1
|
Salgüero S, Brochado-Kith Ó, Verdices AV, Berenguer J, González-García J, Martínez I, Díez C, Hontañón V, Pérez-Latorre L, Fernández-Rodríguez A, Jiménez-Sousa MÁ, Resino S. PBMCs gene expression signature of advanced cirrhosis with high risk for clinically significant portal hypertension in HIV/HCV coinfected patients: A cross-control study. Biomed Pharmacother 2023; 159:114220. [PMID: 36628818 DOI: 10.1016/j.biopha.2023.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Patients with advanced cirrhosis are at high risk of developing clinically significant portal hypertension (CSPH). We analyzed the gene expression profile of peripheral blood mononuclear cells (PBMCs) from HIV/HCV coinfected patients to identify a gene expression signature of advanced cirrhosis with high risk for CSPH. METHODS We conducted a cross-sectional study on 68 patients. Liver stiffness measurement (LSM) was used to stratify patients into < 12.5 kPa (no cirrhosis, n = 19), 12.5 - 24.9 kPa (cirrhosis, n = 20), and ≥ 25 kPa (advanced cirrhosis with high risk for CSPH, n = 29). Besides, we further evaluated LSM < 25 kPa (n = 39) vs. ≥ 25 kPa (n = 29). Total RNA was extracted from PBMCs, and poly(A) RNA sequencing was performed. Two significant differentially expressed (SDE) transcripts were validated by quantitative PCR in a different cohort (n = 46). RESULTS We found 60 SDE transcripts between patients with LSM < 12.5 kPa and ≥ 25 kPa. Partial least squares discriminant analysis showed that those 60 SDE transcripts collectively discriminated LSM ≥ 25 kPa, with an area under the receiver operating characteristic curve (AUROC) of 0.84. Eight genes had an AUROC ≥ 0.75 for LSM ≥ 25 kPa: five were positively associated with LSM values (SCAMP1, ABHD17B, GPR146, GTF2A1, and TMEM64), while three were inversely associated (ZFHX2-AS1, MDK, and STAG3L2). We validated the two SDE transcripts with the highest discrimination capacity in a different cohort, finding significant differences between < 25 kPa and ≥ 25 kPa (MDK (p = 0.006) and STAG3L2 (p = 0.021)). CONCLUSIONS A gene expression signature of 60 transcripts was associated with advanced cirrhosis with high risk for CSPH in HIV/HCV coinfected patients.
Collapse
Affiliation(s)
- Sergio Salgüero
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Unidad de Análisis Clínicos, Hospital El Escorial, Spain.
| | - Óscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ana Virseda Verdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.
| | - Juan González-García
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Cristina Díez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.
| | - Víctor Hontañón
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Leire Pérez-Latorre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Roglia V, Potestà M, Minchella A, Bruno SP, Bernardini R, Lettieri-Barbato D, Iacovelli F, Gismondi A, Aquilano K, Canini A, Muleo R, Colizzi V, Mattei M, Minutolo A, Montesano C. Exogenous miRNAs from Moringa oleifera Lam. recover a dysregulated lipid metabolism. Front Mol Biosci 2022; 9:1012359. [PMID: 36465560 PMCID: PMC9715436 DOI: 10.3389/fmolb.2022.1012359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 09/21/2023] Open
Abstract
A balanced diet is critical for human health, and edible plants play an important role in providing essential micronutrients as well as specific microRNAs (miRNAs) that can regulate human gene expression. Here we present the effects of Moringa oleifera (MO) miRNAs (mol-miRs) on lipid metabolism. Through in silico studies we identified the potential genes involved in lipid metabolism targeted by mol-miRs. To this end, we tested the efficacy of an aqueous extract of MO seeds (MOES), as suggested in traditional African ethnomedicine, or its purified miRNAs. The biological properties of MO preparations were investigated using a human derived hepatoma cell line (HepG2) as a model. MOES treatment decreased intracellular lipid accumulation and induced apoptosis in HepG2. In the same cell line, transfection with mol-miRs showed similar effects to MOES. Moreover, the effect of the mol-miR pool was investigated in a pre-obese mouse model, in which treatment with mol-miRs was able to prevent dysregulation of lipid metabolism.
Collapse
Affiliation(s)
- Valentina Roglia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marina Potestà
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
| | | | - Stefania Paola Bruno
- Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy
- Department of Science, University Roma Tre, Rome, Italy
| | - Roberta Bernardini
- Interdepartmental Center for Animal Technology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Rosario Muleo
- Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
| | - Maurizio Mattei
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
- Interdepartmental Center for Animal Technology, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Minutolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carla Montesano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- UNESCO Interdisciplinary Chair in Biotechnology and Bioethics, Rome, Italy
| |
Collapse
|
3
|
Potestà M, Roglia V, Fanelli M, Pietrobono E, Gismondi A, Vumbaca S, Nguedia Tsangueu RG, Canini A, Colizzi V, Grelli S, Minutolo A, Montesano C. Effect of microvesicles from Moringa oleifera containing miRNA on proliferation and apoptosis in tumor cell lines. Cell Death Discov 2020; 6:43. [PMID: 32550010 PMCID: PMC7272625 DOI: 10.1038/s41420-020-0271-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Human microvesicles are key mediators of cell-cell communication. Exosomes function as microRNA transporters, playing a crucial role in physiological and pathological processes. Plant microvesicles (MVs) display similar features to mammalian exosomes, and these MVs might enhance plant microRNA delivery in mammals. Considering that plant microRNAs have been newly identified as bioactive constituents in medicinal plants, and that their potential role as regulators in mammals has been underlined, in this study, we characterized MVs purified from Moringa oleifera seeds aqueous extract (MOES MVs) and used flow cytometry methods to quantify the ability to deliver their content to host cells. The microRNAs present in MOES MVs were characterized, and through a bioinformatic analysis, specific human apoptosis-related target genes of plant miRNAs were identified. In tumor cell lines, MOES MVs treatment reduced viability, increased apoptosis levels associated with a decrease in B-cell lymphoma 2 protein expression and reduced mitochondrial membrane potential. Interestingly, the effects observed with MOES MVs treatment were comparable to those observed with MOES treatment and transfection with the pool of small RNAs isolated from MOES, used as a control. These results highlight the role of microRNAs transported by MOES MVs as natural bioactive plant compounds that counteract tumorigenesis.
Collapse
Affiliation(s)
- Marina Potestà
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Valentina Roglia
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Marialaura Fanelli
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Elisa Pietrobono
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simone Vumbaca
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | | | - Antonella Canini
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Minutolo
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Carla Montesano
- Department of Biology, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
4
|
Shahid M, Idrees M, Butt AM, Raza SM, Amin I, Rasul A, Afzal S. Blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue injury in chronic hepatitis C patients. Arch Virol 2020; 165:809-822. [PMID: 32103340 DOI: 10.1007/s00705-020-04564-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress is the process by which reactive molecules and free radicals are formed in cells. In this study, we report the blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue in chronic hepatitis C (CHC) patients by using real-time PCR. A total of 144 untreated patients diagnosed with CHC having genotype 3a and 20 healthy controls were selected for the present study. Liver biopsy staging and grading of CHC patients were performed using the METAVIR score. Total RNA was extracted from liver tissue and blood samples, followed by cDNA synthesis and real-time PCR. The relative expression of genes was calculated using the ΔΔCt method. The expression profile of 84 genes associated with oxidative stress and antioxidants was determined in liver tissue and blood samples. In liver tissue, 46 differentially expressed genes (upregulated, 27; downregulated, 19) were identified in CHC patients compared to normal samples. In blood, 61 genes (upregulated, 51; downregulated; 10) were significantly expressed in CHC patients. A comparison of gene expression in liver and whole blood showed that 20 genes were expressed in a similar manner in the liver and blood. The expression levels of commonly expressed liver and blood-based genes were also correlated with clinical factors in CHC patients. A receiver operating curve (ROC) analysis of oxidative stress genes (ALB, CAT, DHCR24, GPX7, PRDX5, and MBL2) showed that infections in patients with CHC can be distinguished from healthy controls. In conclusion, blood-based gene expression can reflect the behavior of oxidative stress genes in liver tissue, and this blood-based gene expression study in CHC patients explores new blood-based non-invasive biomarkers that represent liver damage.
Collapse
Affiliation(s)
- Muhammad Shahid
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Azeem Mehmood Butt
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Department of Bioscience, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Mohsin Raza
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Institute of Biomedical and Allied Health Sciences, University of Health Science, Lahore, Pakistan
| | - Iram Amin
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Afza Rasul
- Department of Statistic, Lahore College for Women University, Lahore, Pakistan
| | - Samia Afzal
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Brochado-Kith Ó, Gómez Sanz A, Real LM, Crespo García J, Ryan Murúa P, Macías J, Cabezas González J, Troya J, Pineda JA, Arias Loste MT, Díez Viñas V, Jiménez-Sousa MÁ, Medrano de Dios LM, Cuesta De la Plaza I, Monzón Fernández S, Resino García S, Fernández-Rodríguez A. MicroRNA Profile of HCV Spontaneous Clarified Individuals, Denotes Previous HCV Infection. J Clin Med 2019; 8:jcm8060849. [PMID: 31207946 PMCID: PMC6617112 DOI: 10.3390/jcm8060849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Factors involved in the spontaneous cleareance of a hepatitis C (HCV) infection are related to both HCV and the interaction with the host immune system, but little is known about the consequences after a spontaneous resolution. The main HCV extrahepatic reservoir is the peripheral blood mononuclear cells (PBMCs), and their transcriptional profile provides us information of innate and adaptive immune responses against an HCV infection. MicroRNAs regulate the innate and adaptive immune responses, and they are actively involved in the HCV cycle. High Throughput sequencing was used to analyze the miRNA profiles from PBMCs of HCV chronic naïve patients (CHC), individuals that spontaneously clarified HCV (SC), and healthy controls (HC). We did not find any differentially expressed miRNAs between SC and CHC. However, both groups showed similar expression differences (21 miRNAs) with respect to HC. This miRNA signature correctly classifies HCV-exposed (CHC and SC) vs. HC, with the has-miR-21-3p showing the best performance. The potentially targeted molecular pathways by these 21 miRNAs mainly belong to fatty acids pathways, although hippo signaling, extracellular matrix (ECM) interaction, proteoglycans-related, and steroid biosynthesis pathways were also altered. These miRNAs target host genes involved in an HCV infection. Thus, an HCV infection promotes molecular alterations in PBMCs that can be detected after an HCV spontaneous resolution, and the 21-miRNA signature is able to identify HCV-exposed patients (either CHC or SC).
Collapse
Affiliation(s)
- Óscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Alicia Gómez Sanz
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Luis Miguel Real
- Unidad Clínica de Enfermedades Infecciosas, Hospital Universitario de Valme, 41014 Sevilla, Spain.
| | - Javier Crespo García
- Gastroenterology and Hepatology Department, Hospital Universitario Marques de Valdecilla, 39008 Santander, Spain.
- Institute Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39005 Santander, Spain.
| | - Pablo Ryan Murúa
- Internal Medicine Service, University Hospital Infanta Leonor, School of Medicine, Complutense University of Madrid, Gregorio Marañón Health Research Institute, 28009 Madrid, Spain.
| | - Juan Macías
- Unidad Clínica de Enfermedades Infecciosas, Hospital Universitario de Valme, 41014 Sevilla, Spain.
| | - Joaquín Cabezas González
- Gastroenterology and Hepatology Department, Hospital Universitario Marques de Valdecilla, 39008 Santander, Spain.
- Institute Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39005 Santander, Spain.
| | - Jesús Troya
- Internal Medicine Service, University Hospital Infanta Leonor, School of Medicine, Complutense University of Madrid, Gregorio Marañón Health Research Institute, 28009 Madrid, Spain.
| | - Juan Antonio Pineda
- Unidad Clínica de Enfermedades Infecciosas, Hospital Universitario de Valme, 41014 Sevilla, Spain.
| | - María Teresa Arias Loste
- Gastroenterology and Hepatology Department, Hospital Universitario Marques de Valdecilla, 39008 Santander, Spain.
- Institute Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39005 Santander, Spain.
| | - Victorino Díez Viñas
- Internal Medicine Service, University Hospital Infanta Leonor, School of Medicine, Complutense University of Madrid, Gregorio Marañón Health Research Institute, 28009 Madrid, Spain.
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Luz María Medrano de Dios
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Isabel Cuesta De la Plaza
- Bioinformatics Unit, Unidades Comunes Científico Técnicas, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Sara Monzón Fernández
- Bioinformatics Unit, Unidades Comunes Científico Técnicas, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Salvador Resino García
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
6
|
Conti B, Porcu C, Viscomi C, Minutolo A, Costantini S, Corazzari M, Iannucci G, Barbaro B, Balsano C. Small heterodimer partner 1 directly interacts with NS5A viral protein and has a key role in HCV related liver cell transformation. Oncotarget 2018; 7:84575-84586. [PMID: 27661118 PMCID: PMC5356682 DOI: 10.18632/oncotarget.12144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022] Open
Abstract
HCV life cycle is strictly correlated with the hepatocyte lipid metabolism; moreover, the progression of HCV chronic hepatitis is accelerated by the presence of liver steatosis. Among the steatogenic genes deregulated during the HCV infection one of the most attractive is the Small Heterodimer Protein 1 (SHP1; NR0B2), that is involved in a remarkable number of metabolic functions. HCV NS5A is an essential and integral component of the HCV membranous-web replicon complex (RC) and plays an essential role to transfer the viral genome from the RCs to the surface of the lipid droplets (LDs) that, in turn, play a key function during HCV life cycle. With the help of a HCV infection model, we demonstrate a functional interaction between SHP1 and HCV NS5A protein. SHP1 silencing (siSHP1) reversed the pro-oncogenic effects of HCV infection, inducing a significant decrease in liver lipid accumulation and in NS5A protein expression. Moreover, siSHP1 causes a strong modulation of some genes involved in HCV-related EMT, such as: HNF4, a central regulators of hepatocyte differentiation, E-Cadherin, SNAILs. Our data suggest that SHP1 results not only to be strictly connected to the pathogenesis of HCV-related liver steatosis, but also to its progression towards the liver transformation.
Collapse
Affiliation(s)
- Beatrice Conti
- Laboratory of Molecular Virology and Oncoloy, Francesco Balsano Foundation, ex A. Cesalpino Foundation, Rome, Italy
| | - Cristiana Porcu
- Institute of Biology and Molecular Pathology (IBPM) - CNR (National Research Council), Rome, Italy
| | - Carmela Viscomi
- Laboratory of Molecular Virology and Oncoloy, Francesco Balsano Foundation, ex A. Cesalpino Foundation, Rome, Italy
| | - Antonella Minutolo
- Laboratory of Molecular Virology and Oncoloy, Francesco Balsano Foundation, ex A. Cesalpino Foundation, Rome, Italy.,Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G.Pascale", IRCSS, Napoli, Italy
| | - Marco Corazzari
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Gino Iannucci
- Laboratory of Molecular Virology and Oncoloy, Francesco Balsano Foundation, ex A. Cesalpino Foundation, Rome, Italy
| | - Barbara Barbaro
- Institute of Biology and Molecular Pathology (IBPM) - CNR (National Research Council), Rome, Italy
| | - Clara Balsano
- Laboratory of Molecular Virology and Oncoloy, Francesco Balsano Foundation, ex A. Cesalpino Foundation, Rome, Italy.,Institute of Biology and Molecular Pathology (IBPM) - CNR (National Research Council), Rome, Italy
| |
Collapse
|
7
|
Deregulation of microRNA expression in peripheral blood mononuclear cells from patients with HCV-related malignancies. Hepatol Int 2015; 9:586-93. [PMID: 26272105 DOI: 10.1007/s12072-015-9658-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma is one of the major causes of death due to cancer worldwide, and its association with hepatitis C virus infection has been definitively established. Hepatitis C virus is also involved in the pathogenesis of non-Hodgkin's lymphoma. This is the only virus infecting humans that is able to induce two different malignancies. We analyzed the expression levels of a panel of microRNA in peripheral blood mononuclear cells of patients with hepatitis C virus-related malignancies in order to find a disease-associated deregulation and identify specific biomarkers. METHODS We tested peripheral blood mononuclear cells isolated from patients with hepatocellular carcinoma, non-Hodgkin's lymphoma, hepatitis C virus without malignancies and healthy subjects for a panel of microRNA selected on the basis of previous studies. MicroRNA expression was evaluated by real-time PCR. RESULTS Our results showed an upregulation of miRNA-21 and downregulation of miRNA-26b in hepatocellular carcinoma and non-Hodgkin's lymphoma patients compared to controls (p < 0.001). Deregulation of miRNA-16 and miRNA-155 was limited to lymphoma patients. CONCLUSIONS This study shows that some microRNAs are differently expressed in peripheral blood mononuclear cells from hepatitis C virus patients who develop hepatocellular carcinoma or lymphoma, while others share a common behavior. Thus, analysis of the expression of microRNAs could be a noninvasive marker of hepatitis C virus-related carcinogenesis. This analysis could be a suitable tool for identifying the existence of a malignancy and also discriminating between these two hepatitis C virus-related cancers.
Collapse
|
8
|
Zhang Z, Zhang F, Lu Y, Zheng S. Update on implications and mechanisms of angiogenesis in liver fibrosis. Hepatol Res 2015; 45:162-78. [PMID: 25196587 DOI: 10.1111/hepr.12415] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/15/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023]
Abstract
Liver fibrosis occurs as a compensatory response to the process of tissue repair in a wide range of chronic liver injures. It is characterized by excessive deposition of extracellular matrix in liver tissues. As the pathogenesis progresses without effective management, it will lead to formation of liver fiber nodules and disruption of normal liver structure and function, finally culminating in cirrhosis and hepatocellular carcinoma. A new discovery shows that liver angiogenesis is strictly associated with, and may even favor fibrogenic progression of chronic liver diseases. Recent basic and clinical investigations also demonstrate that liver fibrogenesis is accompanied by pathological angiogenesis and sinusoidal remodeling, which critically determine the pathogenesis and prognosis of liver fibrosis. Inhibition of pathological angiogenesis is considered to be a new strategy for the treatment of liver fibrosis. This review summarizes current knowledge on the process of angiogenesis, the relationships between angiogenesis and liver fibrosis, and on the molecular mechanisms of liver angiogenesis. On the other hand, it also presents the different strategies that have been used in experimental models to counteract excessive angiogenesis and the role of angiogenesis in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | |
Collapse
|