Aleksandar Đ Kostić”, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Verma I, Seshagiri PB. Directed differentiation of mouse P19 embryonal carcinoma cells to neural cells in a serum- and retinoic acid-free culture medium. In Vitro Cell Dev Biol Anim 2018; 54:567-579. [PMID: 30030768 DOI: 10.1007/s11626-018-0275-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
Abstract
P19 embryonal carcinoma cells (EC-cells) provide a simple and robust culture system for studying neural development. Most protocols developed so far for directing neural differentiation of P19 cells depend on the use of culture medium supplemented with retinoic acid (RA) and serum, which has an undefined composition. Hence, such protocols are not suitable for many molecular studies. In this study, we achieved neural differentiation of P19 cells in a serum- and RA-free culture medium by employing the knockout serum replacement (KSR) supplement. In the KSR-containing medium, P19 cells underwent predominant differentiation into neural lineage and by day 12 of culture, neural cells were present in 100% of P19-derived embryoid bodies (EBs). This was consistently accompanied by the increased expression of various neural lineage-associated markers during the course of differentiation. P19-derived neural cells comprised of NES+ neural progenitors (~ 46%), TUBB3+ immature neurons (~ 6%), MAP2+ mature neurons (~ 2%), and GFAP+ astrocytes (~ 50%). A heterogeneous neuronal population consisting of glutamatergic, GABAergic, serotonergic, and dopaminergic neurons was generated. Taken together, our study shows that the KSR medium is suitable for the differentiation of P19 cells to neural lineage without requiring additional (serum and RA) supplements. This stem cell differentiation system could be utilized for gaining mechanistic insights into neural differentiation and for identifying potential neuroactive compounds.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India.
| |
Collapse
|
16
|
Makrides N, Panayiotou E, Fanis P, Karaiskos C, Lapathitis G, Malas S. Sequential Role of SOXB2 Factors in GABAergic Neuron Specification of the Dorsal Midbrain. Front Mol Neurosci 2018; 11:152. [PMID: 29867344 PMCID: PMC5952183 DOI: 10.3389/fnmol.2018.00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Studies proposed a model for embryonic neurogenesis where the expression levels of the SOXB2 and SOXB1 factors regulate the differentiation status of the neural stem cells. However, the precise role of the SOXB2 genes remains controversial. Therefore, this study aims to investigate the effects of individual deletions of the SOX21 and SOX14 genes during the development of the dorsal midbrain. We show that SOX21 and SOX14 function distinctly during the commitment of the GABAergic lineage. More explicitly, deletion of SOX21 reduced the expression of the GABAergic precursor marker GATA3 and BHLHB5 while the expression of GAD6, which marks GABAergic terminal differentiation, was not affected. In contrast deletion of SOX14 alone was sufficient to inhibit terminal differentiation of the dorsal midbrain GABAergic neurons. Furthermore, we demonstrate through gain-of-function experiments, that despite the homology of SOX21 and SOX14, they have unique gene targets and cannot compensate for the loss of each other. Taken together, these data do not support a pan-neurogenic function for SOXB2 genes in the dorsal midbrain, but instead they influence, sequentially, the specification of GABAergic neurons.
Collapse
Affiliation(s)
- Neoklis Makrides
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology & Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Elena Panayiotou
- Neurologic Clinic A, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - George Lapathitis
- Neuroscience Laboratory, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Stavros Malas
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology & Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
17
|
Prognostic significance of SOX2 , SOX3 , SOX11 , SOX14 and SOX18 gene expression in adult de novo acute myeloid leukemia. Leuk Res 2018; 67:32-38. [DOI: 10.1016/j.leukres.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
|
18
|
Stanisavljevic D, Petrovic I, Vukovic V, Schwirtlich M, Gredic M, Stevanovic M, Popovic J. SOX14 activates the p53 signaling pathway and induces apoptosis in a cervical carcinoma cell line. PLoS One 2017; 12:e0184686. [PMID: 28926586 PMCID: PMC5604970 DOI: 10.1371/journal.pone.0184686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/29/2017] [Indexed: 12/28/2022] Open
Abstract
SOX14 is a member of the SOX family of transcription factors mainly involved in the regulation of neural development. Recently, it became evident that SOX14 is one of four hypermethylated genes in cervical carcinoma, considered as a tumor suppressor candidate in this type of malignancy. In this paper we elucidated the role of SOX14 in the regulation of malignant properties of cervical carcinoma cells in vitro. Functional analysis performed in HeLa cells revealed that SOX14 overexpression decreased viability and promoted apoptosis through altering the expression of apoptosis related genes. Our results demonstrated that overexpression of SOX14 initiated accumulation of p53, demonstrating potential cross-talk between SOX14 and the p53 signaling pathway. Further analysis unambiguously showed that SOX14 triggered posttranslational modification of p53 protein, as detected by the significantly increased level of phospho-p53 (Ser-15) in SOX14-overexpressing HeLa cells. Moreover, the obtained results revealed that SOX14 activated p53 protein, which was confirmed by elevated p21Waf1/Cip1, a well known target gene of p53. This study advances our understanding about the role of SOX14 and might explain the molecular mechanism by which this transcription factor could exert tumor suppressor properties in cervical carcinoma.
Collapse
Affiliation(s)
- Danijela Stanisavljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Isidora Petrovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vladanka Vukovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Gredic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Jelena Popovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Topalovic V, Krstic A, Schwirtlich M, Dolfini D, Mantovani R, Stevanovic M, Mojsin M. Epigenetic regulation of human SOX3 gene expression during early phases of neural differentiation of NT2/D1 cells. PLoS One 2017; 12:e0184099. [PMID: 28886103 PMCID: PMC5590877 DOI: 10.1371/journal.pone.0184099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Sox3/SOX3 is one of the earliest neural markers in vertebrates. Together with the Sox1/SOX1 and Sox2/SOX2 genes it is implicated in the regulation of stem cell identity. In the present study, we performed the first analysis of epigenetic mechanisms (DNA methylation and histone marks) involved in the regulation of the human SOX3 gene expression during RA-induced neural differentiation of NT2/D1 cells. We show that the promoter of the human SOX3 gene is extremely hypomethylated both in undifferentiated NT2/D1 cells and during the early phases of RA-induced neural differentiation. By employing chromatin immunoprecipitation, we analyze several histone modifications across different regions of the SOX3 gene and their dynamics following initiation of differentiation. In the same timeframe we investigate profiles of selected histone marks on the promoters of human SOX1 and SOX2 genes. We demonstrate differences in histone signatures of SOX1, SOX2 and SOX3 genes. Considering the importance of SOXB1 genes in the process of neural differentiation, the present study contributes to a better understanding of epigenetic mechanisms implicated in the regulation of pluripotency maintenance and commitment towards the neural lineage.
Collapse
Affiliation(s)
- Vladanka Topalovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
20
|
González-Burguera I, Ricobaraza A, Aretxabala X, Barrondo S, García del Caño G, López de Jesús M, Sallés J. Highly efficient generation of glutamatergic/cholinergic NT2-derived postmitotic human neurons by short-term treatment with the nucleoside analogue cytosine β-D-arabinofuranoside. Stem Cell Res 2016; 16:541-51. [PMID: 26985738 DOI: 10.1016/j.scr.2016.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/21/2022] Open
Abstract
The human NTERA2/D1 (NT2) cells generate postmitotic neurons (NT2N cells) upon retinoic acid (RA) treatment and are functionally integrated in the host tissue following grafting into the rodent and human brain, thus representing a promising source for neuronal replacement therapy. Yet the major limitations of this model are the lengthy differentiation procedure and its low efficiency, although recent studies suggest that the differentiation process can be shortened to less than 1 week using nucleoside analogues. To explore whether short-term exposure of NT2 cells to the nucleoside analogue cytosine β-d-arabinofuranoside (AraC) could be a suitable method to efficiently generate mature neurons, we conducted a neurochemical and morphometric characterization of AraC-differentiated NT2N (AraC/NT2N) neurons and improved the differentiation efficiency by modifying the cell culture schedule. Moreover, we analyzed the neurotransmitter phenotypes of AraC/NT2N neurons. Cultures obtained by treatment with AraC were highly enriched in postmitotic neurons and essentially composed of dual glutamatergic/cholinergic neurons, which contrasts with the preferential GABAergic phenotype that we found after RA differentiation. Taken together, our results further reinforce the notion NT2 cells are a versatile source of neuronal phenotypes and provide a new encouraging platform for studying mechanisms of neuronal differentiation and for exploring neuronal replacement strategies.
Collapse
Affiliation(s)
- Imanol González-Burguera
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Ana Ricobaraza
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Xabier Aretxabala
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain; CIBERSAM, Spain.
| | - Gontzal García del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain; CIBERSAM, Spain.
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain; CIBERSAM, Spain.
| |
Collapse
|
21
|
Petrovic I, Milivojevic M, Popovic J, Schwirtlich M, Rankovic B, Stevanovic M. SOX18 Is a Novel Target Gene of Hedgehog Signaling in Cervical Carcinoma Cell Lines. PLoS One 2015; 10:e0143591. [PMID: 26588701 PMCID: PMC4654472 DOI: 10.1371/journal.pone.0143591] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 11/06/2015] [Indexed: 02/08/2023] Open
Abstract
Although there is much evidence showing functional relationship between Hedgehog pathway, in particular Sonic hedgehog, and SOX transcription factors during embryonic development, scarce data are available regarding their crosstalk in cancer cells. SOX18 protein plays an important role in promoting tumor angiogenesis and therefore emerged as a promising potential target in antiangiogenic tumor therapy. Recently it became evident that expression of SOX18 gene in tumors is not restricted to endothelium of accompanying blood and lymphatic vessels, but in tumor cells as well.In this paper we have identified human SOX18 gene as a novel target gene of Hedgehog signaling in cervical carcinoma cell lines. We have presented data showing that expression of SOX18 gene is regulated by GLI1 and GLI2 transcription factors, final effectors of Hedgehog signaling, and that modulation of Hedgehog signaling activity in considerably influence SOX18 expression. We consider important that Hedgehog pathway inhibitors reduced SOX18 expression, thus showing, for the first time, possibility for manipulationwith SOX18 gene expression. In addition, we analyzed the role of SOX18 in malignant potential of cervical carcinoma cell line, and showed that its overexpression has no influence on cells proliferation and viability, but substantially promotes migration and invasion of cells in vitro. Pro-migratory effect of SOX18 suggests its role in promoting malignant spreading, possibly in response to Hedgehog activation.
Collapse
Affiliation(s)
- Isidora Petrovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
- * E-mail:
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Jelena Popovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Branislava Rankovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Moretto Zita M, Soncin F, Natale D, Pizzo D, Parast M. Gene Expression Profiling Reveals a Novel Regulatory Role for Sox21 Protein in Mouse Trophoblast Stem Cell Differentiation. J Biol Chem 2015; 290:30152-62. [PMID: 26491013 DOI: 10.1074/jbc.m115.659094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
Appropriate self-renewal and differentiation of trophoblast stem cells (TSCs) are key factors for proper placental development and function and, in turn, for appropriate in utero fetal growth. To identify novel TSC-specific genes, we performed genome-wide expression profiling of TSCs, embryonic stem cells, epiblast stem cells, and mouse embryo fibroblasts, derived from mice of the same genetic background. Our analysis revealed a high expression of Sox21 in TSCs compared with other cell types. Sox21 levels were high in undifferentiated TSCs and were dramatically reduced upon differentiation. In addition, modulation of Sox21 expression in TSCs affected lineage-specific differentiation, based on both marker analysis and functional assessment. Our results implicate Sox21 specifically in the promotion of spongiotrophoblast and giant cell differentiation and establish a new mechanism through which trophoblast sublineages are specified.
Collapse
Affiliation(s)
| | | | - David Natale
- Reproductive Medicine, University of California San Diego, La Jolla, California 92093
| | | | | |
Collapse
|
23
|
Klajn A, Drakulic D, Tosic M, Pavkovic Z, Schwirtlich M, Stevanovic M. SOX2 overexpression affects neural differentiation of human pluripotent NT2/D1 cells. BIOCHEMISTRY (MOSCOW) 2015; 79:1172-82. [PMID: 25540002 DOI: 10.1134/s0006297914110042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SOX2 is one of the key transcription factors involved in maintenance of neural progenitor identity. However, its function during the process of neural differentiation, including phases of lineage-specification and terminal differentiation, is still poorly understood. Considering growing evidence indicating that SOX2 expression level must be tightly controlled for proper neural development, the aim of this research was to analyze the effects of constitutive SOX2 overexpression on outcome of retinoic acid-induced neural differentiation of pluripotent NT2/D1 cells. We demonstrated that in spite of constitutive SOX2 overexpression, NT2/D1 cells were able to reach final phases of neural differentiation yielding both neuronal and glial cells. However, SOX2 overexpression reduced the number of mature MAP2-positive neurons while no difference in the number of GFAP-positive astrocytes was detected. In-depth analysis at single-cell level showed that SOX2 downregulation was in correlation with both neuronal and glial phenotype acquisitions. Interestingly, while in mature neurons SOX2 was completely downregulated, astrocytes with low level of SOX2 expression were detected. Nevertheless, cells with high level of SOX2 expression were incapable of entering in either of two differentiation pathways, neurogenesis or gliogenesis. Accordingly, our results indicate that fine balance between undifferentiated state and neural differentiation depends on SOX2 expression level. Unlike neurons, astrocytes could maintain low level of SOX2 expression after they acquired glial fate. Further studies are needed to determine whether differences in the level of SOX2 expression in GFAP-positive astrocytes are in correlation with their self-renewal capacity, differentiation status, and/or their phenotypic characteristics.
Collapse
Affiliation(s)
- A Klajn
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
| | | | | | | | | | | |
Collapse
|
24
|
Crosstalk between SOXB1 proteins and WNT/β-catenin signaling in NT2/D1 cells. Histochem Cell Biol 2015; 144:429-41. [PMID: 26239426 DOI: 10.1007/s00418-015-1352-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2015] [Indexed: 02/06/2023]
Abstract
During early vertebrate embryogenesis, the expression of SOXB1 proteins is precisely regulated by a number of different mechanisms, including Wnt/β-catenin signaling. This is essential for controlling the balance between stemness and differentiation in embryonic stem cells. In the present study, we analyzed the molecular mechanism of LiCl action in NT2/D1 cells and examined the crosstalk between SOXB1 proteins and Wnt signaling in this model system. We have shown that LiCl increases β-catenin level, induces its translocation to the nucleus and consequently up-regulates β-catenin/Tcf-dependent transcription in NT2/D1 cells. Our results also suggest that LiCl treatment leads to increased expression of SOX2 and SOX3 proteins in NT2/D1 cells through activation of canonical Wnt signaling. Finally, we have detected a negative feedback loop between β-catenin and SOX2 expression in NT2/D1 cells. Since β-catenin and SOX2 have been linked to processes of self-renewal and pluripotency, our results have implications for future research on the maintenance of stemness and lineage commitment of embryonic stem cells.
Collapse
|
25
|
Jasnic-Savovic J, Klajn A, Milivojevic M, Mojsin M, Nikcevic G. Human embryonal carcinoma cells in serum-free conditions as an in vitro model system of neural differentiation. Altern Lab Anim 2015; 43:9-18. [PMID: 25802994 DOI: 10.1177/026119291504300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Serum is generally regarded as an essential component of many eukaryotic cell culture media, despite the fact that serum composition varies greatly and may be the source of a wide range of artefacts. The objective of this study was to assess serum-free growth conditions for the human embryonal carcinoma cell line, NT2/D1. These cells greatly resemble embryonic stem cells. In the presence of retinoic acid (RA), NT2/D1 cells irreversibly differentiate along the neuronal lineage. We have previously shown that the early phases of neural induction of these cells by RA involve the up-regulation of SOX3 gene expression. Our goal was to compare RA-induced differentiation of NT2/D1 cells in serum-containing and serum-free media, by using SOX3 protein levels as a marker of differentiation. We found that NT2/D1 cells can be successfully grown under serum-free conditions, and that the presence or absence of serum does not affect the level of SOX3 protein after a 48-hour RA induction. However, six days of RA treatment resulted in a marked increase in SOX3 protein levels in serum-free media compared to serum-containing media, indicating that serum might have an inhibitory effect on the expression of this neural differentiation marker. This finding is important for both basic and translational studies that hope to exploit cell culture conditions that are free of animal-derived products.
Collapse
Affiliation(s)
- Jovana Jasnic-Savovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Klajn
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Gordana Nikcevic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Li F, Wang T, Tang S. SOX14 promotes proliferation and invasion of cervical cancer cells through Wnt/β-catenin pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1698-1704. [PMID: 25973056 PMCID: PMC4396331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
SOX14 is a member of the SOXB2 subgroup of transcription factors implicated in neural development. Although SOX14 expression profile and function during development was revealed in various animal model systems, the role of this gene during tumor progression is totally unknown. In this study, the expression of SOX14 increases in four cervical cancer cell lines (HeLa, Caski, HT-3 and SiHa) as revealed by real-time PCR and Western blot analyses. Through knocking down or overexpressing SOX14 in SiHa and HeLa cells, the expression level of SOX14 was found to be positively related to cell proliferation and invasion in vitro. Moreover, the TOP-Flash reporter assay and Western blot for β-catenin genes of the Wnt/β-catenin pathway, indicated that SOX14 significantly activated Wnt/β-catenin signaling. Further study showed that the blockage of Wnt/β-catenin pathway by knocking down β-catenin resulted in a significant inhibition of cell proliferation and invasion capacity induced by SOX14. To summarize, these results demonstrate that SOX14 can promote proliferation and invasion capacity of cervical cancer cells by activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fei Li
- Hospital of Plastic Surgery, Shandong Provinicial Key Laboratory of Plastic Surgery And Microscopic Reconstructive Surgery Techniques, Weifang Medical University Weifang, Shandong Province, P.R. China
| | - Tairen Wang
- Hospital of Plastic Surgery, Shandong Provinicial Key Laboratory of Plastic Surgery And Microscopic Reconstructive Surgery Techniques, Weifang Medical University Weifang, Shandong Province, P.R. China
| | - Shengjian Tang
- Hospital of Plastic Surgery, Shandong Provinicial Key Laboratory of Plastic Surgery And Microscopic Reconstructive Surgery Techniques, Weifang Medical University Weifang, Shandong Province, P.R. China
| |
Collapse
|
27
|
Tong B, Zeng J, Wu Y, Xiong W. Enhanced SOX2 expression in retinoblastoma tissues and peripheral blood is associated with the clinicopathological characteristics of the disease. Oncol Lett 2015; 9:1244-1248. [PMID: 25663891 PMCID: PMC4315024 DOI: 10.3892/ol.2015.2857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the association between the expression of sex-determining region Y box 2 (SOX2) in retinoblastoma (Rb) tissues and peripheral blood, and the clinicopathological characteristics of Rb. The expression of SOX2 in Rb tissues was detected by immunohistochemical staining and western blot analysis. SOX2 expression in the peripheral blood of children with Rb was determined using quantitative real-time polymerase chain reaction. The correlation between SOX2 expression and the clinicopathological characteristics of Rb was analyzed using χ2 tests. The positive rate of SOX2 in Rb tissues was 82.2%, while the expression of SOX2 in the control group tissues was negative. Western blot analysis detected a higher expression of SOX2 in the Rb tissues than in the control group tissues. Poorly differentiated Rb tissues exhibited significantly higher levels of SOX2 expression compared with the well-differentiated Rb tissues. SOX2 expression was higher in the peripheral blood of children with Rb than in individuals from the control group. The level of SOX2 expression in the peripheral blood of the poorly differentiated group was higher than that of the well-differentiated group. Enhanced SOX2 expression in Rb tissues and peripheral blood was closely associated with the clinicopathological characteristics of Rb. Therefore, SOX2 may be a novel target biomarker for the clinical diagnosis and treatment of Rb.
Collapse
Affiliation(s)
- Boding Tong
- Department of Ophthalmology and Eye Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jiexi Zeng
- Department of Ophthalmology and Eye Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yujie Wu
- Department of Ophthalmology and Eye Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wei Xiong
- Department of Ophthalmology and Eye Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|