1
|
Alhazmi AI, El-Refaei MF, Abdallah EAA. Protective effects of gallic acid against nickel-induced kidney injury: impact of antioxidants and transcription factor on the incidence of nephrotoxicity. Ren Fail 2024; 46:2344656. [PMID: 38685608 PMCID: PMC11062283 DOI: 10.1080/0886022x.2024.2344656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Nickel (Ni) is a common metal with a nephrotoxic effect, damaging the kidneys. This study investigated the mechanism by which gallic acid (GA) protects mice kidneys against renal damage induced by Nickel oxide nanoparticles (NiO-NPs). Forty male Swiss albino mice were randomly assigned into four groups, each consisting of ten mice (n = 10/group): Group I the control group, received no treatment; Group II, the GA group, was administrated GA at a dosage of 110 mg/kg/day body weight; Group III, the NiO-NPs group, received injection of NiO-NPs at a concentration of 20 mg/kg body weight for 10 consecutive days; Group IV, the GA + NiO-NPs group, underwent treatment with both GA and NiO-NPs. The results showed a significant increase in serum biochemical markers and a reduction in antioxidant activities. Moreover, levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), phosphorylated nuclear factor kappa B (p65), and protein carbonyl (PC) were significantly elevated in group III compared with group I. Furthermore, the western blot analysis revealed significant high NF-κB p65 expression, immunohistochemistry of the NF-κB and caspase-1 expression levels were significantly increased in group III compared to group I. Additionally, the histopathological inspection of the kidney in group III exhibited a substantial increase in extensive necrosis features compared with group I. In contrast, the concomitant coadministration of GA and NiO-NPs in group IV showed significant biochemical, antioxidant activities, immunohistochemical and histopathological improvements compared with group III. Gallic acid has a protective role against kidney dysfunction and renal damage in Ni-nanoparticle toxicity.
Collapse
Affiliation(s)
| | - Mohamed F. El-Refaei
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Biochemistry and Molecular Biology, Genetic Institute, Sadat City University, Sadat City, Egypt
| | - Eman A. A. Abdallah
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
2
|
Rehman N, Jabeen F, Asad M, Nijabat A, Ali A, Khan SU, Luna-Arias JP, Mashwani ZUR, Siddiqa A, Karthikeyan A, Ahmad A. Exposure to zinc oxide nanoparticles induced reproductive toxicities in male Sprague Dawley rats. J Trace Elem Med Biol 2024; 83:127411. [PMID: 38387428 DOI: 10.1016/j.jtemb.2024.127411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND This research delves into the reproductive toxicology of zinc oxide nanoparticles (ZnO-NPs) in male Sprague Dawley rats. It specifically examines the repercussions of Zn accumulation in the testes, alterations in testosterone levels, and histopathological changes in the gonadal tissues. AIMS The primary objective of this study is to elucidate the extent of reproductive toxicity induced by ZnO-NPs in male Sprague Dawley rats. The investigation aims to contribute to a deeper understanding of the potential endocrine and reproductive disruptions caused by ZnO-NPs exposure. METHODS Characterization techniques including SEM-EDX and XRD affirmed the characteristic nature of ZnO-NPs. Twenty-five healthy post weaning rats (200-250 g) were intraperitoneally exposed to different concentrations of ZnO-NPs @ 10 or 20 or 30 mg/kg BW for 28 days on alternate days. RESULTS Results showed significant dose dependent decline in the body weight and testicular somatic index of rats. It also showed significant dose dependent accumulation of Zn in testis with increasing dose of ZnO-NPs. Conversely, serum testosterone level and sperm count were reduced with increasing dose of ZnO-NPs. Histological results showed dose dependent abnormalities i.e., vacuolization, edema, hemorrhage, destruction of seminiferous tubules, loss of germ cells and necrosis in rat testis. CONCLUSION The findings of this study clearly indicate that high doses of zinc oxide nanoparticles (ZnO-NPs) can adversely affect the structural integrity and functional efficacy of the male reproductive system. Given these results, it becomes crucial to implement stringent precautionary measures in the utilization of ZnO-NPs, particularly in cosmetics and other relevant sectors. Such measures are imperative to mitigate the toxicological impact of ZnO-NPs on the male reproductive system and potentially on other related physiological functions. This study underscores the need for regulatory vigilance and safety assessments in the application of nanotechnology to safeguard human health.
Collapse
Affiliation(s)
- Nagina Rehman
- Department of Zoology, University of Mianwali, Mianwali 42200, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College Women University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Asad
- Department of Zoology, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali 42200, Pakistan
| | - Amir Ali
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan; Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico.
| | - Safir Ullah Khan
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Juan Pedro Luna-Arias
- Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico; Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Ayesha Siddiqa
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, South Korea
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Fidan EB, Bali EB, Apaydin FG. Comparative study of nickel oxide and nickel oxide nanoparticles on oxidative damage, apoptosis and histopathological alterations in rat lung tissues. J Trace Elem Med Biol 2024; 83:127379. [PMID: 38171038 DOI: 10.1016/j.jtemb.2023.127379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Nickel oxide nanoparticles (NiONPs) are used as industrial photoelectric and recording materials, catalysts, and sensors. It has been increasingly used in many industrial sectors. Lungs are the important biological barrier that comes into contact with nanomaterials in the inhaled air. This study aimed to compare the effects of nickel oxide (NiO) microparticles and NiONPs on rat lung tissues in different dose administrations, such as oral, intraperitoneal, and intravenous. METHODS The mature male Wistar rats (n = 42) were divided into seven groups with six animals: Group I (control), Group II NiO gavage (150 mg/kg), Group III NiO intraperitoneally (20 mg/kg), Group IV NiO intravenously (1 mg/kg), Group V NiONP gavage (150 mg/kg), Group VI NiONP intraperitoneal (20 mg/kg), and Group VII NiONP intravenous (1 mg/kg) for 21 days. Oxidative stress (MDA, CAT, SOD, GPx, and GST), apoptotic marker (p53) gene expression, and histopathological changes were determined comparatively. RESULTS Our data showed that NiO and NiONPs caused an exposure-related increase in the incidence of alveolar/bronchiolar pathological changes, oxidative damage, and p53 gene expression in male rats. Intravenous exposure to NiONPs produces statistically (p < 0.05) more oxidative damage and histopathological changes than exposure to NİO. It also induces higher upregulation of the pro-apoptotic p53 gene. CONCLUSION NiO and NiONPs induce oxidative damage, histopathological alterations and p53 gene expression in rat lungs. Thus, exposure to NiO and NiONPs, especially intravenously, may indicate more toxicity and carcinogenicity.
Collapse
Affiliation(s)
- Elif Büşra Fidan
- Gazi University, Graduate School of Natural and Applied Sciences, Department of Biology, Ankara, Türkiye
| | - Elif Burcu Bali
- Gazi University, Vocational School of Health Services, Department of Medical Services and Techniques, Ankara, Türkiye.
| | | |
Collapse
|
4
|
Tavakoli Pirzaman A, Sadeghnezhad G, Azmoun Z, Eslami A, Mansoori R, Kazemi S, Hosseini SM. The effect of geraniol on nickel-induced embryotoxicity and cardiotoxicity in rats. Int J Immunopathol Pharmacol 2024; 38:3946320241272693. [PMID: 39393811 PMCID: PMC11483796 DOI: 10.1177/03946320241272693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Nickel (Ni), commonly-used heavy metals in industrial activities, can lead to embryo and organ toxicity, especially cardiovascular damage. Geraniol (GER) has various beneficial effects such as anti-oxidant, anti-inflammatory, anti-tumor, anti-ulcer, anti-microbial, and neuroprotective activities. OBJECTIVE The objective of this study was to investigate the effect of GER on Ni-induced embryotoxicity and cardiotoxicity in rats. METHODS 40 mother Wistar rats were randomly divided into five groups: Control, GER 250, Ni, Ni + GER 100, and Ni + GER 250. On the 20th day of pregnancy, the animals were sacrificed and fetuses along with blood and tissue samples were collocated for morphological, serological, biochemical, and histopathologic analysis. RESULTS Morphological assessments revealed GER's capacity to mitigate the incomplete ossification of fetal skeletons, indicating a potential safeguarding against the impact of Ni-induced embryotoxicity. Serological and biochemical analyses further affirm GER's role, with noteworthy reductions in cardiac injury markers, such as CRP, CKMB, CPK, LDH, and troponin, in response to GER administration, thereby suggesting its cardioprotective potential. Moreover, treatment with GER 250 could significantly reduce the level of MDA and increase the level of TAC compared to the Ni group. Histopathological examinations corroborated these findings, underscoring GER's ability to counteract cardiac injury and diminish structural damage in affected tissue. CONCLUSIONS These multidimensional analyses indicate the protective prowess of GER against Ni-induced embryotoxic and cardiotoxic effects, shedding light on its potential therapeutic significance in combating adverse impacts stemming from Ni exposure.
Collapse
Affiliation(s)
| | - Ghazaleh Sadeghnezhad
- Department of Veterinary Pathology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Zahra Azmoun
- Department of Veterinary Pathology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Amirreza Eslami
- Department of Veterinary Pathology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Razieh Mansoori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
5
|
Iftikhar M, Noureen A, Jabeen F, Uzair M, Rehman N, Sher EK, Katubi KM, Américo-Pinheiro JHP, Sher F. Bioinspired engineered nickel nanoparticles with multifunctional attributes for reproductive toxicity. CHEMOSPHERE 2023; 311:136927. [PMID: 36273609 DOI: 10.1016/j.chemosphere.2022.136927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Nickel nanoparticles (Ni-NPs) have potential applications in high-tech sectors such as battery manufacturing, catalysis, nanotube printing and textile. Apart from their increasing utilisation in daily life, there are concerns about their hazardous nature as they are highly penetrable in biological systems. The carcinogenic and mutagenic ability of Ni-NPs is evident but the research gaps are still there concerning the safety evaluation of Ni-NPs regarding male reproductive ability. This controlled randomized research was planned to assess the male reproductive toxicity of Ni-NPs in Sprague Dawley rats. Ni-NPs of spherical shape and mean particle size of 56 nm were used in the study, characterized by SEM, EDS and XRD. The twenty-five healthy rats (200-220 g) were used for toxicity investigation of Ni-NPs and divided into five groups; negative control (0 Ni-NPs), placebo group (0.9% saline) and three Ni-NPs treated groups (@ 15, 30 and 45 mg/kg BW). The results of 14 days of intraperitoneal exposure to Ni-NPs revealed that a higher dose (45 mg/kg BW) of Ni-NPs caused a significant reduction in body weight, serum testosterone, daily sperm production while the testis index and Ni accumulation and histological changes (necrosis in basement membrane and seminiferous tubules, vacuole formation) in testicular tissues increased with increasing dose of Ni-NPs. It can be concluded from the study that Ni-NPs have potential reproductive toxicity. This study provided the baseline data of Ni-NPs toxicity for the male reproductive system and can be applied for risk assessment in Ni-NPs based products.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Aasma Noureen
- Department of Biology, Virtual University of Pakistan, Faisalabad, 38000, Pakistan; Department of Zoology, Government College for Women University, Faisalabad, 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Uzair
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nagina Rehman
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Khadijah Mohammedsaleh Katubi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
6
|
Arato I, Giovagnoli S, Di Michele A, Bellucci C, Lilli C, Aglietti MC, Bartolini D, Gambelunghe A, Muzi G, Calvitti M, Eugeni E, Gaggia F, Baroni T, Mancuso F, Luca G. Nickel oxide nanoparticles exposure as a risk factor for male infertility: " In vitro" effects on porcine pre-pubertal Sertoli cells. Front Endocrinol (Lausanne) 2023; 14:1063916. [PMID: 37065743 PMCID: PMC10098343 DOI: 10.3389/fendo.2023.1063916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Lately, nickel oxide nanoparticles (NiO NPs) have been employed in different industrial and biomedical fields. Several studies have reported that NiO NPs may affect the development of reproductive organs inducing oxidative stress and, resulting in male infertility. We investigated the in vitro effects of NiO NPs on porcine pre-pubertal Sertoli cells (SCs) which undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposure at two subtoxic doses of NiO NPs of 1 μg/ml and 5 μg/ml. After NiO NPs exposure we performed the following analysis: (a) SCs morphological analysis (Light Microscopy); (b) ROS production and oxidative DNA damage, gene expression of antioxidant enzymes (c) SCs functionality (AMH, inhibin B Real-time PCR analysis and ELISA test); (d) apoptosis (WB analysis); (e) pro-inflammatory cytokines (Real-time PCR analysis), and (f) MAPK kinase signaling pathway (WB analysis). We found that the SCs exposed to both subtoxic doses of NiO NPs didn't sustain substantial morphological changes. NiO NPs exposure, at each concentration, reported a marked increase of intracellular ROS at the third week of treatment and DNA damage at all exposure times. We demonstrated, un up-regulation of SOD and HO-1 gene expression, at both concentrations tested. The both subtoxic doses of NiO NPs detected a down-regulation of AMH and inhibin B gene expression and secreted proteins. Only the 5 μg/ml dose induced the activation of caspase-3 at the third week. At the two subtoxic doses of NiO NPs a clear pro-inflammatory response was resulted in an up-regulation of TNF-α and IL-6 in terms of mRNA. Finally, an increased phosphorylation ratio of p-ERK1/2, p-38 and p-AKT was observed up to the third week, at both concentrations. Our results show the negative impact of subtoxic doses NiO NPs chronic exposure on porcine SCs functionality and viability.
Collapse
Affiliation(s)
- Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Iva Arato,
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Desirée Bartolini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Angela Gambelunghe
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giacomo Muzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Eugeni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Gaggia
- Internal Medicine Endocrine and Metabolic Sciences Unit, Santa Maria della Misericordia Hospital of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| |
Collapse
|
7
|
Li T, Li Z, Fu J, Tang C, Liu L, Xu J, Zhao J, Li Z. Nickel nanoparticles exert cytotoxic effects on trophoblast HTR-8/SVneo cells possibly via Nrf2/MAPK/caspase 3 pathway. ENVIRONMENTAL RESEARCH 2022; 215:114336. [PMID: 36103928 DOI: 10.1016/j.envres.2022.114336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Nickel nanoparticles are widely used in the industry and may affect the reproductive system. The potential molecular mechanism of exposing the first-trimester trophoblast cell line (HTR-8/SVneo) to nickel nanoparticles remains unclear. Hence, the aim of this study was to investigate the in vitro cytotoxicity of Ni NPs on HTR-8/SVneo cells. HTR-8/SVneo cells were subjected to various concentrations (0, 2.5, 5, 7.5, 10, and 12.5 μg/cm2) of Ni NPs. The toxicity of the Ni NPs was evaluated in HTR-8/SVneo cells by measuring cell viability. The underlying mechanism of nickel nanoparticles toxicity to HTR-8/SVneo cells was determined by measuring the content of intracellular reactive oxygen species, mitochondrial membrane potential, and the rate of cell apoptosis and cell cycle, by measuring adenosine triphosphate levels, intracellular lipid peroxidation malondialdehyde, total superoxide dismutase, and CuZn/Mn-SOD activities, and by determining proteins related to Nrf2, MAPK, and Cytochrome c. Our results showed that the nickel nanoparticles treatment reduced the viability of HTR-8/SVneo cells, while it increased their oxidative stress and lowered their mitochondrial respiratory capacity. Additionally, the nickel nanoparticles treatment induced cell S-phase arrest and apoptosis. These molecular events may be linked to the oxidative stress-Nrf2 pathway/MAPK/Caspase 3 cascade. Thus, nickel nanoparticles exert cytotoxic effects on HTR-8/SVneo cells, which could affect the function of the placenta in human.
Collapse
Affiliation(s)
- Ting Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Zhou Li
- Xiang Yang Center for Disease Control and Prevention, 172 Tanxi Road, Xiangyang, Hubei province 441022, PR China
| | - Jianfei Fu
- Department of Medical Records and Statistics, Ningbo First Hospital, Ningbo, Zhejiang Province 315010, PR China
| | - Chunlan Tang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Liya Liu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Jin Xu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Zhen Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China.
| |
Collapse
|
8
|
The macrophage senescence hypothesis: the role of poor heat shock response in pulmonary inflammation and endothelial dysfunction following chronic exposure to air pollution. Inflamm Res 2022; 71:1433-1448. [PMID: 36264363 DOI: 10.1007/s00011-022-01647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Cardiovascular diseases (CVD) have been associated with high exposure to fine particulate air pollutants (PM2.5). Alveolar macrophages are the first defense against inhaled particles. As soon as they phagocytize the particles, they reach an inflammatory phenotype, which affects the surrounding cells and associates with CVD. Not coincidentally, CVD are marked by a depleted heat shock response (HSR), defined by a deficit in inducing 70-kDa heat shock protein (HSP70) expression during stressful conditions. HSP70 is a powerful anti-inflammatory chaperone, whose reduced levels trigger a pro-inflammatory milieu, cellular senescence, and a senescence-associated secretory phenotype (SASP). However, whether macrophage senescence is the main mechanism by which PM2.5 propagates low-grade inflammation remains unclear. OBJECTIVE AND DESIGN In this article, we review evidence supporting that chronic exposure to PM2.5 depletes HSR and determines the ability to solve the initial stress. RESULTS AND DISCUSSION When exposed to PM2.5, macrophages increase the production of reactive oxygen species, which activate nuclear factor-kappa B (NF-κB). NF-κB is naturally a pro-inflammatory factor that drives prostaglandin E2 (PGE2) synthesis and causes fever. PGE2 can be converted into prostaglandin A2, a powerful inducer of HSR. Therefore, when transiently activated, NF-κB can trigger the anti-inflammatory response through negative feedback, by inducing HSP70 expression. However, when chronically activated, NF-κB heads a set of pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, unfolded protein response, inflammasome activation, and apoptosis. During chronic exposure to PM2.5, cells cannot properly express sirtuin-1 or activate heat shock factor-1 (HSF-1), which delays the resolution phase of inflammation. Since alveolar macrophages are the first immune defense against PM2.5, we suppose that the pollutant impairs HSR and, consequently, induces cellular senescence. Accordingly, senescent macrophages change its secretory phenotype to a more inflammatory one, known as SASP. Finally, macrophages' SASP would propagate the systemic inflammation, leading to endothelial dysfunction and atherosclerosis.
Collapse
|
9
|
Singh M, Verma Y, Rana SVS. Potential toxicity of nickel nano and microparticles on the reproductive system of female rats—a comparative time-dependent study. Toxicol Ind Health 2022; 38:234-247. [DOI: 10.1177/07482337221074762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Increased application of engineered nanoparticles in different sectors viz. agriculture, commerce, industry, and medicine has raised serious public health issues. Nanoparticles of nickel have been increasingly used as catalysts, conductive pastes, adhesives, nanowires, and nanofilters. Human and animal exposure to these particles may cause toxicity in different organs/systems. Studies made in the past had demonstrated their toxicity in liver, kidney, and lungs. However, their reproductive effects remain poorly understood. Therefore, the present study on reproductive toxicity of nickel nanoparticles (<30 nm) was executed in female Wistar rats. A comparison of results obtained in nickel microparticle-treated rats was also made. Rats were administered nano and microparticles through gavage at a dosage of 5 mg/kg body weight each for two exposure periods; that is, 15 and 30 days. Ovaries removed from these rats were analyzed to study the effects of nickel bioaccumulation on synthesis of steroid hormones, lipid peroxidation, apoptosis, and oxidative stress. Structural changes were monitored through histopathological and ultrastructural observations. The present study showed exposure time-dependent differences in the toxicity of nickel nano and microparticles in the ovary of rats. Nano nickel was cumulative in the ovaries. It affected steroidogenesis. Further, increased generation of reactive oxygen species and enhanced oxidative stress may have contributed to cytotoxicity. It was concluded that exposure to nano nickel might induce irreversible damage in the ovaries of rat.
Collapse
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | - Yeshvandra Verma
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | - Suresh VS Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
10
|
Singh M, Verma Y, Rana SVS. Nephrotoxicity of nickel nano and microparticles in rat- a comparative, time dependent study with special reference to antioxidant defence system. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2048307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| | - S. V. S. Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| |
Collapse
|
11
|
Mo Y, Zhang Y, Zhang Y, Yuan J, Mo L, Zhang Q. Nickel nanoparticle-induced cell transformation: involvement of DNA damage and DNA repair defect through HIF-1α/miR-210/Rad52 pathway. J Nanobiotechnology 2021; 19:370. [PMID: 34789290 PMCID: PMC8600818 DOI: 10.1186/s12951-021-01117-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Nickel nanoparticles (Nano-Ni) are increasingly used in industry and biomedicine with the development of nanotechnology. However, the genotoxic and carcinogenic effects of Nano-Ni and the underlying mechanisms are still unclear. METHODS At first, dose-response (0, 10, 20, and 30 μg/mL) and time-response (0, 3, 6, 12, and 24 h) studies were performed in immortalized normal human bronchial epithelial cells BEAS-2B to observe the effects of Nano-Ni on DNA damage response (DDR)-associated proteins and the HIF-1α/miR-210/Rad52 pathway by real-time PCR or Western blot. Then, a Hsp90 inhibitor (1 µM of 17-AAG, an indirect HIF-1α inhibitor), HIF-1α knock-out (KO) cells, and a miR-210 inhibitor (20 nM) were used to determine whether Nano-Ni-induced Rad52 down-regulation was through HIF-1α nuclear accumulation and miR-210 up-regulation. In the long-term experiments, cells were treated with 0.25 and 0.5 µg/mL of Nano-Ni for 21 cycles (~ 150 days), and the level of anchorage-independent growth was determined by plating the cells in soft agar. Transduction of lentiviral particles containing human Rad52 ORF into BEAS-2B cells was used to observe the role of Rad52 in Nano-Ni-induced cell transformation. Nano-Ni-induced DNA damage and dysregulation of HIF-1α/miR-210/Rad52 pathway were also investigated in vivo by intratracheal instillation of 50 µg per mouse of Nano-Ni. gpt delta transgenic mice were used to analyze mutant frequency and mutation spectrum in mouse lungs after Nano-Ni exposure. RESULTS Nano-Ni exposure caused DNA damage at both in vitro and in vivo settings, which was reflected by increased phosphorylation of DDR-associated proteins such as ATM at Ser1981, p53 at Ser15, and H2AX. Nano-Ni exposure also induced HIF-1α nuclear accumulation, miR-210 up-regulation, and down-regulation of homologous recombination repair (HRR) gene Rad52. Inhibition of or knocking-out HIF-1α or miR-210 ameliorated Nano-Ni-induced Rad52 down-regulation. Long-term low-dose Nano-Ni exposure led to cell malignant transformation, and augmentation of Rad52 expression significantly reduced Nano-Ni-induced cell transformation. In addition, increased immunostaining of cell proliferation markers, Ki-67 and PCNA, was observed in bronchiolar epithelial cells and hyperplastic pneumocytes in mouse lungs at day 7 and day 42 after Nano-Ni exposure. Finally, using gpt delta transgenic mice revealed that Nano-Ni exposure did not cause increased gpt mutant frequency and certain DNA mutations, such as base substitution and small base insertions/deletions, are not the main types of Nano-Ni-induced DNA damage. CONCLUSIONS This study unraveled the mechanisms underlying Nano-Ni-induced cell malignant transformation; the combined effects of Nano-Ni-induced DNA damage and DNA repair defects through HIF-1α/miR-210/Rad52 pathway likely contribute to Nano-Ni-induced genomic instability and ultimately cell transformation. Our findings will provide information to further elucidate the molecular mechanisms of Nano-Ni-induced genotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| |
Collapse
|
12
|
Iqbal S, Jabeen F, Chaudhry AS, Shah MA, Batiha GES. Toxicity assessment of metallic nickel nanoparticles in various biological models: An interplay of reactive oxygen species, oxidative stress, and apoptosis. Toxicol Ind Health 2021; 37:635-651. [PMID: 34491146 DOI: 10.1177/07482337211011008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nickel nanoparticles (Ni-NPs) are widely used for multiple purposes in industries. Ni-NPs exposure is detrimental to ecosystems owing to widespread use, and so their toxicity is important to consider for real-world applications. This review mainly focuses on the notable pathophysiological activities of Ni-NPs in various research models. Ni-NPs are stated to be more toxic than bulk forms because of their larger surface area to volume ratio and are reported to provoke toxicity through reactive oxygen species generation, which leads to the upregulation of nuclear factor-κB and promotes further signaling cascades. Ni-NPs may contribute to provoking oxidative stress and apoptosis. Hypoxia-inducible factor 1α and mitogen-activated protein kinases pathways are involved in Ni-NPs associated toxicity. Ni-NPs trigger the transcription factors p-p38, p-JNK, p-ERK1/2, interleukin (IL)-3, TNF-α, IL-13, Fas, Cyt c, Bax, Bid protein, caspase-3, caspase-8, and caspase-9. Moreover, Ni-NPs have an occupational vulnerability and were reported to induce lung-related disorders owing to inhalation. Ni-NPs may cause serious effects on reproduction as Ni-NPs induced deleterious effects on reproductive cells (sperm and eggs) in animal models and provoked hormonal alteration. However, recent studies have provided limited knowledge regarding the important checkpoints of signaling pathways and less focused on the toxic limitation of Ni-NPs in humans, which therefore needs to be further investigated.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Abdul Shakoor Chaudhry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al-Beheira, Egypt
| |
Collapse
|
13
|
Kong L, Dong J, Lu W, Wu Y, Liu L, Tang M. Exposure effects of inhaled nickel nanoparticles on the male reproductive system via mitochondria damage. NANOIMPACT 2021; 23:100350. [PMID: 35559828 DOI: 10.1016/j.impact.2021.100350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/25/2021] [Accepted: 08/08/2021] [Indexed: 05/28/2023]
Abstract
Nickel nanoparticles (Ni NPs) have a wide range of application prospects, however there is still a lack of their safety evaluation for the reproductive system. Nowadays, male reproductive health has been widely concerned for the increasing incidence of male infertility. To investigate the male reproductive toxicity induced by Ni NPs and its relation with the mitochondrial fission and mitophagy, male mice were administered with or without 5, 15, and 45 mg/kg of Ni NPs by intratracheal instillation. At the end of intervention, sex hormone level, sperm abnormality rate, pathological morphology of testis, cell apoptosis and the expression levels of Drp1, Pink1 and Parkin proteins in testis tissues were detected. The results indicated that the rate of sperm deformity and serum levels of reproductive hormones increased obviously with the increasing concentrations of Ni NPs. Testicular spermatogenic cells were damaged and the number of apoptotic cells increased significantly. Furthermore, the expressions of key proteins (Drp1, Pink1 and Parkin) related to mitochondrial fission/autophagy in testis tissues also increased after exposure to Ni NPs. Collectively, mitochondria damage may play an important role in male mice reproductive toxicity induced by the intratracheal instillation of Ni NPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Jiahui Dong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Wenjuan Lu
- Nanjing Central Hospital, Nanjing 210018, PR China
| | - Yongya Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lin Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
14
|
Murphy A, Roy N, Sun H, Jin C, Costa M. Induction of NUPR1 and AP‑1 contributes to the carcinogenic potential of nickel. Oncol Rep 2021; 45:41. [PMID: 33649793 DOI: 10.3892/or.2021.7992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/03/2021] [Indexed: 12/25/2022] Open
Abstract
Nickel (Ni) is carcinogenic to humans, and causes cancers of the lung, nasal cavity, and paranasal sinuses. The primary mechanisms of Ni‑mediated carcinogenesis involve the epigenetic reprogramming of cells and the ability for Ni to mimic hypoxia. However, the exact mechanisms of carcinogenesis related to Ni are obscure. Nuclear protein 1 (NUPR1) is a stress‑response gene overexpressed in cancers, and is capable of conferring chemotherapeutic resistance. Likewise, activator protein 1 (AP‑1) is highly responsive to environmental signals, and has been associated with cancer development. In this study, NUPR1 was found to be rapidly and highly induced in human bronchial epithelial (BEAS‑2B) cells exposed to Ni, and was overexpressed in Ni‑transformed BEAS‑2B cells. Similarly, AP‑1 subunits, JUN and FOS, were induced in BEAS‑2B cells following Ni exposure. Knockdown of JUN or FOS was found to significantly suppress NUPR1 induction following Ni exposure, demonstrating their importance in NUPR1 transactivation. Reactive oxygen species (ROS) are known to induce AP‑1, and Ni has been shown to produce ROS. Treatment of BEAS‑2B cells with antioxidants was unable to prevent NUPR1 induction by Ni, suggesting that NUPR1 induction by Ni relies on mechanisms other than oxidative stress. To determine how NUPR1 is transcriptionally regulated following Ni exposure, the NUPR1 promoter was cloned and inserted into a luciferase gene reporter vector. Multiple JUN binding sites reside within the NUPR1 promoter, and upon deleting a JUN binding site in the upstream most region within the NUPR1 promoter using site‑directed mutagenesis, NUPR1 promoter activity was significantly reduced. This suggests that AP‑1 transcriptionally regulates NUPR1. Moreover, knockdown of NUPR1 significantly reduced colony formation and anchorage‑independent growth in Ni‑transformed BEAS‑2B cells. Therefore, these results collectively demonstrate a novel mechanism of NUPR1 induction following Ni exposure, and provide a molecular basis by which NUPR1 may contribute to lung carcinogenesis.
Collapse
Affiliation(s)
- Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Nirmal Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
15
|
Liu L, Kong L. Research progress on the carcinogenicity of metal nanomaterials. J Appl Toxicol 2021; 41:1334-1344. [PMID: 33527484 DOI: 10.1002/jat.4145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
With the rapid development of nanotechnology, new nanomaterials with enormous potentials continue to emerge, especially metal nanomaterials. Metal nanomaterials possess the characteristics of metals and nanomaterials, so they are widely used in many fields. But at the same time, whether the use or release of metal nan4omaterials into the environment is toxic to human beings and animals has now attained widespread attention at home and abroad. Currently, it is an indisputable fact that cancer ranks among the top causes of death among residents worldwide. The properties of causing DNA damage and mutations possessed by these metal nanomaterials make them unpredictable influences in the body, subsequently leading to genotoxicity and carcinogenicity. Due to the increasing evidence of their roles in carcinogenicity, this article reviews the toxicological and carcinogenic effects of metal nanomaterials, including nano-metal elements (nickel nanoparticles, silver nanoparticles, and cobalt nanoparticles) and nano-metal oxides (titanium dioxide nanoparticles, silica nanoparticles, zinc oxide nanoparticles, and alumina nanoparticles). This article provides a reference for the researchers and policymakers to use metal nanomaterials rationally in modern industries and biomedicine.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lu Kong
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Prueitt RL, Li W, Chang YC, Boffetta P, Goodman JE. Systematic review of the potential respiratory carcinogenicity of metallic nickel in humans. Crit Rev Toxicol 2020; 50:605-639. [DOI: 10.1080/10408444.2020.1803792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Paolo Boffetta
- Stony Brook Cancer Center and Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
17
|
Wu Y, Kong L. Advance on toxicity of metal nickel nanoparticles. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2277-2286. [PMID: 31894452 DOI: 10.1007/s10653-019-00491-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
As a kind of conventional metal nanomaterial, nickel nanoparticles (Ni NPs) have broad application prospects in the fields of magnetism, energy technology and biomedicine and have quickly attracted great interest. The potential negative effects of Ni NPs have also attracted wide attention from some researchers. Studies have shown that Ni NPs cause a variety of toxic effects on cells, animals and humans and have toxic effects of multiple systems such as respiratory system, cardiovascular system and reproductive system. Ni NPs can lead to oxidative stress, apoptosis, DNA damage and inflammation and induce the increase of intracellular reactive oxygen species. The toxicity of Ni NPs is also found to be related to the mitogen-activated protein kinase pathway and the hypoxia inducible factor-1α pathway. Therefore, the toxicity and mechanism of Ni NPs are reviewed in this paper, and the future researches in this field are also proposed.
Collapse
Affiliation(s)
- Yongya Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Nickel Nanoparticles Induce the Synthesis of a Tumor-Related Polypeptide in Human Epidermal Keratinocytes. NANOMATERIALS 2020; 10:nano10050992. [PMID: 32455808 PMCID: PMC7279538 DOI: 10.3390/nano10050992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
Although nickel allergy and carcinogenicity are well known, their molecular mechanisms are still uncertain, thus demanding studies at the molecular level. The nickel carcinogenicity is known to be dependent on the chemical form of nickel, since only certain nickel compounds can enter the cell. This study investigates, for the first time, the cytotoxicity, cellular uptake, and molecular targets of nickel nanoparticles (NiNPs) in human skin cells in comparison with other chemical forms of nickel. The dose-response curve that was obtained for NiNPs in the cytotoxicity assays showed a linear behavior typical of genotoxic carcinogens. The exposure of keratinocytes to NiNPs leads to the release of Ni2+ ions and its accumulation in the cytosol. A 6 kDa nickel-binding molecule was found to be synthesized by cells exposed to NiNPs at a dose corresponding to medium mortality. This molecule was identified to be tumor-related p63-regulated gene 1 protein.
Collapse
|
19
|
Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem Biol Interact 2019; 312:108814. [PMID: 31509734 DOI: 10.1016/j.cbi.2019.108814] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/11/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Nanotechnology is a growing science that may provide several new applications for medicine, food preservation, diagnostic technologies, and sanitation. Despite its beneficial applications, there are several questions related to the safety of nanomaterials for human use. The development of nanotechnology is associated with some concerns because of the increased risk of carcinogenesis following exposure to nanomaterials. The increased levels of reactive oxygen species (ROS) that are due to exposure to nanoparticles (NPs) are primarily responsible for the genotoxicity of metal NPs. Not all, but most metal NPs are able to directly produce free radicals through the release of metal ions and through interactions with water molecules. Furthermore, the increased production of free radicals and the cell death caused by metal NPs can stimulate reduction/oxidation (redox) reactions, leading to the continuous endogenous production of ROS in a positive feedback loop. The overexpression of inflammatory mediators, such as NF-kB and STATs, the mitochondrial malfunction and the increased intracellular calcium levels mediate the chronic oxidative stress that occurs after exposure to metal NPs. In this paper, we review the genotoxicity of different types of metal NPs and the redox mechanisms that amplify the toxicity of these NPs.
Collapse
|
20
|
Kong L, Hu W, Lu C, Cheng K, Tang M. Mechanisms underlying nickel nanoparticle induced reproductive toxicity and chemo-protective effects of vitamin C in male rats. CHEMOSPHERE 2019; 218:259-265. [PMID: 30472609 DOI: 10.1016/j.chemosphere.2018.11.128] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this research is to go a step further study on the reproductive toxicities and the underlying mechanisms induced by nickel nanoparticles (NiNPs), and the possible protective action of vitamin C. Animal experiment was designed according to the one-generation reproductive toxicity standard, and rats were exposed to NiNPs through gavage. Ultrastructural, reactive oxygen species (ROS), oxidant and antioxidant enzymes, and cell apoptosis-related factors in the testicular tissue were analyzed. In contrast with the control group, the activity of surperoxide dismutase (SOD), catalase (CAT) and gonad-stimulating hormone (GSH) was reduced, while the content of nitric oxide (NO), malondialdehyde (MDA) and ROS was increased in the NiNPs treated animals. As the doses of NiNPs increase, the mRNA of apoptotic related factor Caspase-9, Caspase-8 and Caspase-3 showed an obviously upregulation. Protein expression of Bcl-2-associated X Protein (Bax) and apoptosis inducing factor (AIF) was significantly unregulated. After addition of antioxidants-vitamin C, the toxicity was reduced. Injured testicular tissue indicated that NiNPs exposure could damage the reproductive system. Our results suggest that NiNPs induce significant reproductive toxicities. The cellular apoptosis might be induced by caspase family proteinases, but the regulator factor (factor associated suicide (Fas), B-cell lymphoma-2 (Bcl-2), Bax, BH3-interacting domain death agonist (Bid) and AIF protein) might not be involved in this process. Thus, the mechanism of reproductive toxicity of NiNPs on rat testes involves in the induction of oxidative stress, which further results in cell apoptosis. Antioxidants-vitamin C shows a significant inhibition on the reproductive toxicities induced by NiNPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Wangcheng Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, PR China
| | - Keping Cheng
- Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
21
|
Akhtar MJ, Ahamed M, Alhadlaq HA. Challenges facing nanotoxicology and nanomedicine due to cellular diversity. Clin Chim Acta 2018; 487:186-196. [PMID: 30291894 DOI: 10.1016/j.cca.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
This review examines the interaction of nanomaterials (NMs) with cells from the perspective of major cellular differentiations. The structure and composition of cells reflect their role and function in a particular organ or environment. The normal differentiated-state and diseased cells may respond to NMs very differently. This review progresses with due care on nanotoxicology while emphasizing the potential of NMs in treating stress-associated disorders, including cancer and degeneration. The striking potential of NMs in inducing ROS, scavenging ROS, depleting cellular antioxidants, replenishing antioxidants, mimicking antioxidant enzyme activity, and modulating the immune system all show their considerable potential in treating cancer and other aging-associated disorders. It is now clear that NMs become more active and versatile when they come into contact with biological machinery, surprisingly in some cases, in a manner dependent on cell type. The mechanisms leading to the contrasting bioresponse of NMs ranging from toxicity to anticancer and from cell survival to carcinogenicity followed by their immuno-modulating potential show NMs to be a highly promising agent in biomedical therapy. This first-of-its-kind article seeks the challenges to be addressed that could provide a solid rationale in translating the promises of nanomedicine. A thorough understanding of normal and cancer biology could help to minimize the gap between basic and translational research in nanotechnology-based therapy.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia..
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.; Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Su H, Li Z, Lazar L, Alhamoud Y, Song X, Li J, Wang Y, Fiati Kenston SS, Lqbal MZ, Wu A, Li Z, Hua Q, Ding M, Zhao J. In vitro evaluation of the toxicity and underlying molecular mechanisms of Janus Fe 3 O 4 -TiO 2 nanoparticles in human liver cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:1078-1088. [PMID: 30098274 DOI: 10.1002/tox.22631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 05/26/2023]
Abstract
Recent studies show that Janus Fe3 O4 -TiO2 nanoparticles (NPs) have potential applications as a multifunctional agent of magnetic resonance imaging (MRI) and photodynamic therapy (PDT) for the diagnosis and therapy of cancer. However, little work has been done on their biological effects. To evaluate the toxicity and underlying molecular mechanisms of Janus Fe3 O4 -TiO2 nanoparticles, an in vitro study using a human liver cell line HL-7702 cells was conducted. For comparison, the Janus Fe3 O4 -TiO2 NPs parent material TiO2 NPs was also evaluated. Results showed that both Fe3 O4 -TiO2 NPs and TiO2 NPs decreased cell viability and ATP levels when applied in treatment, but increased malonaldehyde (MDA) and reactive oxygen species (ROS) generation. Mitochondria JC-1 staining assay showed that mitochondrial membrane permeability injury occurred in both NPs treated cells. Cell viability analysis showed that TiO2 NPs induced slightly higher cytotoxicity than Fe3 O4 -TiO2 NPs in HL7702 cells. Western blotting indicated that both TiO2 NPs and Fe3 O4 -TiO2 NPs could induce apoptosis, inflammation, and carcinogenesis related signal protein alterations. Comparatively, Fe3 O4 -TiO2 NPs induced higher signal protein expressions than TiO2 NPs under a high treatment dose. However, under a low dose (6.25 μg/cm2 ), neither NPs had any significant toxicity on HL7702 cells. In addition, our results suggest both Fe3 O4 -TiO2 NPs and TiO2 NPs could induce oxidative stress and have a potential carcinogenetic effect in vitro. Further studies are needed to elaborate the detailed mechanisms of toxicity induced by a high dose of Fe3 O4 -TiO2 NPs.
Collapse
Affiliation(s)
- Hong Su
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| | - Zhou Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| | - Lissy Lazar
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| | - Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| | - Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| | - Juan Li
- Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, People's Republic of China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| | - Muhammad Zubair Lqbal
- Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, People's Republic of China
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, People's Republic of China
| | - Zhen Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| | - Qihang Hua
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
23
|
Carmona ER, García-Rodríguez A, Marcos R. Genotoxicity of Copper and Nickel Nanoparticles in Somatic Cells of Drosophila melanogaster. J Toxicol 2018; 2018:7278036. [PMID: 30111998 PMCID: PMC6077325 DOI: 10.1155/2018/7278036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
Copper and nickel nanoparticles (Cu-NPs and Ni-NPs, respectively) are used in a variety of industrial applications, such as semiconductors, catalysts, sensors, and antimicrobial agents. Although studies on its potential genotoxicity already exist, few of them report in vivo data. In the present study we have used the wing-spot assay in Drosophila melanogaster to determine the genotoxic activity of Cu-NPs and Ni-NPs, and these data have been compared with those obtained with their microparticle forms (MPs). Additionally, a complete physical characterization of NPs using transmission electronic microscopy (TEM), dynamic light scattering (DLS), and laser Doppler velocimetry (LDV) techniques was also performed. Results obtained with Cu-NPs and Cu-MPs indicate that both failed to induce an increase in the frequency of mutant spots formation in the wings of the adults, suggesting a lack of genotoxicity in somatic cells of D. melanogaster. However, when Ni-NPs and Ni-MPs were evaluated, a significant increase of small single spots and total mutant spots was observed only for Ni-NPs (P<0.05) at the highest dose assessed. Thus, the genotoxicity of Ni-NPs seem to be related to their nanoscale size, because no genotoxic effects have been reported with their microparticles and ions. This study is the first assessing the in vivo genotoxic potential of Cu-NPs and Ni-NPs in the Drosophila model.
Collapse
Affiliation(s)
- Erico R. Carmona
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Facultad de Ingeniería, Universidad Católica de Temuco, Chile
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Chile
| | - Alba García-Rodríguez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
|
25
|
Santos FCF, Gomes SIL, Scott-Fordsmand JJ, Amorim MJB. Hazard assessment of nickel nanoparticles in soil-The use of a full life cycle test with Enchytraeus crypticus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2934-2941. [PMID: 28488336 DOI: 10.1002/etc.3853] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/07/2016] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Nanoparticles (NPs) such as nickel (Ni) are widely used in several applications. Nevertheless, the environmental effects of Ni NPs are still poorly understood. In the present study, the toxicity of Ni NPs and nickel nitrate (NiNO3 ) was assessed using the standard test species in soil ecotoxicology, Enchytraeus crypticus (Oligochaeta), in a full life cycle test, adding the endpoints hatching, growth, and time to reach maturity, besides survival and reproduction as in the standard Organisation for Economic Co-operation and Development Guideline 220 and/or International Organization for Standardization 16387. For Ni NPs, the Ni in soil and in soil solution was concentration- and time-dependent, with a relatively higher soil solution content in the lower and shorter exposure concentrations and times. Overall, NiNO3 was more toxic than Ni NPs, and toxicity seemed to occur via different mechanisms. The former caused reduced hatching (50% effect concentration [EC50] = 39 mg Ni/kg soil), and the negative effects remained throughout the life cycle, in all measured endpoints (growth, maturation, survival, and reproduction). For Ni NPs, hatching was the most sensitive endpoint (EC50 = 870 mg Ni/kg soil), although the organisms recovered; that is, additional endpoints across the life cycle showed that this effect corresponded to a delay in hatching because organisms survived and reproduced at concentrations up to 1800 mg Ni/kg soil. On the other hand, the lowest tested concentration of Ni NPs (100 mg Ni/kg soil) caused reproduction effects similar to those at higher concentrations (1000 and 1800 mg Ni/kg soil). The present results show that the potential implications of a nonmonotonic dose response should be considered when assessing the risks of Ni NP exposure in soil. Environ Toxicol Chem 2017;36:2934-2941. © 2017 SETAC.
Collapse
Affiliation(s)
- Fátima C F Santos
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Kong L, Gao X, Zhu J, Zhang T, Xue Y, Tang M. Reproductive toxicity induced by nickel nanoparticles in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY 2017; 32:1530-1538. [PMID: 27748997 DOI: 10.1002/tox.22373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/24/2016] [Accepted: 09/25/2016] [Indexed: 05/11/2023]
Abstract
To investigate the reproductive toxicity and underlying mechanism of nickel nanoparticles (Ni NPs), Caenorhabditis elegans (C. elegans) were treated with/without 1.0, 2.5, and 5.0 μg cm-2 of Ni NPs or nickel microparticles (Ni MPs). Generation time, fertilized egg numbers, spermatide activation and motility were detected. Results indicated, under the same treatment doses, that Ni NPs induced higher reproductive toxicity to C. elegans than Ni MPs. Reproductive toxicities observed in C. elegans included a decrease in brood size, fertilized egg and spermatide activation, but an increase in generation time and out-of-round spermatids. The reproductive toxicity of Ni NPs on C. elegans may be induced by oxidative stress. The reproductive toxicity in C. elegans induced by Ni NPs is consistent with our previous results in the rats. Therefore, C. elegans can be used as an alternative model to detect the early reproductive toxicity of Ni NPs exposure. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1530-1538, 2017.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Xiaojie Gao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Jiaqian Zhu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, People's Republic of China, 210009
| |
Collapse
|
27
|
Liang J, Wang X, Li L, Xu S, Jiang J, Wu L, Zhao G, Chen S. Development of dual-fluorescence cell-based biosensors for detecting the influence of environmental factors on nanoparticle toxicity. CHEMOSPHERE 2017; 171:177-184. [PMID: 28013079 DOI: 10.1016/j.chemosphere.2016.12.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
With the expanding use of engineered nanoparticles (NPs), development of a high-throughput, sensitive method for evaluating NP safety is important. In this study, we developed cell-based biosensors to efficiently and conveniently monitor NP toxicity. The biosensor cells were obtained by transiently transfecting human cells with biosensor plasmids containing a mCherry gene regulated by an inducible promoter [an activator protein 1 (AP-1) promoter, an interleukin 8 (IL8) promoter, or a B cell translocation gene 2 (BTG2) promoter], with an enhanced green-fluorescent protein gene driven by the cytomegalovirus promoter as the internal control. After optimizing flow cytometric analysis, these dual-fluorescence cell-based biosensors were capable of accurately and rapidly detecting NP toxicity. We found that the responses of AP-1, BTG2, and IL8 biosensors in assessing the toxicity of silver nanoparticles (Ag NPs) showed good dose-related increases after exposure to Ag NPs and were consistent with data acquired by conventional assays, such as western blot, real-time polymerase chain reaction, and immunofluorescence. Further investigation of the effects of environmental factors on Ag NP toxicity revealed that aging in water, co-exposure with fulvic acid, and irradiation with ultraviolet A light could affect Ag NP-induced biosensor responses. These results indicated that these novel dual-fluorescence biosensors can be applied to accurately and sensitively monitor NP toxicity.
Collapse
Affiliation(s)
- Junting Liang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, China Academy of Science, Hefei, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui, PR China
| | - Xuanyu Wang
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, China Academy of Science, Hefei, Anhui, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui, PR China
| | - Luzhi Li
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, China Academy of Science, Hefei, Anhui, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui, PR China
| | - Shengmin Xu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, China Academy of Science, Hefei, Anhui, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui, PR China
| | - Jiang Jiang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, China Academy of Science, Hefei, Anhui, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui, PR China
| | - Guoping Zhao
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, China Academy of Science, Hefei, Anhui, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui, PR China.
| | - Shaopeng Chen
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, China Academy of Science, Hefei, Anhui, PR China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui, PR China.
| |
Collapse
|
28
|
Kong L, Gao X, Zhu J, Cheng K, Tang M. Mechanisms involved in reproductive toxicity caused by nickel nanoparticle in female rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1674-1683. [PMID: 27257140 DOI: 10.1002/tox.22288] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/03/2016] [Accepted: 05/07/2016] [Indexed: 06/05/2023]
Abstract
Nickel nanoparticles (Ni NPs) are associated with reproductive toxicity. However, the mechanisms of reproductive toxicity are unclear. Our goal was to explore further reproductive toxicity induced by nickel nanoparticle and mechanisms involved in this process, including the role of oxidative stress and apoptosis. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including ultrastructural, reactive oxygen species (ROS), oxidant and antioxidant enzymes, and cell apoptosis-related factors. Ultrastructural results of ovaries showed mitochondrion swelling, disappearance of mitochondrial cristae, and enlargement of the endoplasmic reticulum in the exposure groups. NiNPs had significantly decreased the activity of SOD and CAT, and had increased the levels of ROS, MDA, and NO in comparison with the control groups. The mRNA expressions of caspase-3, caspase-8, and caspase-9 and the expressions of Fas, Cyt c, Bax, and Bid protein on the ovaries significantly increased. At the same time, the expressions of Bcl-2 protein were significantly decreased. Based on these results, oxidative stress and cell apoptosis may play the important roles in inducing reproductive toxicity after NiNPs treatment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1674-1683, 2016.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiaojie Gao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jiaqian Zhu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, People's Republic of China
| | - Keping Cheng
- Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
29
|
Long-term exposures to low doses of silver nanoparticles enhanced in vitro malignant cell transformation in non-tumorigenic BEAS-2B cells. Toxicol In Vitro 2016; 37:41-49. [PMID: 27596524 DOI: 10.1016/j.tiv.2016.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
Abstract
To predict carcinogenic potential of AgNPs on the respiratory system, BEAS-2B cells (human bronchial epithelial cells) were chronically exposed to low- and non-cytotoxic dose (0.13 and 1.33μg/ml) of AgNPs for 4months (#40 passages). To assess malignant cell transformation of chronic exposure to AgNPs, several bioassays including anchorage independent agar colony formation, cell migration/invasion assay, and epithelial-mesenchymal transition (EMT) were performed in BEAS-2B cells. Chronic exposure to AgNPs showed a significant increase of anchorage independent agar colony formation and cell migration/invasion. EMT, which is the loss of epithelial markers (E-Cadherin and Keratin) and the gain of mesenchymal marker (N-cadherin and Vimentin), was induced by chronic exposure to AgNPs. These responses indicated that chronic exposure to AgNPs could acquire characteristics of tumorigenic cells from normal BEAS-2B cells. In addition, caspase-3, p-p53, p-p38, and p-JNK were significantly decreased, while p-ERK1/2 was significantly increased. MMP-9 related to cell migration/invasion was upregulated, while a MMP-9 inhibitor, TIMP-1 was down-regulated. These results indicated that BEAS-2B cells exposed to AgNPs could induce anti-apoptotic response/anoikis resistance, and cell migration/invasion by complex regulation of MAPK kinase (p38, JNK, and ERK) and p53 signaling pathways. Therefore, we suggested that long-term exposure to low-dose of AgNPs could enhance malignant cell transformation in non-tumorigenic BEAS-2B cells. Our findings provide useful information needed to assess the carcinogenic potential of AgNPs.
Collapse
|
30
|
Perontsis S, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Nickel-diflunisal complexes: synthesis, characterization, in vitro antioxidant activity and interaction with DNA and albumins. J Inorg Biochem 2016; 162:9-21. [DOI: 10.1016/j.jinorgbio.2016.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/16/2016] [Accepted: 06/03/2016] [Indexed: 01/06/2023]
|
31
|
Yin Z, Wang Q, Li Y, Wei H, Shi J, Li A. A novel method for banking stem cells from human exfoliated deciduous teeth: lentiviral TERT immortalization and phenotypical analysis. Stem Cell Res Ther 2016; 7:50. [PMID: 27044500 PMCID: PMC4820856 DOI: 10.1186/s13287-016-0309-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/31/2016] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
Background Stem cells from human exfoliated deciduous teeth (SHED) have recently attracted attention as novel multipotential stem cell sources. However, their application is limited due to in vitro replicative senescence. Ectopic expression of telomerase reverse transcriptase (TERT) is a promising strategy for overcoming this replicative senescence. Nevertheless, its potential application and the phenotype as well as tumorigenicity have never been assessed in SHED. Methods TERT expression was stably restored in SHED (TERT-SHED) isolated from healthy children aged 6–8 years using lentiviral transduction with a puromycin selection marker. The expression of TERT was detected using reverse transcription polymerase chain reaction, Western blot and immunofluorescence. Surface markers of SHED were detected by flow cytometry. Enzyme-linked immunosorbent assay was used to assess senescence-associated β-galactosidase, while CCK-8 methods were used to examine the proliferation capacity of SHED and TERT-SHED at different passages. Moreover, multilineage differentiation, karyotype, colony formation in soft agar, and tumor formation in nude mice of SHED and TERT-SHED were also examined. Results Lentiviral transduction induced stable TERT expression even in SHED at the 40th passage. TERT-SHED showed robust proliferation capacity and low concentration of β-galactosidase. Although they had some different biomarkers than early passage SHED, TERT-SHED at late passage showed similar mutilineage differentiation as TERT at early passage. Moreover, TERT-SHED at late passage showed normal karyotype, no soft agar colony formation, and no tumor formation in nude mice. Conclusions TERT-immortalized SHED may be a promising resource for stem-cell therapy, although attention should be paid to the biological behavior of the cells.
Collapse
Affiliation(s)
- Zhanhai Yin
- Department of Orthopedics, First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Qi Wang
- Department of Periodontology, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Ye Li
- Department of Periodontology, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Hong Wei
- Research Center for Stomatology, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Jianfeng Shi
- Research Center for Stomatology, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Ang Li
- Department of Periodontology, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710004, P. R. China. .,Research Center for Stomatology, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710004, P. R. China.
| |
Collapse
|
32
|
Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways. PLoS One 2016; 11:e0150954. [PMID: 26943640 PMCID: PMC4778769 DOI: 10.1371/journal.pone.0150954] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.
Collapse
|
33
|
Abzhanova D, Godymchuk A, Gusev A, Kuznetsov D. Exposure of nano- and ultrafine Ni particles to synthetic biological solutions: predicting fate-related dissolution and accumulation. EUROPEAN JOURNAL OF NANOMEDICINE 2016. [DOI: 10.1515/ejnm-2016-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe growing production and use of nickel (Ni) nanopowders with low biopersistence makes dissolution and accumulation degree in a body an important parameters needed for the risk assessment of nanoparticles. We propose an experimental approach for rapid determination of the dissolution degree of nanoscale (77 nm) and ultrafine (275 nm) Ni particles in synthetic biological solutions. It has been shown that after 2 h of exposure to simulating saliva and lysosomal liquid the dissolution degree of nanoparticles can reach 30 and 60 wt.%, respectively. With decreasing of the particle’s size, they are characterized by increased solubility in saliva and the pulmonary tract; and the particles completely dissolve in 24 h. There was an attempt to predict the potential extent of accumulation of nickel compounds in the human body with particles entering the body by saliva or with breathing: with 3.8 times size decrease the probability of nickel accumulation in a body can rise in 3.5 times.
Collapse
|
34
|
Tee JK, Ong CN, Bay BH, Ho HK, Leong DT. Oxidative stress by inorganic nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:414-38. [PMID: 26359790 DOI: 10.1002/wnan.1374] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/04/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
Abstract
Metallic and metallic oxide nanoparticles (NPs) have been increasingly used for various bio-applications owing to their unique physiochemical properties in terms of conductivity, optical sensitivity, and reactivity. With the extensive usage of NPs, increased human exposure may cause oxidative stress and lead to undesirable health consequences. To date, various endogenous and exogenous sources of oxidants contributing to oxidative stress have been widely reported. Oxidative stress is generally defined as an imbalance between the production of oxidants and the activity of antioxidants, but it is often misrepresented as a single type of cellular stress. At the biological level, NPs can initiate oxidative stress directly or indirectly through various mechanisms, leading to profound effects ranging from the molecular to the disease level. Such effects of oxidative stress have been implicated owing to their small size and high biopersistence. On the other hand, cellular antioxidants help to counteract oxidative stress and protect the cells from further damage. While oxidative stress is commonly known to exert negative biological effects, measured and intentional use of NPs to induce oxidative stress may provide desirable effects to either stimulate cell growth or promote cell death. Hence, NP-induced oxidative stress can be viewed from a wide paradigm. Because oxidative stress is comprised of a wide array of factors, it is also important to use appropriate assays and methods to detect different pro-oxidant and antioxidant species at molecular and disease levels. WIREs Nanomed Nanobiotechnol 2016, 8:414-438. doi: 10.1002/wnan.1374 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jie Kai Tee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, Singapore, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, National University of Singapore, Singapore, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, Singapore, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, Singapore, Singapore
| |
Collapse
|
35
|
Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. Int J Mol Sci 2014; 15:21253-69. [PMID: 25407529 PMCID: PMC4264223 DOI: 10.3390/ijms151121253] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 01/01/2023] Open
Abstract
Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions.
Collapse
|