1
|
CBL mutations drive PI3K/AKT signaling via increased interaction with LYN and PIK3R1. Blood 2021; 137:2209-2220. [PMID: 33512474 DOI: 10.1182/blood.2020006528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Casitas B-lineage lymphoma (CBL) encodes an E3 ubiquitin ligase and signaling adaptor that regulates receptor and nonreceptor tyrosine kinases. Recurrent CBL mutations occur in myeloid neoplasms, including 10% to 20% of chronic myelomonocytic leukemia (CMML) cases, and selectively disrupt the protein's E3 ubiquitin ligase activity. CBL mutations have been associated with poor prognosis, but the oncogenic mechanisms and therapeutic implications of CBL mutations remain incompletely understood. We combined functional assays and global mass spectrometry to define the phosphoproteome, CBL interactome, and mechanism of signaling activation in a panel of cell lines expressing an allelic series of CBL mutations. Our analyses revealed that increased LYN activation and interaction with mutant CBL are key drivers of enhanced CBL phosphorylation, phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) recruitment, and downstream phosphatidylinositol 3-kinase (PI3K)/AKT signaling in CBL-mutant cells. Signaling adaptor domains of CBL, including the tyrosine kinase-binding domain, proline-rich region, and C-terminal phosphotyrosine sites, were all required for the oncogenic function of CBL mutants. Genetic ablation or dasatinib-mediated inhibition of LYN reduced CBL phosphorylation, CBL-PIK3R1 interaction, and PI3K/AKT signaling. Furthermore, we demonstrated in vitro and in vivo antiproliferative efficacy of dasatinib in CBL-mutant cell lines and primary CMML. Overall, these mechanistic insights into the molecular function of CBL mutations provide rationale to explore the therapeutic potential of LYN inhibition in CBL-mutant myeloid malignancies.
Collapse
|
2
|
Fyn kinase mediates pro-inflammatory response in a mouse model of endotoxemia: Relevance to translational research. Eur J Pharmacol 2020; 881:173259. [PMID: 32565338 DOI: 10.1016/j.ejphar.2020.173259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/14/2023]
Abstract
Systemic inflammation resulting from the release of pro-inflammatory cytokines and the chronic activation of the innate immune system remains a major cause of morbidity and mortality in the United States. After having demonstrated that Fyn, a Src family kinase, regulates microglial neuroinflammatory responses in cell culture and animal models of Parkinson's disease, we investigate here its role in modulating systemic inflammation using an endotoxic mouse model. Fyn knockout (KO) and their wild-type (WT) littermate mice were injected once intraperitoneally with either saline or 5 mg/kg lipopolysaccharide (LPS) and were killed 48 h later. LPS-induced mortality, endotoxic symptoms and hypothermia were significantly attenuated in Fyn KO, but not WT, mice. LPS reduced survival in Fyn WT mice to 49% compared to 84% in Fyn KO mice. Fyn KO mice were also protected from LPS-induced deficits in horizontal and vertical locomotor activities, total distance traveled and stereotypic movements. Surface body temperatures recorded at 24 h and 48 h post-LPS dropped significantly in Fyn WT, but not in KO, mice. Importantly, endotoxemia-associated changes to levels of the serum pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), splenocyte apoptosis and inducible nitric oxide synthase (iNOS) production in hepatocytes were also significantly attenuated in Fyn KO mice. Likewise, pharmacologically inhibiting Fyn with 10 mg/kg dasatinib (oral) significantly attenuated LPS-induced increases in plasma TNF-α and IL-6 protein levels and hepatic pro-IL-1β messenger ribonucleic acids (mRNAs). Collectively, these results indicate that genetic knockdown or pharmacological inhibition of Fyn dampens systemic inflammation, demonstrating for the first time that Fyn kinase plays a critical role in mediating the endotoxic inflammatory response.
Collapse
|
3
|
Lv K, Jiang J, Donaghy R, Riling CR, Cheng Y, Chandra V, Rozenova K, An W, Mohapatra BC, Goetz BT, Pillai V, Han X, Todd EA, Jeschke GR, Langdon WY, Kumar S, Hexner EO, Band H, Tong W. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes Dev 2017; 31:1007-1023. [PMID: 28611190 PMCID: PMC5495118 DOI: 10.1101/gad.297135.117] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Here, Lv et al. report that the CBL family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. Their results reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies. Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b. Importantly, primary human CBL mutated (CBLmut) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan Donaghy
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vemika Chandra
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Krasimira Rozenova
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Vinodh Pillai
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily A Todd
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Grace R Jeschke
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Suresh Kumar
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Elizabeth O Hexner
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Tyrosine kinase inhibitor therapy-induced changes in humoral immunity in patients with chronic myeloid leukemia. J Cancer Res Clin Oncol 2017; 143:1543-1554. [DOI: 10.1007/s00432-017-2378-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 11/26/2022]
|
5
|
Acquired expression of CblQ367P in mice induces dysplastic myelopoiesis mimicking chronic myelomonocytic leukemia. Blood 2017; 129:2148-2160. [PMID: 28209720 DOI: 10.1182/blood-2016-06-724658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a hematological malignancy characterized by uncontrolled proliferation of dysplastic myelomonocytes and frequent progression to acute myeloid leukemia (AML). We identified mutations in the Cbl gene, which encodes a negative regulator of cytokine signaling, in a subset of CMML patients. To investigate the contribution of mutant Cbl in CMML pathogenesis, we generated conditional knockin mice for Cbl that express wild-type Cbl in a steady state and inducibly express CblQ367P , a CMML-associated Cbl mutant. CblQ367P mice exhibited sustained proliferation of myelomonocytes, multilineage dysplasia, and splenomegaly, which are the hallmarks of CMML. The phosphatidylinositol 3-kinase (PI3K)-AKT and JAK-STAT pathways were constitutively activated in CblQ367P hematopoietic stem cells, which promoted cell cycle progression and enhanced chemokine-chemokine receptor activity. Gem, a gene encoding a GTPase that is upregulated by CblQ367P , enhanced hematopoietic stem cell activity and induced myeloid cell proliferation. In addition, Evi1, a gene encoding a transcription factor, was found to cooperate with CblQ367P and progress CMML to AML. Furthermore, targeted inhibition for the PI3K-AKT and JAK-STAT pathways efficiently suppressed the proliferative activity of CblQ367P -bearing CMML cells. Our findings provide insights into the molecular mechanisms underlying mutant Cbl-induced CMML and propose a possible molecular targeting therapy for mutant Cbl-carrying CMML patients.
Collapse
|
6
|
Nadeau SA, An W, Mohapatra BC, Mushtaq I, Bielecki TA, Luan H, Zutshi N, Ahmad G, Storck MD, Sanada M, Ogawa S, Band V, Band H. Structural Determinants of the Gain-of-Function Phenotype of Human Leukemia-associated Mutant CBL Oncogene. J Biol Chem 2017; 292:3666-3682. [PMID: 28082680 DOI: 10.1074/jbc.m116.772723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Mutations of the tyrosine kinase-directed ubiquitin ligase CBL cause myeloid leukemias, but the molecular determinants of the dominant leukemogenic activity of mutant CBL oncogenes are unclear. Here, we first define a gain-of-function attribute of the most common leukemia-associated CBL mutant, Y371H, by demonstrating its ability to increase proliferation of hematopoietic stem/progenitor cells (HSPCs) derived from CBL-null and CBL/CBL-B-null mice. Next, we express second-site point/deletion mutants of CBL-Y371H in CBL/CBL-B-null HSPCs or the cytokine-dependent human leukemic cell line TF-1 to show that individual or combined Tyr → Phe mutations of established phosphotyrosine residues (Tyr-700, Tyr-731, and Tyr-774) had little impact on the activity of the CBL-Y371H mutant in HSPCs, and the triple Tyr → Phe mutant was only modestly impaired in TF-1 cells. In contrast, intact tyrosine kinase-binding (TKB) domain and proline-rich region (PRR) were critical in both cell models. PRR deletion reduced the stem cell factor (SCF)-induced hyper-phosphorylation of the CBL-Y371H mutant and the c-KIT receptor and eliminated the sustained p-ERK1/2 and p-AKT induction by SCF. GST fusion protein pulldowns followed by phospho-specific antibody array analysis identified distinct CBL TKB domains or PRR-binding proteins that are phosphorylated in CBL-Y371H-expressing TF-1 cells. Our results support a model of mutant CBL gain-of-function in which mutant CBL proteins effectively compete with the remaining wild type CBL-B and juxtapose TKB domain-associated PTKs with PRR-associated signaling proteins to hyper-activate signaling downstream of hematopoietic growth factor receptors. Elucidation of mutant CBL domains required for leukemogenesis should facilitate targeted therapy approaches for patients with mutant CBL-driven leukemias.
Collapse
Affiliation(s)
- Scott A Nadeau
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Wei An
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Bhopal C Mohapatra
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Biochemistry and Molecular Biology
| | - Insha Mushtaq
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | | | - Haitao Luan
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Neha Zutshi
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | - Gulzar Ahmad
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Matthew D Storck
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Masashi Sanada
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Vimla Band
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Hamid Band
- From the Eppley Institute for Research in Cancer and Allied Diseases, .,the Departments of Genetics, Cell Biology and Anatomy.,Biochemistry and Molecular Biology.,Pathology and Microbiology, College of Medicine, and.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| |
Collapse
|
7
|
Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A 2016; 113:E8228-E8237. [PMID: 27930322 DOI: 10.1073/pnas.1615677113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Casitas B-cell lymphoma (Cbl) family ubiquitin ligases negatively regulate tyrosine kinase-dependent signal transduction by promoting degradation of active kinases. We and others previously reported that loss of Cbl functions caused hyperproliferation in lymphoid and hematopoietic systems. Unexpectedly, Cbl deletion in Cbl-b-null, Cbl-c-null primary mouse mammary epithelial cells (MECs) (Cbl triple-deficiency) induced rapid cell death despite enhanced MAP kinase and AKT activation. Acute Cbl triple-deficiency elicited distinct transcriptional and biochemical responses with partial overlap with previously described cellular reactions to unfolded proteins and oxidative stress. Although the levels of reactive oxygen species were comparable, detergent-insoluble protein aggregates containing phosphorylated c-Src accumulated in Cbl triple-deficient MECs. Treatment with a broad-spectrum kinase inhibitor dasatinib blocked protein aggregate accumulation and restored in vitro organoid formation. This effect is most likely mediated through c-Src because Cbl triple-deficient MECs were able to form organoids upon shRNA-mediated c-Src knockdown. Taking these data together, the present study demonstrates that Cbl family proteins are required to protect MECs from proteotoxic stress-induced cell death by promoting turnover of active c-Src.
Collapse
|
8
|
Duyvestyn JM, Taylor SJ, Dagger SA, Langdon WY. Dasatinib promotes the activation of quiescent hematopoietic stem cells in mice. Exp Hematol 2016; 44:410-421.e5. [DOI: 10.1016/j.exphem.2016.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/01/2022]
|
9
|
An W, Nadeau SA, Mohapatra BC, Feng D, Zutshi N, Storck MD, Arya P, Talmadge JE, Meza JL, Band V, Band H. Loss of Cbl and Cbl-b ubiquitin ligases abrogates hematopoietic stem cell quiescence and sensitizes leukemic disease to chemotherapy. Oncotarget 2016; 6:10498-509. [PMID: 25871390 PMCID: PMC4496370 DOI: 10.18632/oncotarget.3403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 01/15/2023] Open
Abstract
Cbl and Cbl-b are tyrosine kinase-directed RING finger type ubiquitin ligases (E3s) that negatively regulate cellular activation pathways. E3 activity-disrupting human Cbl mutations are associated with myeloproliferative disorders (MPD) that are reproduced in mice with Cbl RING finger mutant knock-in or hematopoietic Cbl and Cbl-b double knockout. However, the role of Cbl proteins in hematopoietic stem cell (HSC) homeostasis, especially in the context of MPD is unclear. Here we demonstrate that HSC expansion and MPD development upon combined Cbl and Cbl-b deletion are dependent on HSCs. Cell cycle analysis demonstrated that DKO HSCs exhibit reduced quiescence associated with compromised reconstitution ability and propensity to undergo exhaustion. We show that sustained c-Kit and FLT3 signaling in DKO HSCs promotes loss of colony-forming potential, and c-Kit or FLT3 inhibition in vitro protects HSCs from exhaustion. In vivo, treatment with 5-fluorouracil hastens DKO HSC exhaustion and protects mice from death due to MPD. Our data reveal a novel and leukemia therapy-relevant role of Cbl and Cbl-b in the maintenance of HSC quiescence and protection against exhaustion, through negative regulation of tyrosine kinase-coupled receptor signaling.
Collapse
Affiliation(s)
- Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Scott A Nadeau
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dan Feng
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Priyanka Arya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jane L Meza
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Oksvold MP, Duyvestyn JM, Dagger SA, Taylor SJ, Forfang L, Myklebust JH, Smeland EB, Langdon WY. The targeting of human and mouse B lymphocytes by dasatinib. Exp Hematol 2015; 43:352-363.e4. [DOI: 10.1016/j.exphem.2015.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
|