1
|
Kanzaki K, Wada M. Arginine ingestion inhibits phagocyte invasion in eccentrically contracted rat fast-twitch muscle. J Muscle Res Cell Motil 2024; 45:201-209. [PMID: 38635146 PMCID: PMC11554738 DOI: 10.1007/s10974-024-09672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Eccentric contraction (ECC) has been shown to induce leukocyte invasion into skeletal muscle, resulting in muscle inflammation. This study aimed to investigate whether prior ingestion of L-arginine (ARG), a nitric oxide precursor, inhibits ECC-induced macrophage invasion. Male Wistar rats received ARG in water for 7 days, beginning 3 days prior to ECC. ECCs were induced in the anterior crural muscles for 200 cycles. Three days later, the tibialis anterior and extensor digitorum longus muscles were excised for biochemical analysis and force measurement, respectively. ARG ingestion increased nitrite and nitrate levels in plasma and muscle, inhibiting force depression and reducing CD68 content in muscles subjected to ECC. ARG ingestion also ameliorated an ECC-induced increase in protein nitration, although neither ARG ingestion nor ECC induction affected protein carbonyl levels. The present results suggest that ingestion of ARG or ARG-rich foods may alleviate inflammation by attenuating phagocyte invasion in eccentrically contracted skeletal muscles.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8521, Japan.
| |
Collapse
|
2
|
Kanzaki K, Watanabe D, Shi J, Wada M. Mechanisms of eccentric contraction-induced muscle damage and nutritional supplementations for mitigating it. J Muscle Res Cell Motil 2022; 43:147-156. [PMID: 35854160 DOI: 10.1007/s10974-022-09625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Eccentric contraction (ECC) often results in large and long-lasting force deficits accompanied by muscle soreness, primarily due to muscle damage. In this sense, exercises that involve ECC are less desirable. Paradoxically, exercise training that includes a substantial eccentric phase leads to a more powerful activation of the genes responsible for skeletal muscle remodeling (e.g., hypertrophy) than other types of training that emphasize a concentric or isometric phase. Therefore, effective strategies that lessen ECC-induced muscle damage will be of interest and importance to many individuals. The purpose of this brief review is to highlight the published literature on the effects of ECC and/or nutritional supplementations on proteins, lipids, metabolic and ionic changes, and enzyme activities in skeletal muscles subjected to an acute bout of ECC. First, we discuss the potential mechanisms by which ECC causes muscle damage. Previous findings implicate a Ca2+ overload-oxidative modification pathway as one possible mechanism contributing to muscle damage. Thereafter, the efficacy of two nutritional supplementations, i.e., L-arginine and antioxidant, is discussed because L-arginine and antioxidant would be expected to ameliorate the adverse effects of Ca2+ overload and oxidative modification, respectively. Of these, L-arginine ingestion before ECC seems likely to be the effective strategy for mitigating ECC-related proteolysis. More studies are needed to establish the effectiveness of antioxidant ingestion. The application of effective strategies against muscle damage may contribute to improvements in health and fitness, muscle function, and sports performance.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-7-1 Kagamiyama, 739-8521, Higasihiroshima-shi, Hiroshima, Japan
| | - Jiayu Shi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-7-1 Kagamiyama, 739-8521, Higasihiroshima-shi, Hiroshima, Japan.
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
3
|
Kim DY, Oh SL, Lim JY. Applications of Eccentric Exercise to Improve Muscle and Mobility Function in Older Adults. Ann Geriatr Med Res 2022; 26:4-15. [PMID: 35038818 PMCID: PMC8984170 DOI: 10.4235/agmr.21.0138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/01/2022] Open
Abstract
Muscle aging ultimately leads to the deterioration of human physiological functioning, including declining muscle strength, loss of muscle mass, and decreased quality of life in advanced age. Eccentric exercise is a key intervention that has the potential to ameliorate this problem. Recent studies have focused on evidence-based exercise interventions to prevent declines in muscle strength and physical function in older adults. This paper reviewed relevant literature on the use of eccentric exercise to improve muscle and mobility function in older adults. We explained not only the changes in mobility that occur with aging but also the rationale for and positive effects of eccentric intervention in older adults. We also explored several proposed mechanisms for the intramuscular changes caused by eccentric muscle contraction and considered the safety and side effects accompanying eccentric training. We concluded by suggesting that eccentric exercise is an exercise modality that can potentially improve muscle strength and enhance mobility in older adults.
Collapse
Affiliation(s)
- Dae Young Kim
- Department of Rehabilitation Medicine, Aging and Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul, Republic of Korea
| | - Seung Lyul Oh
- Department of Rehabilitation Medicine, Aging and Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Aging and Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Minari ALA, Thomatieli-Santos RV. From skeletal muscle damage and regeneration to the hypertrophy induced by exercise: What is the role of different macrophages subsets? Am J Physiol Regul Integr Comp Physiol 2021; 322:R41-R54. [PMID: 34786967 DOI: 10.1152/ajpregu.00038.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that these macrophages could also present two major subsets during tissue healing; proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are accountable for the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets is critical during myogenesis, not only to understand the inflammatory role of macrophages during muscle recovery but also to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. This narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Universidade estadual Paulista, Campus Presidente Prudente, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| | - Ronaldo V Thomatieli-Santos
- Universidade Federal de São Paulo, Campus Baixada Santista, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| |
Collapse
|
5
|
Gong L, Zhang X, Qiu K, He L, Wang Y, Yin J. Arginine promotes myogenic differentiation and myotube formation through the elevation of cytoplasmic calcium concentration. ACTA ACUST UNITED AC 2021; 7:1115-1123. [PMID: 34738042 PMCID: PMC8543491 DOI: 10.1016/j.aninu.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
This study aimed to explore the mechanism underlying arginine-promoted myogenesis of myoblasts. C2C12 cells were cultured with a medium containing 0.1, 0.4, 0.8, or 1.2 mmol/L arginine, respectively. Cell proliferation, viability, differentiation indexes, cytoplasmic Ca2+ concentration, and relative mRNA expression levels of myogenic regulatory factors (MRF) and key Ca2+ channels were measured in the absence or presence of 2 chemical inhibitors, dantrolene (DAN, 10 μmol/L) and nisoldipine (NIS, 10 μmol/L), respectively. Results demonstrated that arginine promoted myogenic differentiation and myotube formation. Compared with the control (0.4 mmol/L arginine), 1.2 mmol/L arginine upregulated the relative mRNA expression levels of myogenin (MyoG) and Myomaker at d 2 during myogenic induction (P < 0.05). Cytoplasmic Ca2+ concentrations were significantly elevated by arginine supplementation at d 2 and 4 (P < 0.05). Relative mRNA expression levels of Ca2+ channels including the type 1 ryanodine receptor (RyR1) and voltage-gated Ca2+ channel (Cav1.1) were upregulated by 1.2 mmol/L arginine during 2-d myogenic induction (P < 0.01). However, arginine-promoted myogenic potential of myoblasts was remarkably compromised by DAN and NIS, respectively (P < 0.05). These findings evidenced that the supplementation of arginine promoted myogenic differentiation and myotube formation through increasing cytoplasmic Ca2+ concentration from both extracellular and sarcoplasmic reticulum Ca2+.
Collapse
Affiliation(s)
- Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Rezaei S, Gholamalizadeh M, Tabrizi R, Nowrouzi-Sohrabi P, Rastgoo S, Doaei S. The effect of L-arginine supplementation on maximal oxygen uptake: A systematic review and meta-analysis. Physiol Rep 2021; 9:e14739. [PMID: 33587327 PMCID: PMC7883807 DOI: 10.14814/phy2.14739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background The efficacy and safety of L‐arginine supplements and their effect on maximal oxygen uptake (VO2 max) remained unclear. This systematic review aimed to investigate the effect of L‐arginine supplementation (LAS) on VO2 max in healthy people. Methods We searched PubMed, Scopus, Web of Science, Cochrane, Embase, ProQuest, and Ovid to identify all relevant literature investigating the effect of LAS on VO2 max. This meta‐analysis was conducted via a random‐effects model for the best estimation of desired outcomes and studies that meet the inclusion criteria were considered for the final analysis. Results The results of 11 randomized clinical trials indicated that LAS increased VO2 max compared to the control group. There was no significant heterogeneity in this meta‐analysis. Subgroup analysis detected that arginine in the form of LAS significantly increased VO2 max compared to the other forms (weighted mean difference = 0.11 L min−1, I2 = 0.0%, p for heterogeneity = 0.485). Conclusions This meta‐analysis indicated that supplementation with L‐arginine could increase VO2 max in healthy people. Further studies are warranted to confirm this finding and to identify the underlying mechanisms. This meta‐analysis indicated that the supplementation of L‐arginine could increase VO2 max in healthy people
Collapse
Affiliation(s)
- Shahla Rezaei
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tabrizi
- Non-Communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Peyman Nowrouzi-Sohrabi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Rastgoo
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Saeid Doaei
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Sharlo KA, Paramonova II, Lvova ID, Mochalova EP, Kalashnikov VE, Vilchinskaya NA, Tyganov SA, Konstantinova TS, Shevchenko TF, Kalamkarov GR, Shenkman BS. Plantar Mechanical Stimulation Maintains Slow Myosin Expression in Disused Rat Soleus Muscle via NO-Dependent Signaling. Int J Mol Sci 2021; 22:1372. [PMID: 33573052 PMCID: PMC7866401 DOI: 10.3390/ijms22031372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
It was observed that gravitational unloading during space missions and simulated microgravity in ground-based studies leads to both transformation of slow-twitch muscle fibers into fast-twitch fibers and to the elimination of support afferentation, leading to the "switching-off" of postural muscle motor units electrical activity. In recent years, plantar mechanical stimulation (PMS) has been found to maintain the neuromuscular activity of the hindlimb muscles. Nitric oxide (NO) was shown to be one of the mediators of muscle fiber activity, which can also promote slow-type myosin expression. We hypothesized that applying PMS during rat hindlimb unloading would lead to NO production upregulation and prevention of the unloading-induced slow-to-fast fiber-type shift in rat soleus muscles. To test this hypothesis, Wistar rats were hindlimb suspended and subjected to daily PMS, and one group of PMS-subjected animals was also treated with nitric oxide synthase inhibitor (L-NAME). We discovered that PMS led to sustained NO level in soleus muscles of the suspended animals, and NOS inhibitor administration blocked this effect, as well as the positive effects of PMS on myosin I and IIa mRNA transcription and slow-to-fast fiber-type ratio during rat hindlimb unloading. The results of the study indicate that NOS activity is necessary for the PMS-mediated prevention of slow-to-fast fiber-type shift and myosin I and IIa mRNA transcription decreases during rat hindlimb unloading.
Collapse
Affiliation(s)
- Kristina A. Sharlo
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Inna I. Paramonova
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Irina D. Lvova
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Ekaterina P. Mochalova
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Vitaliy E. Kalashnikov
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Natalia A. Vilchinskaya
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Sergey A. Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| | - Tatyana S. Konstantinova
- Emanuel Institute of Biochemical Physics, RAS, 123007 Moscow, Russia; (T.S.K.); (T.F.S.); (G.R.K.)
| | - Tatiana F. Shevchenko
- Emanuel Institute of Biochemical Physics, RAS, 123007 Moscow, Russia; (T.S.K.); (T.F.S.); (G.R.K.)
| | - Grigoriy R. Kalamkarov
- Emanuel Institute of Biochemical Physics, RAS, 123007 Moscow, Russia; (T.S.K.); (T.F.S.); (G.R.K.)
| | - Boris S. Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia; (K.A.S.); (I.D.L.); (E.P.M.); (V.E.K.); (N.A.V.); (S.A.T.); (B.S.S.)
| |
Collapse
|
8
|
Sharlo KA, Paramonova II, Lvova ID, Vilchinskaya NA, Bugrova AE, Shevchenko TF, Kalamkarov GR, Shenkman BS. NO-Dependent Mechanisms of Myosin Heavy Chain Transcription Regulation in Rat Soleus Muscle After 7-Days Hindlimb Unloading. Front Physiol 2020; 11:814. [PMID: 32754051 PMCID: PMC7366496 DOI: 10.3389/fphys.2020.00814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/18/2020] [Indexed: 12/27/2022] Open
Abstract
It is known that nitric oxide (NO) may affect myosin heavy chain (MyHC) isoform mRNA transcription in skeletal muscles. The content of NO in soleus muscles decreases during rat hindlimb unloading as well as slow MyHC mRNA transcription. We aimed to detect which signaling pathways are involved in NO-dependent prevention of hindlimb-suspension (HS)-induced changes in MyHCs’ expression pattern. Male Wistar rats were divided into four groups: cage control group (C), hindlimb suspended for 7 days (7HS), hindlimb suspended for 7 days with L-arginine administration (7HS+A) (500 mg/kg body mass), and hindlimb suspended for 7 days with both L-arginine (500 mg/kg) and NO-synthase inhibitor L-NAME administration (50 mg/kg) (7HS+A+N). L-arginine treatment during 7 days of rat HS prevented HS-induced NO content decrease and slow MyHC mRNA transcription decrease and attenuated fast MyHC IIb mRNA transcription increase; it also prevented NFATc1 nuclear content decrease, calsarcin-2 expression increase, and GSK-3β Ser 9 phosphorylation decrease. Moreover, L-arginine administration prevented the HS-induced myh7b and PGC1α mRNAs content decreases and slow-type genes repressor SOX6 mRNA transcription increase. All these slow fiber-type protective effects of L-arginine were blocked in HS+A+N group, indicating that these effects were NO-dependent. Thus, NO decrease prevention during HS restores calcineurin/NFATc1 and myh7b/SOX6 signaling.
Collapse
Affiliation(s)
- Kristina A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inna I Paramonova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Irina D Lvova
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia A Vilchinskaya
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Anna E Bugrova
- Neurochemistry Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana F Shevchenko
- Neurochemistry Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Grigoriy R Kalamkarov
- Neurochemistry Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Kanzaki K, Watanabe D, Aibara C, Kawakami Y, Yamada T, Takahashi Y, Wada M. l-arginine ingestion inhibits eccentric contraction-induced proteolysis and force deficit via S-nitrosylation of calpain. Physiol Rep 2019; 6. [PMID: 29368397 PMCID: PMC5789731 DOI: 10.14814/phy2.13582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/24/2022] Open
Abstract
It has been shown that calpains are involved in the proteolysis of muscle proteins that occurs with eccentric contraction (ECC) and that exogenously applied nitric oxide decreases the calpain‐mediated proteolysis. The aim of this study was to examine the effects of ingestion of l‐arginine (ARG), a nitric oxide precursor, on ECC‐related calpain activation. In the first and second experiments, male Wistar rats were given ARG in water for 7 days starting from 3 days before the ECC protocol (average ingestion, ~600 mg kg‐body wt−1 day−1). Tibialis anterior muscles underwent 200 repeated ECCs and, subsequently, were excised 3 days later. Whole muscle analyses (the first experiment) revealed that ARG attenuated ECC‐induced force deficit and autolysis of calpain‐1, and increased the amounts of S‐nitrosylated calpain‐1. Regarding ryanodine receptor (RyR) and dihydropyridine receptor (DHPR), ECC‐induced proteolysis was completely inhibited by ARG, whereas the inhibition was partial for junctophilin‐1 (JP1). Skinned fiber analyses (the second experiment) showed that ARG also inhibited ECC‐elicited reductions in the ratio of depolarization‐induced to maximum Ca2+‐activated force. In the third experiment, homogenates of rested muscles were treated with S‐nitrosylating agent, S‐nitrosoglutathione (GSNO), and/or high Ca2+ concentration ([Ca2+]). Treatment with high [Ca2+] and without GSNO produced proteolysis of RyR, DHPR, and JP1. On the other hand, treatment with high [Ca2+] and GSNO caused complete inhibition of RyR and DHPR proteolysis and partial inhibition of JP1 proteolysis. These results indicate that ARG ingestion can attenuate ECC‐induced proteolysis of Ca2+ regulatory proteins and force deficit by decreasing calpain activation via S‐nitrosylation.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Kanzaki K, Watanabe D, Aibara C, Kawakami Y, Yamada T, Takahashi Y, Wada M. Ingestion of soy protein isolate attenuates eccentric contraction-induced force depression and muscle proteolysis via inhibition of calpain-1 activation in rat fast-twitch skeletal muscle. Nutrition 2018; 58:23-29. [PMID: 30273822 DOI: 10.1016/j.nut.2018.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/24/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Eccentric contraction (ECC) is a contraction in which skeletal muscles are stretched while contracting. The aim of this study was to determine how ingestion of soy protein isolate (SPI) or animal-based proteins affect force deficit, calpain activation, and proteolysis of calcium ion (Ca2+)-regulatory proteins in rat fast-twitch muscles subjected to ECC. METHODS In the first experiment, male Wistar rats were randomly assigned to a control and an SPI group, which were fed a 20% casein and a 20% SPI diet, respectively, for 28 d before the ECC protocol. Anterior crural muscles underwent 200 repeated ECCs and were excised 3 d later. In the second experiment, half of the SPI rats were given water containing NG-nitro-l-arginine-methyl ester (L-NAME), an inhibitor of nitric oxide synthase, for 3 d of recovery after ECC. RESULTS SPI ingestion attenuated ECC-induced force deficit, proteolysis of Ca2+-regulatory proteins, and autolysis of calpain-1. Co-ingestion of L-NAME inhibited SPI-associated increases in nitrite and nitrate levels and negated the force recovery effects of SPI. CONCLUSION These results suggest that SPI ingestion inhibits ECC-elicited force deficit and proteolysis of Ca2+ regulatory proteins, which is caused by inhibited activation of calpain-1 via increased nitric oxide production.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
11
|
Moura CS, Lollo PCB, Morato PN, Amaya-Farfan J. Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review. Nutrients 2018; 10:nu10060683. [PMID: 29843396 PMCID: PMC6024325 DOI: 10.3390/nu10060683] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/06/2023] Open
Abstract
Interest in the heat shock proteins (HSPs), as a natural physiological toolkit of living organisms, has ranged from their chaperone function in nascent proteins to the remedial role following cell stress. As part of the defence system, HSPs guarantee cell tolerance against a variety of stressors, including exercise, oxidative stress, hyper and hypothermia, hyper and hypoxia and improper diets. For the past couple of decades, research on functional foods has revealed a number of substances likely to trigger cell protection through mechanisms that involve the induction of HSP expression. This review will summarize the occurrence of the most easily inducible HSPs and describe the effects of dietary proteins, peptides, amino acids, probiotics, high-fat diets and other food-derived substances reported to induce HSP response in animals and humans studies. Future research may clarify the mechanisms and explore the usefulness of this natural alternative of defense and the modulating mechanism of each substance.
Collapse
Affiliation(s)
- Carolina Soares Moura
- Protein Resources Laboratory, Food and Nutrition Department, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862 São Paulo, Brazil.
| | | | - Priscila Neder Morato
- School of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Mato Grosso do Sul, Brazil.
| | - Jaime Amaya-Farfan
- Protein Resources Laboratory, Food and Nutrition Department, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862 São Paulo, Brazil.
| |
Collapse
|
12
|
Thirupathi A, Freitas S, Sorato HR, Pedroso GS, Effting PS, Damiani AP, Andrade VM, Nesi RT, Gupta RC, Muller AP, Pinho RA. Modulatory effects of taurine on metabolic and oxidative stress parameters in a mice model of muscle overuse. Nutrition 2018; 54:158-164. [PMID: 29982143 DOI: 10.1016/j.nut.2018.03.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the regulatory effects of taurine on the biochemical parameters of muscle injury by overuse. METHODS Male Swiss mice were divided into four groups: control (Ctrl), overuse (Ov), taurine (Tau), and overuse plus taurine (OvTau). High-intensity exercise sessions were administered for 21 d with concomitant subcutaneous injections of taurine (150 mg/kg). The mice were then sacrificed. The quadriceps muscles were surgically removed for subsequent histologic analysis and evaluation of mitochondrial function, oxidative stress parameters, tissue repair, and DNA damage markers. RESULTS The Ov group showed significant differences compared with the Ctrl group (all P <0.05). The fiber area decreased by 49.34%, whereas the centralized nuclei contents (Ctrl = 1.33%; Ov = 28.67%), membrane potential (Ctrlsuc = 179.05 arbitrary fluorescence units (AFUs), Ctrlsuc+ADP = 198.11 AFUs; Ovsuc = 482.95 AFUs, Ovsuc+ADP = 461.6 AFUs), complex I activity (Ctrl = 20.45 nmol ⋅ min ⋅ mg protein, Ov = 45.25 nmol ⋅ min ⋅ mg protein), hydrogen peroxide (Ctrlsuc = 1.08 relative fluorescence unit (RFU) ⋅ sec ⋅ mg protein, Ctrlsuc+ADP = 0.23 RFU ⋅ sec ⋅ mg protein; Ovsuc = 5.02 RFU ⋅ sec ⋅ mg protein, Ovsuc+ADP = 0.26 RFU ⋅ sec ⋅ mg protein) and malondialdehyde (Ctrl = 0.03 nmol ⋅ mg ⋅ protein, Ov = 0.06 nmol ⋅ mg ⋅ protein) levels, and DNA damage (Ctrlfreq = 7.17%, Ovfreq = 31.17%; Ctrlindex = 4.17, Ovindex = 72.5) were increased. Taurine administration reduced the number of centralized nuclei (OvTau = 5%), hydrogen peroxide levels (OvTausuc = 2.81 RFU ⋅ sec ⋅ mg protein, OvTaussuc+ADP = 1.54 RFU ⋅ sec ⋅ mg protein), membrane potential (OvTausuc = 220.18 AFUs, OvTaussuc+ADP = 235.28 AFUs), lipid peroxidation (OvTau = 0.02 nmol/mg protein), and DNA damage (OvTaufreq = 21.33%, OvTauindex = 47.83) and increased the fiber area by 54% (all P <0.05). CONCLUSION Taken together, these data suggest that taurine supplementation modulates various cellular remodeling parameters after overuse-induced muscle damage, and that these positive effects may be related to its antioxidant capacity.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Sharon Freitas
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Helen R Sorato
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Giulia S Pedroso
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Pauline S Effting
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Adriani P Damiani
- Laboratory of Molecular and Cellular Biology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Vanessa M Andrade
- Laboratory of Molecular and Cellular Biology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Renata T Nesi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | | | - Alexandre P Muller
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, School of Medicine, Graduate Program in Health Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
13
|
Kim YA, Oh SH, Lee GH, Hoa PT, Jin SW, Chung YC, Lee YC, Jeong HG. Platycodon grandiflorum-derived saponin attenuates the eccentric exercise-induced muscle damage. Food Chem Toxicol 2018; 112:150-156. [DOI: 10.1016/j.fct.2017.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/11/2023]
|
14
|
Clifford T, Howatson G, West DJ, Stevenson EJ. Beetroot juice is more beneficial than sodium nitrate for attenuating muscle pain after strenuous eccentric-bias exercise. Appl Physiol Nutr Metab 2017; 42:1185-1191. [DOI: 10.1139/apnm-2017-0238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to compare the effects of beetroot juice (BTJ) and a nitrate only drink (sodium nitrate; SN) on indices of exercise-induced muscle damage (EIMD). Thirty recreationally active males consumed either BTJ (n = 10), a nitrate-matched SN drink (n = 10), or an isocaloric placebo (PLA; n = 10) immediately and at 24 and 48 h after performing 100 drop jumps. To assess muscle damage, maximal isometric voluntary contractions (MIVCs), countermovement jumps (CMJs), pressure-pain threshold (PPT), creatine kinase (CK), and high-sensitivity C-reactive protein (hs-CRP) were measured before, immediately after and at 24, 48, and 72 h following the drop jumps. BTJ and SN increased serum nitric oxide, which peaked at 2 h post-ingestion (136 ± 78 and 189 ± 79 μmol·L−1, respectively). PPT decreased in all groups postexercise (P = 0.001), but was attenuated with BTJ compared with SN and PLA (P = 0.043). PPT was 104% ± 26% of baseline values at 72 h after BTJ, 94% ± 16% after SN, and 91% ± 19% after PLA. MIVC and CMJ were reduced following exercise (−15% to 25%) and did not recover to baseline by 72 h in all groups; however, no group differences were observed (P > 0.05). Serum CK increased after exercise but no group differences were present (P > 0.05). hsCRP levels were unaltered by the exercise protocol (P > 0.05). These data suggest that BTJ supplementation is more effective than SN for attenuating muscle pain associated with EIMD, and that any analgesic effects are likely due to phytonutrients in BTJ other than nitrate, or interactions between them.
Collapse
Affiliation(s)
- Tom Clifford
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| | - Daniel J. West
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Emma J. Stevenson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
15
|
Morais SRL, Brito VGB, Mello WG, Oliveira SHP. l-arginine modulates inflammation and muscle regulatory genes after a single session of resistance exercise in rats. Scand J Med Sci Sports 2017. [PMID: 28649743 DOI: 10.1111/sms.12935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigated the skeletal muscle adaptation to l-arginine supplementation prior to a single session of resistance exercise (RE) during the early phase of muscle repair. Wistar rats were randomly assigned into non-exercised (Control), RE plus vehicle (RE); RE plus l-arginine (RE+L-arg) and RE plus aminoguanidine (RE+AG) groups. Animals received four doses of either vehicle (0.9% NaCl), l-arg (1 g/b.w.), or AG (iNOS inhibitor) (50 mg/b.w.). The animals performed a single RE session until the concentric failure (ladder climbing; 80% overload) and the skeletal muscles were harvested at 0, 8, 24, and 48 hours post-RE. The RE resulted in increased neutrophil infiltrate (24 hours post-RE) (3621 vs 11852; P<.0001) associated with enhanced TNF-α (819.49 vs 357.02; P<.005) and IL-6 (3.84 vs 1.08; P<.0001). Prior, l-arginine supplementation attenuates neutrophil infiltration (5622; P<.0001), and also TNF-α (506.01; P<.05) and IL-6 (2.51, P<.05) levels. AG pretreatment mediated an inhibition of iNOS levels similar to levels found in RE group. RE animals displayed increased of atrogin-1 (1.9 fold) and MuRF-1 (3.2 fold) mRNA levels, reversed by l-arg supplementation [atrogin-1 (0.6 fold; P<.001); MuRF-1 (0.8-fold; P<.001)] at 24 hours post-RE. MyoD up-regulated levels were restricted to l-arg treated animals at 24 hours (2.8 vs 1.5 fold; P<.005) and 48 hours post-RE (2.4 vs 1.1 fold; P<.001). AG pretreatment reversed these processes at 24 hours [atrogin-1 (2.1 fold; P<.0001); MuRF-1 (2.5 fold; P<.0001); MyoD (1.4 fold)]. l-arginine supplementation seems to attenuate the resolution of RE-induced muscle inflammation and up-regulates MyoD expression during the early phase of muscle repair.
Collapse
Affiliation(s)
- S R L Morais
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - V G B Brito
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - W G Mello
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - S H P Oliveira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
16
|
Moura CS, Lollo PCB, Morato PN, Risso EM, Amaya-Farfan J. Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats. Food Funct 2017; 8:3228-3238. [DOI: 10.1039/c7fo00465f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, including intense exercise.
Collapse
Affiliation(s)
- Carolina Soares Moura
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Pablo Christiano Barboza Lollo
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Priscila Neder Morato
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Eder Muller Risso
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Jaime Amaya-Farfan
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| |
Collapse
|
17
|
Clifford T, Allerton DM, Brown MA, Harper L, Horsburgh S, Keane KM, Stevenson EJ, Howatson G. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl Physiol Nutr Metab 2016; 42:263-270. [PMID: 28165768 DOI: 10.1139/apnm-2016-0525] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study examined whether beetroot juice (BTJ) would attenuate inflammation and muscle damage following a marathon. Using a double blind, independent group design, 34 runners (each having completed ca. ∼16 previous marathons) consumed either BTJ or an isocaloric placebo (PLA) for 3 days following a marathon. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), muscle soreness, serum cytokines, leucocytosis, creatine kinase (CK), high sensitivity C-reactive protein (hs-CRP), and aspartate aminotransferase (AST) were measured pre, post, and 2 days after the marathon. CMJ and MIVC were reduced after the marathon (P < 0.05), but no group differences were observed (P > 0.05). Muscle soreness was increased in the day after the marathon (BTJ; 45 ± 48 vs. PLA; 46 ± 39 mm) and had returned to baseline by day 2, irrespective of supplementation (P = 0.694). Cytokines (interleukin-6; IL-6, interleukin-8, tumour necrosis factor-α) were increased immediately post-marathon but apart from IL-6 had returned to baseline values by day 1 post. No interaction effects were evident for IL-6 (P = 0.213). Leucocytes increased 1.7-fold after the race and remained elevated 2 days post, irrespective of supplement (P < 0.0001). CK peaked at 1 day post marathon (BTJ: 965 ± 967, and PLA: 1141 ± 979 IU·L-1) and like AST and hs-CRP, was still elevated 2 days after the marathon (P < 0.05); however, no group differences were present for these variables. Beetroot juice did not attenuate inflammation or reduce muscle damage following a marathon, possibly because most of these indices were not markedly different from baseline values in the days after the marathon.
Collapse
Affiliation(s)
- Tom Clifford
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Dean M Allerton
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Meghan A Brown
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Liam Harper
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Steven Horsburgh
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Karen M Keane
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Emma J Stevenson
- b Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Glyn Howatson
- a Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK.,c Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| |
Collapse
|
18
|
Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016; 8:nu8080506. [PMID: 27548212 PMCID: PMC4997419 DOI: 10.3390/nu8080506] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022] Open
Abstract
This study examined the effects of beetroot juice (BTJ) on recovery between two repeated-sprint tests. In an independent groups design, 20 male, team-sports players were randomized to receive either BTJ or a placebo (PLA) (2 × 250 mL) for 3 days after an initial repeated sprint test (20 × 30 m; RST1) and after a second repeated sprint test (RST2), performed 72 h later. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), reactive strength index (RI), pressure-pain threshold (PPT), creatine kinase (CK), C-reactive protein (hs-CRP), protein carbonyls (PC), lipid hydroperoxides (LOOH) and the ascorbyl free radical (A•−) were measured before, after, and at set times between RST1 and RST2. CMJ and RI recovered quicker in BTJ compared to PLA after RST1: at 72 h post, CMJ and RI were 7.6% and 13.8% higher in BTJ vs. PLA, respectively (p < 0.05). PPT was 10.4% higher in BTJ compared to PLA 24 h post RST2 (p = 0.012) but similar at other time points. No group differences were detected for mean and fastest sprint time or fatigue index. MIVC, or the biochemical markers measured (p > 0.05). BTJ reduced the decrement in CMJ and RI following and RST but had no effect on sprint performance or oxidative stress.
Collapse
|