1
|
Miller RC, Temenoff JS. Biomaterials for Cell Manufacturing. ACS Macro Lett 2024:1521-1530. [PMID: 39466845 DOI: 10.1021/acsmacrolett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cell therapies, potent populations of cells used to treat disease and injury, can be strategically manufactured with biomaterial intervention to improve clinical translation. In this viewpoint, we discuss biomaterial design and integration into cell manufacturing steps to achieve three main goals: scale-up, phenotype control, and selection of potent cells. Material properties can be engineered to influence the cell-biomaterial interface and, therefore, impart desirable cell behavior such as growth, secretory activity, and differentiation. Future directions for the field should capitalize on the combinatorial design of biomaterial properties to yield highly specific and potent cell populations. Furthermore, future biomaterials could contribute to novel high-throughput cell separation technologies that can individually select the most therapeutically relevant cells within a produced batch.
Collapse
Affiliation(s)
- Ryan C Miller
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Bandarra-Tavares H, Franchi-Mendes T, Ulpiano C, Morini S, Kaur N, Harris-Becker A, Vemuri MC, Cabral JMS, Fernandes-Platzgummer A, da Silva CL. Dual production of human mesenchymal stromal cells and derived extracellular vesicles in a dissolvable microcarrier-based stirred culture system. Cytotherapy 2024; 26:749-756. [PMID: 38506771 DOI: 10.1016/j.jcyt.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 03/02/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND & AIMS Cell therapies based on mesenchymal stromal cells (MSCs) have gained an increasing therapeutic interest in the context of multiple disorders. Nonetheless, this field still faces important challenges, particularly concerning suitable manufacturing platforms. Here, we aimed at establishing a scalable culture system to expand umbilical cord-derived Wharton's jelly MSC (MSC(WJ)) and their derived extracellular vesicles (EVs) by using dissolvable microcarriers combined with xeno(geneic)-free culture medium. METHODS MSC(WJ) isolated from three donors were cultured at a starting density of 1 × 106 cells per spinner flask, i.e., 2.8 × 103 cells per cm2 of dissolvable microcarrier surface area. After a 6-day expansion period of MSC(WJ), extracellular vesicles (EVs) were produced for 24 h. RESULTS Taking advantage of an intermittent agitation regimen, we observed high adhesion rates to the microcarriers (over 90% at 24 h) and achieved 15.8 ± 0.7-fold expansion after 6 days of culture. Notably, dissolution of the microcarriers was achieved through a pectinase-based solution to recover the cell product, reducing the hurdles of downstream processing. MSC identity was validated by detecting the characteristic MSC immunophenotype and by multilineage differentiation assays. Considering the growing interest in MSC-derived EVs, which are known to be mediators of the therapeutic features of MSC, this platform also was evaluated for EV production. Upon a 24-h period of conditioning, secreted EVs were isolated by ultrafiltration followed by anion-exchange chromatography and exhibited the typical cup-shaped morphology, small size distribution (162.6 ± 30.2 nm) and expressed EV markers (CD63, CD9 and syntenin-1). CONCLUSIONS Taken together, we established a time-effective and robust scalable platform that complies with clinical-grade standards for the dual production of MSC(WJ) and their derived EV.
Collapse
Affiliation(s)
- Hélder Bandarra-Tavares
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Franchi-Mendes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cristiana Ulpiano
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Morini
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Navjot Kaur
- Cell and Gene Therapy, Thermo Fisher Scientific, Cell Biology, Frederick, Maryland, USA
| | - Abigail Harris-Becker
- Cell and Gene Therapy, Thermo Fisher Scientific, Cell Biology, Frederick, Maryland, USA
| | - Mohan C Vemuri
- Cell and Gene Therapy, Thermo Fisher Scientific, Cell Biology, Frederick, Maryland, USA
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Kaneko M, Sato A, Ayano S, Fujita A, Kobayashi G, Ito A. Expansion of human mesenchymal stem cells on poly(vinyl alcohol) microcarriers. J Biosci Bioeng 2023; 136:407-414. [PMID: 37657971 DOI: 10.1016/j.jbiosc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Microcarriers provide a high surface-area-to-volume ratio that can realize high yields of cell products, including human mesenchymal stem cells (hMSCs). Here, we report a novel poly(vinyl alcohol) (PVA)-based microcarrier for hMSC expansion in suspension culture. PVA microcarriers were prepared as collagen-coated PVA hydrogels 181 μm in size and a high surface-area-to-weight ratio of 2945 cm2/g. The PVA microcarriers supported a 2.6-fold expansion of hMSCs in a 30-mL single-use stirred bioreactor after a 7 d culture period, comparable to that of commercially available microcarriers. Interestingly, we observed that hMSCs on PVA microcarriers adhered to adjacent microcarriers, resulting in the aggregation of hMSC-PVA microcarriers. Therefore, we conducted a long-term expansion culture using a bead-to-bead cell transfer method with PVA microcarriers. Fresh microcarriers were added to the cell-populated microcarriers in the bioreactor on days 7 and 14. hMSCs on PVA microcarriers continued to grow for 21 d using the bead-to-bead cell transfer method. Furthermore, magnetic PVA (PVA-mag) microcarriers were developed by loading magnetic nanoparticles into PVA microcarriers, and we demonstrated that these PVA-mag microcarriers enabled cell recovery by magnetic separation. These results suggest that these PVA microcarriers can contribute to the large-scale culture of hMSCs for regenerative medicine and cell therapy.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Airi Sato
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Satoru Ayano
- Research and Development Division, Kuraray Co., Ltd., 41 Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Akio Fujita
- Research and Development Division, Kuraray Co., Ltd., 41 Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Goro Kobayashi
- Research and Development Division, Kuraray Co., Ltd., 41 Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Akira Ito
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
4
|
Teale MA, Schneider S, Eibl D, van den Bos C, Neubauer P, Eibl R. Mesenchymal and induced pluripotent stem cell-based therapeutics: a comparison. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12583-4. [PMID: 37246986 DOI: 10.1007/s00253-023-12583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Stem cell-based cell therapeutics and especially those based on human mesenchymal stem cells (hMSCs) and induced pluripotent stem cells (hiPSCs) are said to have enormous developmental potential in the coming years. Their applications range from the treatment of orthopedic disorders and cardiovascular diseases to autoimmune diseases and even cancer. However, while more than 27 hMSC-derived therapeutics are currently commercially available, hiPSC-based therapeutics have yet to complete the regulatory approval process. Based on a review of the current commercially available hMSC-derived therapeutic products and upcoming hiPSC-derived products in phase 2 and 3, this paper compares the cell therapy manufacturing process between these two cell types. Moreover, the similarities as well as differences are highlighted and the resulting impact on the production process discussed. Here, emphasis is placed on (i) hMSC and hiPSC characteristics, safety, and ethical aspects, (ii) their morphology and process requirements, as well as (iii) their 2- and 3-dimensional cultivations in dependence of the applied culture medium and process mode. In doing so, also downstream processing aspects are covered and the role of single-use technology is discussed. KEY POINTS: • Mesenchymal and induced pluripotent stem cells exhibit distinct behaviors during cultivation • Single-use stirred bioreactor systems are preferred for the cultivation of both cell types • Future research should adapt and modify downstream processes to available single-use devices.
Collapse
Affiliation(s)
- Misha A Teale
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland.
| | - Samuel Schneider
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | | | - Peter Neubauer
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technical University of Berlin, ACK24, Ackerstraße 76, 13355, Berlin, Germany
| | - Regine Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| |
Collapse
|
5
|
Teryek M, Jadhav P, Bento R, Parekkadan B. 3D Microcapsules for Human Bone Marrow Derived Mesenchymal Stem Cell Biomanufacturing in a Vertical-Wheel Bioreactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528656. [PMID: 36824906 PMCID: PMC9949076 DOI: 10.1101/2023.02.16.528656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Microencapsulation of human mesenchymal stromal cells (MSCs) via electrospraying has been well documented in tissue engineering and regenerative medicine. Herein, we report the use of microencapsulation, via electrospraying, for MSC expansion using a commercially available hydrogel that is durable, optimized to MSC culture, and enzymatically degradable for cell recovery. Critical parameters of the electrospraying encapsulation process such as seeding density, correlation of microcapsule output with hydrogel volume, and applied voltage were characterized to consistently fabricate cell-laden microcapsules of uniform size. Upon encapsulation, we then verified ~ 10x expansion of encapsulated MSCs within a vertical-wheel bioreactor and the preservation of critical quality attributes such as immunophenotype and multipotency after expansion and cell recovery. Finally, we highlight the genetic manipulation of encapsulated MSCs as an example of incorporating bioactive agents in the capsule material to create new compositions of MSCs with altered phenotypes.
Collapse
Affiliation(s)
- Matthew Teryek
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Pankaj Jadhav
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Raphaela Bento
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
6
|
Dai Y, Cui X, Zhang G, Mohsin A, Xu H, Zhuang Y, Guo M. Development of a novel feeding regime for large scale production of human umbilical cord mesenchymal stem/stromal cells. Cytotechnology 2022; 74:351-369. [DOI: 10.1007/s10616-022-00523-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/23/2022] [Indexed: 12/21/2022] Open
|
7
|
Peng L, Gautrot JE. Long term expansion profile of mesenchymal stromal cells at protein nanosheet-stabilised bioemulsions for next generation cell culture microcarriers. Mater Today Bio 2021; 12:100159. [PMID: 34841241 PMCID: PMC8605361 DOI: 10.1016/j.mtbio.2021.100159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/27/2022] Open
Abstract
Tremendous progress in the identification, isolation and expansion of stem cells has allowed their application in regenerative medicine and tissue engineering, and their use as advanced in vitro models. As a result, stem cell manufacturing increasingly requires scale up, parallelisation and automation. However, solid substrates currently used for the culture of adherent cells are poorly adapted for such applications, owing to their difficult processing from cell products, relatively high costs and their typical reliance on difficult to recycle plastics and microplastics. In this work, we show that bioemulsions formed of microdroplets stabilised by protein nanosheets displaying strong interfacial mechanics are well-suited for the scale up of adherent stem cells such as mesenchymal stromal cells (MSCs). We demonstrate that, over multiple passages (up to passage 10), MSCs retain comparable phenotypes when cultured on such bioemulsions, solid microcarriers (Synthemax II) and classic 2D tissue culture polystyrene. Phenotyping (cell proliferation, morphometry, flow cytometry and differentiation assays) of MSCs cultured for multiple passages on these systems indicate that, although stemness is lost at late passages when cultured on these different substrates, stem cell phenotypes remained comparable between different culture conditions, at any given passage. Hence our study validates the use of bioemulsions for the long term expansion of adherent stem cells and paves the way to the design of novel 3D bioreactors based on microdroplet microcarriers.
Collapse
Affiliation(s)
- Lihui Peng
- Institute of Bioengineering and, UK.,School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Julien E Gautrot
- Institute of Bioengineering and, UK.,School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
8
|
Dabiri SMH, Samiei E, Shojaei S, Karperien L, Khun Jush B, Walsh T, Jahanshahi M, Hassanpour S, Hamdi D, Seyfoori A, Ahadian S, Khademhosseini A, Akbari M. Multifunctional Thermoresponsive Microcarriers for High-Throughput Cell Culture and Enzyme-Free Cell Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103192. [PMID: 34558181 DOI: 10.1002/smll.202103192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
An effective treatment of human diseases using regenerative medicine and cell therapy approaches requires a large number of cells. Cultivation of cells on microcarriers is a promising approach due to the high surface-to-volume ratios that these microcarriers offer. Here, multifunctional temperature-responsive microcarriers (cytoGel) made of an interpenetrating hydrogel network composed of poly(N-isopropylacrylamide) (PNIPAM), poly(ethylene glycol) diacrylate (PEGDA), and gelatin methacryloyl (GelMA) are developed. A flow-focusing microfluidic chip is used to produce microcarriers with diameters in the range of 100-300 μm and uniform size distribution (polydispersity index of ≈0.08). The mechanical properties and cells adhesion properties of cytoGel are adjusted by changing the composition hydrogel composition. Notably, GelMA regulates the temperature response and enhances microcarrier stiffness. Human-derived glioma cells (U87) are grown on cytoGel in static and dynamic culture conditions with cell viabilities greater than 90%. Enzyme-free cell detachment is achieved at room temperature with up to 70% detachment efficiency. Controlled release of bioactive molecules from cytoGel is accomplished for over a week to showcase the potential use of microcarriers for localized delivery of growth factors to cell surfaces. These microcarriers hold great promise for the efficient expansion of cells for the industrial-scale culture of therapeutic cells.
Collapse
Affiliation(s)
- Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Shahla Shojaei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Lucas Karperien
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Bardia Khun Jush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Maryam Jahanshahi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sadegh Hassanpour
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - David Hamdi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
| |
Collapse
|
9
|
Hanga MP, de la Raga FA, Moutsatsou P, Hewitt CJ, Nienow AW, Wall I. Scale-up of an intensified bioprocess for the expansion of bovine adipose-derived stem cells (bASCs) in stirred tank bioreactors. Biotechnol Bioeng 2021; 118:3175-3186. [PMID: 34076888 DOI: 10.1002/bit.27842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023]
Abstract
Cultivated meat is an emerging field, aiming to establish the production of animal tissue for human consumption in an in vitro environment, eliminating the need to raise and slaughter animals for their meat. To realise this, the expansion of primary cells in a bioreactor is needed to achieve the high cell numbers required. The aim of this study was to develop a scalable, microcarrier based, intensified bioprocess for the expansion of bovine adipose-derived stem cells as precursors of fat and muscle tissue. The intensified bioprocess development was carried out initially in spinner flasks of different sizes and then translated to fully controlled litre scale benchtop bioreactors. Bioprocess intensification was achieved by utilising the previously demonstrated bead-to-bead transfer phenomenon and through the combined addition of microcarrier and medium to double the existing surface area and working volume in the bioreactor. Choosing the optimal time point for the additions was critical in enhancing the cell expansion. A significant fold increase of 114.19 ± 1.07 was obtained at the litre scale in the intensified bioprocess compared to the baseline (**p < .005). The quality of the cells was evaluated pre- and post-expansion and the cells were found to maintain their phenotype and differentiation capacity.
Collapse
Affiliation(s)
- Mariana Petronela Hanga
- School of Biosciences, College of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Fritz Anthony de la Raga
- School of Biosciences, College of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Panagiota Moutsatsou
- School of Biosciences, College of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Christopher J Hewitt
- School of Biosciences, College of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Alvin W Nienow
- School of Biosciences, College of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK.,Department of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ivan Wall
- School of Biosciences, College of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK.,Department of Nanobiomedical Science, Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
| |
Collapse
|
10
|
Chen S, Sato Y, Tada Y, Suzuki Y, Takahashi R, Okanojo M, Nakashima K. Facile bead-to-bead cell-transfer method for serial subculture and large-scale expansion of human mesenchymal stem cells in bioreactors. Stem Cells Transl Med 2021; 10:1329-1342. [PMID: 34008349 PMCID: PMC8380445 DOI: 10.1002/sctm.20-0501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The conventional planar culture of adherent cells is inefficient for large‐scale manufacturing of cell and gene therapy products. We developed a facile and efficient bead‐to‐bead cell‐transfer method for serial subculture and large‐scale expansion of human mesenchymal stem cells (hMSCs) with microcarriers in bioreactors. We first compared culture medium with and without nucleosides and found the former maintained the expression of surface markers of hMSCs during their prolonged culture and enabled faster cell proliferation. Subsequently, we developed our bead‐to‐bead cell transfer method to subculture hMSCs and found that intermittent agitation after adding fresh microcarriers to cell‐populated microcarriers could promote spontaneous cell migration to fresh microcarriers, reduce microcarrier aggregation, and improve cell yield. This method enabled serial subculture of hMSCs in spinner flasks from passage 4 to passage 9 without using proteolytic enzymes, which showed faster cell proliferation than the serial planar cultures undergoing multiple enzyme treatment. Finally, we used the medium containing nucleosides and our bead‐to‐bead cell transfer method for cell culture scale‐up from 4‐ to 50‐L cultures in single‐use bioreactors. We achieved a 242‐fold increase in the number of cells to 1.45 × 1010 after 27‐day culture and found that the cells harvested from the bioreactors maintained proliferation ability, expression of their surface markers, tri‐lineage differentiation potential and immunomodulatory property. This study shows the promotive effect of nucleosides on hMSC expansion and the potential of using our bead‐to‐bead transfer method for larger‐scale manufacturing of hMSCs for cell therapy.
Collapse
Affiliation(s)
- Shangwu Chen
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Yushi Sato
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Yasuhiko Tada
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Yuma Suzuki
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Ryosuke Takahashi
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Masahiro Okanojo
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| | - Katsuhiko Nakashima
- Regenerative Medicine Business Sector, Showa Denko Materials Co, Ltd, Yokohama-shi, Kanagawa, Japan
| |
Collapse
|
11
|
Bhat S, Chiew GGY, Ng JX, Lin X, Seetharam RN. Optimization of culture conditions for human bone marrow-derived mesenchymal stromal cell expansion in macrocarrier-based Tide Motion system. Biotechnol J 2021; 16:e2000540. [PMID: 33838001 DOI: 10.1002/biot.202000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND With high cell doses required for mesenchymal stromal cell (MSC) clinical trials, there is a need to upgrade technologies that facilitate efficient scale up of MSCs for cell therapy. Conventional expansion with 2D culture vessels becomes the bottleneck when large cell dosages are required. Tide Motion bioreactors offer a robust, scalable platform using BioNOC II macrocarriers developed for the production of adherent cells. METHODS We evaluated the growth and expansion of bone marrow-derived MSCs (BM-MSCs) on the macrocarrier-based culture system by optimizing key parameters such as cell seeding densities, culturing conditions, and harvesting procedures to achieve optimal cell growth. BM-MSCs expanded in conventional 2D adherent cultures were seeded into BioNOC II macrocarriers and grown in serum-containing or serum-free medium. RESULTS BM-MSCs attained a maximum cell density of 0.49 ± 0.07 × 106 cells/carrier after 12 days of culture in BioNOC II macrocarriers with cell viability > 86% while retaining MSC specific characteristics such as surface marker expression, tri-lineage differentiation potential, immunosuppressive properties, and potency. CONCLUSION These results reveal the feasibility of BM-MSC expansion in the scalable macrocarrier-based Tide Motion system both under serum and serum-free conditions and represent an important step for the large-scale production system of BM-MSC based cellular therapies.
Collapse
Affiliation(s)
- Samatha Bhat
- Stempeutics Research Pvt Ltd, Shirdi Sai Baba Cancer Hospital, Manipal, Karnataka, India
| | | | - Jia Xing Ng
- Esco Aster Pte Ltd (CDMO Services), Singapore
| | | | - Raviraja N Seetharam
- Stempeutics Research Pvt Ltd, Shirdi Sai Baba Cancer Hospital, Manipal, Karnataka, India
| |
Collapse
|
12
|
Ng S, Kurisawa M. Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater 2021; 124:108-129. [PMID: 33472103 DOI: 10.1016/j.actbio.2021.01.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cultured meat has recently achieved mainstream prominence due to the emergence of societal and industrial interest. In contrast to animal-based production of traditional meat, the cultured meat approach entails laboratory cultivation of engineered muscle tissue. However, bioengineers have hitherto engineered tissues to fulfil biomedical endpoints, and have had limited experience in engineering muscle tissue for its post-mortem traits, which broadly govern consumer definitions of meat quality. Furthermore, existing tissue engineering approaches face fundamental challenges in technical feasibility and industrial scalability for cultured meat production. This review discusses how animal-based meat production variables influence meat properties at both the molecular and functional level, and whether current cultured meat approaches recapitulate these properties. In addition, this review considers how conventional meat producers employ exogenous biopolymer-based meat ingredients and processing techniques to mimic desirable meat properties in meat products. Finally, current biomaterial strategies for engineering muscle and adipose tissue are surveyed in the context of emerging constraints that pertain to cultured meat production, such as edibility, sustainability and scalability, and potential areas for integrating biomaterials and food biopolymer approaches to address these constraints are discussed. STATEMENT OF SIGNIFICANCE: Laboratory-grown or cultured meat has gained increasing interest from industry and the public, but currently faces significant impediment to market feasibility. This is due to fundamental knowledge gaps in producing realistic meat tissues via conventional tissue engineering approaches, as well as translational challenges in scaling up these approaches in an efficient, sustainable and high-volume manner. By defining the molecular basis for desirable meat quality attributes, such as taste and texture, and introducing the fundamental roles of food biopolymers in mimicking these properties in conventional meat products, this review aims to bridge the historically disparate fields of meat science and biomaterials engineering in order to inspire potentially synergistic strategies that address some of these challenges.
Collapse
|
13
|
de Bournonville S, Geris L, Kerckhofs G. Micro computed tomography with and without contrast enhancement for the characterization of microcarriers in dry and wet state. Sci Rep 2021; 11:2819. [PMID: 33531524 PMCID: PMC7854591 DOI: 10.1038/s41598-021-81998-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
In the field of regenerative medicine, microcarriers are used as support matrix for the growth of adherent cells. They are increasingly recognised as promising biomaterials for large scale, cost-effective cell expansion bioreactor processes. However, their individual morphologies can be highly heterogeneous which increases bioprocesses' variability. Additionally, only limited information is available on the microcarriers' 3D morphology and how it affects cell proliferation. Most imaging modalities do not provide sufficient 3D information or have a too limited field of view to appropriately study the 3D morphology. While microfocus X-ray computed tomography (microCT) could be appropriate, many microcarriers are hydrated before in-vitro use. This wet state makes them swell, changing considerably their morphology and making them indistinguishable from the culture solution in regular microCT images due to their physical density close to water. The use of contrast-enhanced microCT (CE-CT) has been recently reported for 3D imaging of soft materials. In this study, we selected a range of commercially available microcarrier types and used a combination of microCT and CE-CT for full 3D morphological characterization of large numbers of microcarriers, both in their dry and wet state. With in-house developed image processing and analysis tools, morphometrics of individual microcarriers were collected. Also, the morphology in wet state was assessed and related to accessible attachment surface area as a function of cell size. The morphological information on all microcarriers was collected in a publicly available database. This work provides a quantitative basis for optimization and modelling of microcarrier based cell expansion processes.
Collapse
Affiliation(s)
- Sébastien de Bournonville
- Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, ULiège, Liège, Belgium
| | - Liesbet Geris
- Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, ULiège, Liège, Belgium
| | - Greet Kerckhofs
- Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.
- Department Materials Engineering, KU Leuven, Leuven, Belgium.
- Institute of Experimental and Clinical Research, UCLouvain, Woluwé-Saint-Lambert, Belgium.
| |
Collapse
|
14
|
Silva Couto P, Rotondi M, Bersenev A, Hewitt C, Nienow A, Verter F, Rafiq Q. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv 2020; 45:107636. [DOI: 10.1016/j.biotechadv.2020.107636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/01/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
|
15
|
Peticone C, Thompson DDS, Dimov N, Jevans B, Glass N, Micheletti M, Knowles JC, Kim HW, Cooper-White JJ, Wall IB. Characterisation of osteogenic and vascular responses of hMSCs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform. J Tissue Eng 2020; 11:2041731420954712. [PMID: 33178409 PMCID: PMC7592314 DOI: 10.1177/2041731420954712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023] Open
Abstract
Using microspherical scaffolds as building blocks to repair bone defects of
specific size and shape has been proposed as a tissue engineering strategy.
Here, phosphate glass (PG) microcarriers doped with 5 mol % TiO2 and
either 0 mol % CoO (CoO 0%) or 2 mol % CoO (CoO 2%) were investigated for their
ability to support osteogenic and vascular responses of human mesenchymal stem
cells (hMSCs). Together with standard culture techniques, cell-material
interactions were studied using a novel perfusion microfluidic bioreactor that
enabled cell culture on microspheres, along with automated processing and
screening of culture variables. While titanium doping was found to support hMSCs
expansion and differentiation, as well as endothelial cell-derived vessel
formation, additional doping with cobalt did not improve the functionality of
the microspheres. Furthermore, the microfluidic bioreactor enabled screening of
culture parameters for cell culture on microspheres that could be potentially
translated to a scaled-up system for tissue-engineered bone manufacturing.
Collapse
Affiliation(s)
- Carlotta Peticone
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Nikolay Dimov
- Centre for Engineering Research, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Ben Jevans
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nick Glass
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, Australia
| | - Martina Micheletti
- Department of Biochemical Engineering, University College London, London, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London, UK.,The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Justin J Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, Australia.,School of Chemical Engineering, University of Queensland, St. Lucia, Brisbane, Australia
| | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, UK.,Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,Aston Medical Research Institute and School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
16
|
Zidarič T, Milojević M, Vajda J, Vihar B, Maver U. Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09253-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Simitzi C, Vlahovic M, Georgiou A, Keskin-Erdogan Z, Miller J, Day RM. Modular Orthopaedic Tissue Engineering With Implantable Microcarriers and Canine Adipose-Derived Mesenchymal Stromal Cells. Front Bioeng Biotechnol 2020; 8:816. [PMID: 32775324 PMCID: PMC7388765 DOI: 10.3389/fbioe.2020.00816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stromal cells (MSC) hold significant potential for tissue engineering applications. Modular tissue engineering involves the use of cellularized "building blocks" that can be assembled via a bottom-up approach into larger tissue-like constructs. This approach emulates more closely the complexity associated hierarchical tissues compared with conventional top-down tissue engineering strategies. The current study describes the combination of biodegradable porous poly(DL-lactide-co-glycolide) (PLGA) TIPS microcarriers with canine adipose-derived MSC (cAdMSC) for use as implantable conformable building blocks in modular tissue engineering applications. Optimal conditions were identified for the attachment and proliferation of cAdMSC on the surface of the microcarriers. Culture of the cellularized microcarriers for 21 days in transwell insert plates under conditions used to induce either chondrogenic or osteogenic differentiation resulted in self-assembly of solid 3D tissue constructs. The tissue constructs exhibited phenotypic characteristics indicative of successful osteogenic or chondrogenic differentiation, as well as viscoelastic mechanical properties. This strategy paves the way to create in situ tissue engineered constructs via modular tissue engineering for therapeutic applications.
Collapse
Affiliation(s)
- Chara Simitzi
- Centre for Precision Healthcare, Applied Biomedical Engineering Group, UCL Division of Medicine, University College London, London, United Kingdom
| | - Maja Vlahovic
- Centre for Precision Healthcare, Applied Biomedical Engineering Group, UCL Division of Medicine, University College London, London, United Kingdom
| | - Alex Georgiou
- Department of Biomolecular and Sports Sciences, Coventry University, Coventry, United Kingdom
- Cell Therapy Sciences Ltd., University of Warwick Science Park, Coventry, United Kingdom
| | | | - Joanna Miller
- Cell Therapy Sciences Ltd., University of Warwick Science Park, Coventry, United Kingdom
| | - Richard M. Day
- Centre for Precision Healthcare, Applied Biomedical Engineering Group, UCL Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
18
|
Large-Scale Expansion of Human Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:9529465. [PMID: 32733574 PMCID: PMC7378617 DOI: 10.1155/2020/9529465] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/07/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with strong immunosuppressive property that renders them an attractive source of cells for cell therapy. MSCs have been studied in multiple clinical trials to treat liver diseases, peripheral nerve damage, graft-versus-host disease, autoimmune diseases, diabetes mellitus, and cardiovascular damage. Millions to hundred millions of MSCs are required per patient depending on the disease, route of administration, frequency of administration, and patient body weight. Multiple large-scale cell expansion strategies have been described in the literature to fetch the cell quantity required for the therapy. In this review, bioprocessing strategies for large-scale expansion of MSCs were systematically reviewed and discussed. The literature search in Medline and Scopus databases identified 26 articles that met the inclusion criteria and were included in this review. These articles described the large-scale expansion of 7 different sources of MSCs using 4 different bioprocessing strategies, i.e., bioreactor, spinner flask, roller bottle, and multilayered flask. The bioreactor, spinner flask, and multilayered flask were more commonly used to upscale the MSCs compared to the roller bottle. Generally, a higher expansion ratio was achieved with the bioreactor and multilayered flask. Importantly, regardless of the bioprocessing strategies, the expanded MSCs were able to maintain its phenotype and potency. In summary, the bioreactor, spinner flask, roller bottle, and multilayered flask can be used for large-scale expansion of MSCs without compromising the cell quality.
Collapse
|
19
|
García-Fernández C, López-Fernández A, Borrós S, Lecina M, Vives J. Strategies for large-scale expansion of clinical-grade human multipotent mesenchymal stromal cells. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Wyrobnik TA, Ducci A, Micheletti M. Advances in human mesenchymal stromal cell-based therapies - Towards an integrated biological and engineering approach. Stem Cell Res 2020; 47:101888. [PMID: 32688331 DOI: 10.1016/j.scr.2020.101888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advances of stem cell-based therapies in clinical trials have raised the need for large-scale manufacturing platforms that can supply clinically relevant doses to meet an increasing demand. Promising results have been reported using stirred-tank bioreactors, where human Mesenchymal Stromal Cells (hMSCs) were cultured in suspension on microcarriers (MCs), although the formation of microcarrier-cell-aggregates might still limit mass transfer and determine a heterogeneous distribution of hMSCs. A variety of MCs, bioreactor-impeller configurations, and agitation conditions have been established in an attempt to overcome the trade-off of ensuring good suspension while keeping the stresses to a minimum. While understanding and controlling the fluid flow environment of bioreactors has been initially under-appreciated, it has recently gained in popularity in the mission of providing ideal culture environments across different scales. This review article aims to provide a comprehensive overview of how rigorous engineering characterisation studies improved the outcome of biological process development and scale-up efforts. Reconciling these two disciplines is crucial to propose tailored bioprocessing solutions that can provide improved growth environments across a range of scales for the allogeneic cell therapies of the future.
Collapse
Affiliation(s)
- Tom A Wyrobnik
- Department of Biochemical Engineering, UCL, Gower Street, London WC1E 6BT, UK
| | - Andrea Ducci
- Department of Mechanical Engineering, UCL, Torrington Place, London WC1E 7JE, UK
| | - Martina Micheletti
- Department of Biochemical Engineering, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Tsai AC, Jeske R, Chen X, Yuan X, Li Y. Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers. Front Bioeng Biotechnol 2020; 8:640. [PMID: 32671039 PMCID: PMC7327111 DOI: 10.3389/fbioe.2020.00640] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are a promising candidate in cell therapy as they exhibit multilineage differentiation, homing to the site of injury, and secretion of trophic factors that facilitate tissue healing and/or modulate immune response. As a result, hMSC-derived products have attracted growing interests in preclinical and clinical studies. The development of hMSC culture platforms for large-scale biomanufacturing is necessary to meet the requirements for late-phase clinical trials and future commercialization. Microcarriers in stirred-tank bioreactors have been widely utilized in large-scale expansion of hMSCs for translational applications because of a high surface-to-volume ratio compared to conventional 2D planar culture. However, recent studies have demonstrated that microcarrier-expanded hMSCs differ from dish- or flask-expanded cells in size, morphology, proliferation, viability, surface markers, gene expression, differentiation potential, and secretome profile which may lead to altered therapeutic potency. Therefore, understanding the bioprocessing parameters that influence hMSC therapeutic efficacy is essential for the optimization of microcarrier-based bioreactor system to maximize hMSC quantity without sacrificing quality. In this review, biomanufacturing parameters encountered in planar culture and microcarrier-based bioreactor culture of hMSCs are compared and discussed with specific focus on cell-adhesion surface (e.g., discontinuous surface, underlying curvature, microcarrier stiffness, porosity, surface roughness, coating, and charge) and the dynamic microenvironment in bioreactor culture (e.g., oxygen and nutrients, shear stress, particle collision, and aggregation). The influence of dynamic culture in bioreactors on hMSC properties is also reviewed in order to establish connection between bioprocessing and stem cell function. This review addresses fundamental principles and concepts for future design of biomanufacturing systems for hMSC-based therapy.
Collapse
Affiliation(s)
- Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
22
|
Dosta P, Ferber S, Zhang Y, Wang K, Ros A, Uth N, Levinson Y, Abraham E, Artzi N. Scale-up manufacturing of gelatin-based microcarriers for cell therapy. J Biomed Mater Res B Appl Biomater 2020; 108:2937-2949. [PMID: 32356942 DOI: 10.1002/jbm.b.34624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Microcarriers, including crosslinked porous gelatin beads (Cultispher G) are widely used as cell carriers for cell therapy applications. Microcarriers can support a range of adherent cell types in stirred tank bioreactor culture, which is scalable up to several thousands of liters. Cultispher G in particular is advantageous for cell therapy applications because it can be dissolved enzymatically, and thus cells can be harvested without the need to perform a large-scale cell-bead filtration step. This enzymatic dissolution, however, is challenged by the slow degradation of the carriers in the presence of enzymes as new extracellular matrix is being deposited by the proliferating cells. This extended dissolution timelimits the yield of cell recovery while compromising cellular viability. We report herein the development of crosslinked porous gelatin beads that afford rapid, stimuli-triggered dissolution for facile cell removal using human mesenchymal stem cells (hMSC) as a model system. We successfully fabricated redox-sensitive beads (RS beads) and studied their cell growth, dissolution time and cell yield, compared to regular gelatin-based beads (Reg beads). We have shown that RS beads allow for much faster dissolution compared to Reg beads, supporting better hMSC detachment and recovery following 8 days of culture in spinner flasks, or in 3L bioreactors. These newly synthesized RS beads show promise as cellular microcarriers and can be used for scale-up manufacturing of different cell types while providing on-demand degradation for facile cell retrieval.
Collapse
Affiliation(s)
- Pere Dosta
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shiran Ferber
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kui Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Ros
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Uth
- Research and Technology, Walkersville, Maryland, USA
| | | | - Eytan Abraham
- Research and Technology, Walkersville, Maryland, USA
| | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Bodiou V, Moutsatsou P, Post MJ. Microcarriers for Upscaling Cultured Meat Production. Front Nutr 2020; 7:10. [PMID: 32154261 PMCID: PMC7045063 DOI: 10.3389/fnut.2020.00010] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Due to the considerable environmental impact and the controversial animal welfare associated with industrial meat production, combined with the ever-increasing global population and demand for meat products, sustainable production alternatives are indispensable. In 2013, the world's first laboratory grown hamburger made from cultured muscle cells was developed. However, coming at a price of $300.000, and being produced manually, substantial effort is still required to reach sustainable large-scale production. One of the main challenges is scalability. Microcarriers (MCs), offering a large surface/volume ratio, are the most promising candidates for upscaling muscle cell culture. However, although many MCs have been developed for cell lines and stem cells typically used in the medical field, none have been specifically developed for muscle stem cells and meat production. This paper aims to discuss the MCs' design criteria for skeletal muscle cell proliferation and subsequently for meat production based on three scenarios: (1) MCs are serving only as a temporary substrate for cell attachment and proliferation and therefore they need to be separated from the cells at some stage of the bioprocess, (2) MCs serve as a temporary substrate for cell proliferation but are degraded or dissolved during the bioprocess, and (3) MCs are embedded in the final product and therefore need to be edible. The particularities of each of these three bioprocesses will be discussed from the perspective of MCs as well as the feasibility of a one-step bioprocess. Each scenario presents advantages and drawbacks, which are discussed in detail, nevertheless the third scenario appears to be the most promising one for a production process. Indeed, using an edible material can limit or completely eliminate dissociation/degradation/separation steps and even promote organoleptic qualities when embedded in the final product. Edible microcarriers could also be used as a temporary substrate similarly to scenarios 1 and 2, which would limit the risk of non-edible residues.
Collapse
Affiliation(s)
- Vincent Bodiou
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
- CARIM, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Panagiota Moutsatsou
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
| | - Mark J. Post
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
- Mosa Meat BV, Maastricht, Netherlands
- CARIM, Faculty of Health, Medicine and Life Sciences, School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
24
|
Fundueanu G, Constantin M, Bucatariu S, Nicolescu A, Ascenzi P, Moise LG, Tudor L, Trusca VG, Gafencu AV, Ficai D, Ficai A, Andronescu E. Simple and dual cross-linked chitosan millicapsules as a particulate support for cell culture. Int J Biol Macromol 2020; 143:200-212. [DOI: 10.1016/j.ijbiomac.2019.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023]
|
25
|
Chen R, Li L, Feng L, Luo Y, Xu M, Leong KW, Yao R. Biomaterial-assisted scalable cell production for cell therapy. Biomaterials 2019; 230:119627. [PMID: 31767445 DOI: 10.1016/j.biomaterials.2019.119627] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
Cell therapy, the treatment of diseases using living cells, offers a promising clinical approach to treating refractory diseases. The global market for cell therapy is growing rapidly, and there is an increasing demand for automated methods that can produce large quantities of high quality therapeutic cells. Biomaterials can be used during cell production to establish a biomimetic microenvironment that promotes cell adhesion and proliferation while maintaining target cell genotype and phenotype. Here we review recent progress and emerging techniques in biomaterial-assisted cell production. The increasing use of auxiliary biomaterials and automated production methods provides an opportunity to improve quality control and increase production efficiency using standardized GMP-compliant procedures.
Collapse
Affiliation(s)
- Ruoyu Chen
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ling Li
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lu Feng
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yixue Luo
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mingen Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Rui Yao
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Das R, Roosloot R, van Pel M, Schepers K, Driessen M, Fibbe WE, de Bruijn JD, Roelofs H. Preparing for cell culture scale-out: establishing parity of bioreactor- and flask-expanded mesenchymal stromal cell cultures. J Transl Med 2019; 17:241. [PMID: 31340829 PMCID: PMC6657181 DOI: 10.1186/s12967-019-1989-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Cell-based therapies have the potential to become treatment options for many diseases, but efficient scale-out of these therapies has proven to be a major hurdle. Bioreactors can be used to overcome this hurdle, but changing the culture method can introduce unwanted changes to the cell product. Therefore, it is important to establish parity between products generated using traditional methods versus those generated using a bioreactor. Methods Mesenchymal stromal cells (MSCs) are cultured in parallel using either traditional culture flasks, spinner vessels or a new bioreactor system. To investigate parity between the cells obtained from different methods, harvested cells are compared in terms of yield, phenotype and functionality. Results Bioreactor-based expansion yielded high cell numbers (222–510 million cells). Highest cell expansion was observed upon culture in flasks [average 5.0 population doublings (PDL)], followed by bioreactor (4.0 PDL) and spinner flasks (3.3 PDL). Flow cytometry confirmed MSC identity (CD73+, CD90+ and CD105+) and lack of contaminating hematopoietic cell populations. Cultured MSCs did not display genetic aberrations and no difference in differentiation and immunomodulatory capacity was observed between culture conditions. The response to IFNγ stimulation was similar for cells obtained from all culture conditions, as was the capacity to inhibit T cell proliferation. Conclusions The new bioreactor technology can be used to culture large amounts of cells with characteristics equivalent to those cultured using traditional, flask based, methods. Electronic supplementary material The online version of this article (10.1186/s12967-019-1989-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruud Das
- Scinus Cell Expansion BV, Professor Bronkhorstlaan 10, Building 48, 3723 MB, Bilthoven, The Netherlands.
| | - Rens Roosloot
- Scinus Cell Expansion BV, Professor Bronkhorstlaan 10, Building 48, 3723 MB, Bilthoven, The Netherlands
| | - Melissa van Pel
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Koen Schepers
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Marijn Driessen
- Scinus Cell Expansion BV, Professor Bronkhorstlaan 10, Building 48, 3723 MB, Bilthoven, The Netherlands
| | - Willem E Fibbe
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Joost Dick de Bruijn
- Scinus Cell Expansion BV, Professor Bronkhorstlaan 10, Building 48, 3723 MB, Bilthoven, The Netherlands.,Twente University, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.,Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Helene Roelofs
- Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
27
|
Lerman MJ, Lembong J, Muramoto S, Gillen G, Fisher JP. The Evolution of Polystyrene as a Cell Culture Material. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:359-372. [PMID: 29631491 PMCID: PMC6199621 DOI: 10.1089/ten.teb.2018.0056] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/21/2018] [Indexed: 01/19/2023]
Abstract
Polystyrene (PS) has brought in vitro cell culture from its humble beginnings to the modern era, propelling dozens of research fields along the way. This review discusses the development of the material, fabrication, and treatment approaches to create the culture material. However, native PS surfaces poorly facilitate cell adhesion and growth in vitro. To overcome this, liquid surface deposition, energetic plasma activation, and emerging functionalization methods transform the surface chemistry. This review seeks to highlight the many potential applications of the first widely accepted polymer growth surface. Although the majority of in vitro research occurs on two-dimensional surfaces, the importance of three-dimensional (3D) culture models cannot be overlooked. The methods to transition PS to specialized 3D culture surfaces are also reviewed. Specifically, casting, electrospinning, 3D printing, and microcarrier approaches to shift PS to a 3D culture surface are highlighted. The breadth of applications of the material makes it impossible to highlight every use, but the aim remains to demonstrate the versatility and potential as both a general and custom cell culture surface. The review concludes with emerging scaffolding approaches and, based on the findings, presents our insights on the future steps for PS as a tissue culture platform.
Collapse
Affiliation(s)
- Max J. Lerman
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
- NIH/NIBIB Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Josephine Lembong
- NIH/NIBIB Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Shin Muramoto
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Greg Gillen
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - John P. Fisher
- NIH/NIBIB Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
28
|
Rafiq QA, Ruck S, Hanga MP, Heathman TR, Coopman K, Nienow AW, Williams DJ, Hewitt CJ. Qualitative and quantitative demonstration of bead-to-bead transfer with bone marrow-derived human mesenchymal stem cells on microcarriers: Utilising the phenomenon to improve culture performance. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Van Pham P, Nguyen HT, Vu NB. Evolution of Stem Cell Products in Medicine: Future of Off-the-Shelf Products. STEM CELL DRUGS - A NEW GENERATION OF BIOPHARMACEUTICALS 2018. [DOI: 10.1007/978-3-319-99328-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Gupta P, Geris L, Luyten FP, Papantoniou I. An Integrated Bioprocess for the Expansion and Chondrogenic Priming of Human Periosteum-Derived Progenitor Cells in Suspension Bioreactors. Biotechnol J 2017; 13. [PMID: 28987025 DOI: 10.1002/biot.201700087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/01/2017] [Indexed: 12/12/2022]
Abstract
The increasing use of microcarrier-based suspension bioreactors for scalable expansion of adult progenitor cells in recent years reveals the necessity of such approaches to address bio manufacturing challenges of advanced therapeutic medicinal products. However, the differentiation of progenitor cells within suspension bioreactors for the production of tissue modules is of equal importance but not well investigated. This study reports on the development of a bioreactor-based integrated process for expansion and chondrogenic priming of human periosteum-derived stem cells (hPDCs) using Cultispher S microcarriers. Spinner flask-based expansion and priming of hPDCs were carried out over 12 days for expansion and 14 days for priming. Characterization of the cells were carried out every 3rd day. Our study showed that hPDCs were able to expand till confluency with fold increase of 3.2±0.64 and to be subsequently primed toward a chondrogenic state within spinner flasks. During expansion, the cells maintained their phenotypic markers, trilineage differentiation capabilities and viability. Upon switching to TGF-β containing media the cells were able to differentiate toward chondrogenic lineage by clustering into mm-sized macrotissues containing hundreds of microcarriers. Chondrogenic priming was further evidenced by the expression of relevant markers at the mRNA level while maintaining their viability. Ectopic implantation of macrotissues highlighted that they were able to sustain their chondrogenic properties for 8 weeks in vivo. The method indicated here, suggests that expansion and relevant priming of progenitor cells can be carried out in an integrated bioprocess using spinner flasks and as such could be potentially extrapolated to other stem and progenitor cell populations.
Collapse
Affiliation(s)
- Priyanka Gupta
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Biomechanics Research Unit GIGA-R In Silico Medicine, Université de Liege, Quartier Polytechnique 1, Allée de la découverte 13A, Liège, Belgium.,Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), Leuven, Belgium
| | - Frank P Luyten
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| |
Collapse
|
31
|
Zheng P, Yao Q, Mao F, Liu N, Xu Y, Wei B, Wang L. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Mol Med Rep 2017; 16:5078-5084. [PMID: 28849142 PMCID: PMC5647033 DOI: 10.3892/mmr.2017.7266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs), a stem cell population capable of multi‑lineage differentiation, bound to porous biomaterial scaffolds, are widely used for bone tissue regeneration. However, there is evidence to suggest that MSC collection from bone marrow and expansion in vitro may result in phenotypic changes including a loss of differentiation potential and cell senescence. The aim of the present study was to find a facile and efficient approach to enable MSC adhesion and proliferation to scaffolds with osteogenic differentiation. Unprocessed bone marrow blood from the condyle of the distal femur in the rabbits were added to three‑dimensional (3D) printed porous poly-ε-caprolactone/hydroxyapatite (PCL/HA) scaffolds with bone marrow clots (MC) formed, using two different methods for Group A (MC enriched scaffolds) and Group B (MC combined scaffolds), and then were cultured in osteogenic medium for 4 weeks. The scaffolds were assessed macroscopically and microscopically. Scaffold bioactivity and the proliferation and osteogenic differentiation of seeded MSCs were measured. Higher cellular viability and greater cell numbers in the scaffolds at later phases of culture were observed in Group B compared with Group A. In addition, Group B was associated with greater osteoinductivity, alkaline phosphatase activity and bony nodule formation, as assessed using scanning electron microscopy. Furthermore, reverse transcription‑quantitative polymerase chain reaction analysis revealed that more osteogenic differentiation was present in Group B, compared with Group A. MC combined scaffolds proved to be a highly efficient, reliable and simple novel method for MSC adhesion, proliferation and differentiation. The MC combined PCL‑HA multi‑scale porosity scaffold may represent a candidate for future bone regeneration studies.
Collapse
Affiliation(s)
- Pengfei Zheng
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Fengyong Mao
- Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Nancy Liu
- Department of Orthopaedic Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yan Xu
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Bo Wei
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Liming Wang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
32
|
Leber J, Barekzai J, Blumenstock M, Pospisil B, Salzig D, Czermak P. Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
|
34
|
Rafiq QA, Hanga MP, Heathman TRJ, Coopman K, Nienow AW, Williams DJ, Hewitt CJ. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Biotechnol Bioeng 2017. [PMID: 28627713 PMCID: PMC5615370 DOI: 10.1002/bit.26359] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microbioreactors play a critical role in process development as they reduce reagent requirements and can facilitate high-throughput screening of process parameters and culture conditions. Here, we have demonstrated and explained in detail, for the first time, the amenability of the automated ambr15 cell culture microbioreactor system for the development of scalable adherent human mesenchymal multipotent stromal/stem cell (hMSC) microcarrier culture processes. This was achieved by first improving suspension and mixing of the microcarriers and then improving cell attachment thereby reducing the initial growth lag phase. The latter was achieved by using only 50% of the final working volume of medium for the first 24 h and using an intermittent agitation strategy. These changes resulted in >150% increase in viable cell density after 24 h compared to the original process (no agitation for 24 h and 100% working volume). Using the same methodology as in the ambr15, similar improvements were obtained with larger scale spinner flask studies. Finally, this improved bioprocess methodology based on a serum-based medium was applied to a serum-free process in the ambr15, resulting in >250% increase in yield compared to the serum-based process. At both scales, the agitation used during culture was the minimum required for microcarrier suspension, NJS . The use of the ambr15, with its improved control compared to the spinner flask, reduced the coefficient of variation on viable cell density in the serum containing medium from 7.65% to 4.08%, and the switch to serum free further reduced these to 1.06-0.54%, respectively. The combination of both serum-free and automated processing improved the reproducibility more than 10-fold compared to the serum-based, manual spinner flask process. The findings of this study demonstrate that the ambr15 microbioreactor is an effective tool for bioprocess development of hMSC microcarrier cultures and that a combination of serum-free medium, control, and automation improves both process yield and consistency. Biotechnol. Bioeng. 2017;114: 2253-2266. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qasim A Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, United Kingdom.,Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Mariana P Hanga
- Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Thomas R J Heathman
- Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom.,PCT, A Hitachi Group Company, Allendale, New Jersey
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Alvin W Nienow
- Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom.,School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David J Williams
- Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Christopher J Hewitt
- Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
35
|
Roh KH, Nerem RM, Roy K. Biomanufacturing of Therapeutic Cells: State of the Art, Current Challenges, and Future Perspectives. Annu Rev Chem Biomol Eng 2017; 7:455-78. [PMID: 27276552 DOI: 10.1146/annurev-chembioeng-080615-033559] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stem cells and other functionally defined therapeutic cells (e.g., T cells) are promising to bring hope of a permanent cure for diseases and disorders that currently cannot be cured by conventional drugs or biological molecules. This paradigm shift in modern medicine of using cells as novel therapeutics can be realized only if suitable manufacturing technologies for large-scale, cost-effective, reproducible production of high-quality cells can be developed. Here we review the state of the art in therapeutic cell manufacturing, including cell purification and isolation, activation and differentiation, genetic modification, expansion, packaging, and preservation. We identify current challenges and discuss opportunities to overcome them such that cell therapies become highly effective, safe, and predictively reproducible while at the same time becoming affordable and widely available.
Collapse
Affiliation(s)
- Kyung-Ho Roh
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, Georgia 30332-0313; .,The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Robert M Nerem
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332.,The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, Georgia 30332-0313; .,The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
36
|
Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S, Rigby S, Smith R, Feng Q, Murrell JR, Rook MS. Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells. Bull Exp Biol Med 2017; 162:528-533. [DOI: 10.1007/s10517-017-3654-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 01/08/2023]
|
38
|
Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, Abraham E, Eaker SS, Yong TK, Chan A, Griffiths S, Wehn AK, Oh S, Karnieli O. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 2016; 19:155-169. [PMID: 28017599 DOI: 10.1016/j.jcyt.2016.11.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/09/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
The cell therapy industry is a fast-growing industry targeted toward a myriad of clinical indications. As the cell therapy industry matures and clinical trials hit their pivotal Phase 3 studies, there will be a significant need for scale-up, process validation, and critical raw material quality assurance. Part of the well discussed challenges of upscaling manufacturing processes there is a less discussed issue relating to the availability of raw materials in the needed quality and quantities. The FDA recently noted that over 80% of the 66 investigational new drug (IND) applications for mesenchymal stem cell (MSC) products analyzed described the use of FBS during manufacturing. Accumulated data from the past years show an acceleration in serum consumption by at least 10%-15% annually, which suggests that the global demand for serum may soon exceed the supply. Ongoing concerns of safety issues due to risks of various pathogen contaminations, as well as issues related to the aforementioned serum variability that can affect final product reproducibility, are strong motivators to search for serum substitutes or serum-free media. it is important to note that there are no accepted definitions for most of these terms which leads to misleading's and misunderstandings, where the same term might be defined differently by different vendors, manufacturer, and users. It is the drug developer's responsibility to clarify what the supplied labels mean and to identify the correct questions and audits to ensure quality. The paper reviews the available serum replacements, main components, basic strategies for replacement of serum and suggests definitions.
Collapse
Affiliation(s)
| | | | - Julie G Allickson
- Regenerative Medicine Clinical Center, Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nan Zhang
- Hematology Branch, National Heart, Lung, and Blood Institute National Institute of Health, Bethesda, Maryland, USA
| | - Sunghoon Jung
- Cell Therapy Research & Technology Lonza Walkersville, Walkersville, Maryland, USA
| | | | - Eytan Abraham
- Cell Therapy Research & Technology Lonza Walkersville, Walkersville, Maryland, USA
| | - Shannon S Eaker
- GE Healthcare Cell Therapy Division, Marlborough, Massachusetts, USA
| | | | - Allan Chan
- Bioprocessing Technology Institute, Singapore
| | | | - Amy K Wehn
- Irvine Scientific, Santa Ana, California, USA
| | - Steve Oh
- Bioprocessing Technology Institute, Singapore
| | | |
Collapse
|
39
|
Cell Therepy and Regenerative Medicine Glossary. Regen Med 2016; 11:1-142. [PMID: 27915589 DOI: 10.2217/rme-2016-1108s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Lambrechts T, Sonnaert M, Schrooten J, Luyten FP, Aerts JM, Papantoniou I. Large-Scale Mesenchymal Stem/Stromal Cell Expansion: A Visualization Tool for Bioprocess Comparison. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:485-498. [DOI: 10.1089/ten.teb.2016.0111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Toon Lambrechts
- M3-BIORES: Measure, Model and Manage Bioresponses, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Maarten Sonnaert
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Antleron, Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jean-Marie Aerts
- M3-BIORES: Measure, Model and Manage Bioresponses, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Dothel G, Raschi E, Rimondini R, De Ponti F. Mesenchymal stromal cell-based therapy: Regulatory and translational aspects in gastroenterology. World J Gastroenterol 2016; 22:9057-9068. [PMID: 27895395 PMCID: PMC5107589 DOI: 10.3748/wjg.v22.i41.9057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
The past decade has witnessed an outstanding scientific production focused towards the possible clinical applications of mesenchymal stromal cells (MSCs) in autoimmune and chronic inflammatory diseases. This raised the need of novel standards to adequately address quality, efficacy and safety issues of this advanced therapy. The development of a streamlined regulation is currently hampered by the complexity of analyzing dynamic biological entities rather than chemicals. Although numerous pieces of evidence show efficacy in reducing intestinal inflammation, some inconsistencies between the mechanisms of action of rodent vs human MSCs suggest caution before assigning translational value to preclinical studies. Preliminary evidence from clinical trials showed efficacy of MSCs in the treatment of fistulizing Crohn’s disease (CD), and preparations of heterologous MSCs for CD treatment are currently tested in ongoing clinical trials. However, safety issues, especially in long-term treatment, still require solid clinical data. In this regard, standardized guidelines for appropriate dosing and methods of infusion could enhance the likelihood to predict more accurately the number of responders and the duration of remission periods. In addition, elucidating MSC mechanisms of action could lead to novel and more reliable formulations such as those derived from the MSCs themselves (e.g., supernatants).
Collapse
|
42
|
de Soure AM, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. J Biotechnol 2016; 236:88-109. [PMID: 27527397 DOI: 10.1016/j.jbiotec.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors.
Collapse
Affiliation(s)
- António M de Soure
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal.
| |
Collapse
|
43
|
Schnitzler AC, Verma A, Kehoe DE, Jing D, Murrell JR, Der KA, Aysola M, Rapiejko PJ, Punreddy S, Rook MS. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Hassan S, Huang H, Warren K, Mahdavi B, Smith D, Jong S, Farid SS. Process change evaluation framework for allogeneic cell therapies: impact on drug development and commercialization. Regen Med 2016; 11:287-305. [DOI: 10.2217/rme-2015-0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aims: Some allogeneic cell therapies requiring a high dose of cells for large indication groups demand a change in cell expansion technology, from planar units to microcarriers in single-use bioreactors for the market phase. The aim was to model the optimal timing for making this change. Materials & methods: A development lifecycle cash flow framework was created to examine the implications of process changes to microcarrier cultures at different stages of a cell therapy's lifecycle. Results: The analysis performed under assumptions used in the framework predicted that making this switch earlier in development is optimal from a total expected out-of-pocket cost perspective. From a risk-adjusted net present value view, switching at Phase I is economically competitive but a post-approval switch can offer the highest risk-adjusted net present value as the cost of switching is offset by initial market penetration with planar technologies. Conclusion: The framework can facilitate early decision-making during process development.
Collapse
Affiliation(s)
- Sally Hassan
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Hsini Huang
- Graduate Institute of Public Affairs & Department of Political Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Kim Warren
- Cell Processing Technologies, Lonza Walkersville, Inc., 8830 Biggs Ford Road, Walkersville, MD 21793-0127, USA
| | - Behzad Mahdavi
- Cell Processing Technologies, Lonza Walkersville, Inc., 8830 Biggs Ford Road, Walkersville, MD 21793-0127, USA
| | - David Smith
- Cell Processing Technologies, Lonza Walkersville, Inc., 8830 Biggs Ford Road, Walkersville, MD 21793-0127, USA
| | - Simcha Jong
- Department of Management Science & Innovation, University College London, Gower St, London, WC1E 6BT, UK
- Harvard TH Chan School of Public Health, Dept Global Health & Population, Boston, MA 02115, USA
| | - Suzanne S Farid
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| |
Collapse
|
45
|
Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells. Nat Commun 2016; 7:10774. [PMID: 26952167 PMCID: PMC4786749 DOI: 10.1038/ncomms10774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 01/19/2016] [Indexed: 01/10/2023] Open
Abstract
Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human–mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1+ vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo. Understanding coronary vessels development provides basis for regenerative strategies. Here, Soh et al. identify endothelin-1 as a key molecule driving long-term expansion of ISL1+ bipotent vascular progenitors derived from human embryonic stem cells, and show that these cells can regenerate coronary vessels in mice.
Collapse
|
46
|
Ferlin KM, Prendergast ME, Miller ML, Kaplan DS, Fisher JP. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation. Acta Biomater 2016; 32:161-169. [PMID: 26773464 DOI: 10.1016/j.actbio.2016.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/25/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
The interactions between cells and an underlying biomaterial are important for the promotion of cell adhesion, proliferation, and function. Mesenchymal stem cells (MSCs) have great clinical potential as they are an adult stem cell population capable of multilineage differentiation. The relationship between MSC behavior and several material properties including substrate stiffness and pore size are well investigated, but there has been little research on the influence of porous architecture in a three-dimensional scaffold with a well-controlled architecture. Here, we investigate the impact of two different three-dimensionally printed, pore geometries on the enrichment and differentiation of MSCs. 3D printed scaffolds with ordered cubic pore geometry were supportive of MSC enrichment from unprocessed bone marrow, resulting in cell surface marker expression that was comparable to typical adhesion to tissue culture polystyrene, the gold standard for MSC culture. Results also show that scaffolds fabricated with ordered cubic pores significantly increase the gene expression of MSCs undergoing adipogenesis and chondrogenesis, when compared to scaffolds with ordered cylindrical pores. However, at the protein expression level, these differences were modest. For MSCs undergoing osteogenesis, gene expression results suggest that cylindrical pores may initially increase early osteogenic marker expression, while protein level expression at later timepoints is increased for scaffolds with ordered cubic pores. Taken together, these results suggest that 3D printed scaffolds with ordered cubic pores could be a suitable culture system for single-step MSC enrichment and differentiation. STATEMENT OF SIGNIFICANCE Mesenchymal stem cells (MSCs) have great therapeutic potential, as they are capable of multilineage differentiation. MSC behavior, including lineage commitment, may be influenced by biomaterial properties including substrate stiffness and pore size. With three-dimensional (3D) printing, we can investigate these relationships in 3D culture systems. Here, we fabricated scaffolds with two different well-controlled pore geometries, and investigated the impact on MSC enrichment and differentiation. Results show that scaffolds with ordered cubic pore geometry were supportive of both MSC enrichment from unprocessed bone marrow as well as MSC differentiation, resulting in increased gene expression during adipogenesis and chondrogenesis. These results suggest that 3D printed scaffolds with ordered cubic pores could be a suitable culture system for single-step MSC enrichment and differentiation.
Collapse
|
47
|
Tan KY, Teo KL, Lim JFY, Chen AKL, Choolani M, Reuveny S, Chan J, Oh SK. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture. Cytotherapy 2016; 17:1152-65. [PMID: 26139547 DOI: 10.1016/j.jcyt.2015.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/04/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. METHODS We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. RESULTS We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. CONCLUSIONS Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line.
Collapse
Affiliation(s)
- Kah Yong Tan
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore.
| | - Kim Leng Teo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Jessica F Y Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Allen K L Chen
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | | | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | | | - Steve Kw Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore.
| |
Collapse
|
48
|
|
49
|
Panchalingam KM, Jung S, Rosenberg L, Behie LA. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review. Stem Cell Res Ther 2015; 6:225. [PMID: 26597928 PMCID: PMC4657237 DOI: 10.1186/s13287-015-0228-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs), also called mesenchymal stromal cells, have been of great interest in regenerative medicine applications because of not only their differentiation potential but also their ability to secrete bioactive factors that can modulate the immune system and promote tissue repair. This potential has initiated many early-phase clinical studies for the treatment of various diseases, disorders, and injuries by using either hMSCs themselves or their secreted products. Currently, hMSCs for clinical use are generated through conventional static adherent cultures in the presence of fetal bovine serum or human-sourced supplements. However, these methods suffer from variable culture conditions (i.e., ill-defined medium components and heterogeneous culture environment) and thus are not ideal procedures to meet the expected future demand of quality-assured hMSCs for human therapeutic use. Optimizing a bioprocess to generate hMSCs or their secreted products (or both) promises to improve the efficacy as well as safety of this stem cell therapy. In this review, current media and methods for hMSC culture are outlined and bioprocess development strategies discussed.
Collapse
Affiliation(s)
- Krishna M Panchalingam
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Sunghoon Jung
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Lawrence Rosenberg
- Department of Surgery, McGill University Health Centre, 845 Rue Sherbrooke Quest, Montreal, QC, H3G 1A4, Canada.,Jewish General Hospital, 3755 Chemin de la Côte-Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Leo A Behie
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
50
|
Cunha B, Aguiar T, Silva MM, Silva RJ, Sousa MF, Pineda E, Peixoto C, Carrondo MJ, Serra M, Alves PM. Exploring continuous and integrated strategies for the up- and downstream processing of human mesenchymal stem cells. J Biotechnol 2015; 213:97-108. [DOI: 10.1016/j.jbiotec.2015.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/08/2015] [Accepted: 02/16/2015] [Indexed: 01/08/2023]
|